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The paper presents a hierarchical spike timing neural network model developed in NEST

simulator aimed to reproduce human decision making in simplified simulated visual

navigation tasks. It includes multiple layers starting from retina photoreceptors and retinal

ganglion cells (RGC) via thalamic relay including lateral geniculate nucleus (LGN), thalamic

reticular nucleus (TRN), and interneurons (IN) mediating connections to the higher

brain areas—visual cortex (V1), middle temporal (MT), and medial superior temporal

(MTS) areas, involved in dorsal pathway processing of spatial and dynamic visual

information. The last layer—lateral intraparietal cortex (LIP)—is responsible for decision

making and organization of the subsequent motor response (saccade generation). We

simulated two possible decision options having LIP layer with two sub-regions with

mutual inhibitory connections whose increased firing rate corresponds to the perceptual

decision about motor response—left or right saccade. Each stage of the model was

tested by appropriately chosen stimuli corresponding to its selectivity to specific stimulus

characteristics (orientation for V1, direction for MT, and expansion/contraction movement

templates for MST, respectively). The overall model performance was tested with stimuli

simulating optic flow patterns of forward self-motion on a linear trajectory to the left or to

the right from straight ahead with a gaze in the direction of heading.

Keywords: visual perception, self-motion, spike timing neuron model, visual cortex, LGN, MT, MST, LIP

INTRODUCTION

Vision has to encode and interpret in real time the complex, ambiguous, and dynamic
information from the environment in order to ensure successive interaction with it. In the process
of evolution, in the mammalian brain have emerged areas with a specific type of functionality
that can be regarded as a hierarchical structure processing the visual input. The incoming light is
initially converted in the retina into electrical signal by retinal ganglion cells (RGC), passed through
the relay station—lateral geniculate nucleus (LGN) and thalamic reticular nucleus (TRN)—to
the primary visual cortex (V1) where the visual information splits in two parallel pathways
involved in encoding spatial layout and motion (dorsal) and shape (ventral) information. Motion
information encoding and interpretation pose serious challenges due to its different sources (self-
motion, object motion, or eye movements), the need to integrate local measurements in order
to resolve the ambiguities in the incoming dynamic stream of information, but also the need
to segregate the signals coming from different objects. The motion information processing is

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00020&domain=pdf&date_stamp=2019-04-05
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pkoprinkova@bas.bg
mailto:nadya@percept.bas.bg
https://doi.org/10.3389/fncom.2019.00020
https://www.frontiersin.org/articles/10.3389/fncom.2019.00020/full
http://loop.frontiersin.org/people/174924/overview
http://loop.frontiersin.org/people/682966/overview
http://loop.frontiersin.org/people/711202/overview
http://loop.frontiersin.org/people/682747/overview


Koprinkova-Hristova et al. Model of Motion Perception and Decision Making

performed predominantly by themiddle temporal area (MT) that
encodes the speed and direction of the moving objects and the
medial superior temporal area (MST) that extracts information
about the self-motion of the observer.

Most of the existing motion information processing models
are restricted to the interactions between the areas in the dorsal
pathway: V1 and MT (e.g., Simoncelli and Heeger, 1998; Bayerl
and Neumann, 2004; Bayerl, 2005; Chessa et al., 2016), V1, MT,
and MST (Raudies et al., 2012) or MT and MST (Grossberg
et al., 1999; Perrone, 2012). Many models consider only the
feedforward interactions (e.g., Simoncelli and Heeger, 1998;
Solari et al., 2015) disregarding the feedback connectivity; others
employ rate-based equations (e.g., Grossberg et al., 2001; Raudies
and Neumann, 2010) considering an average number of spikes in
a population of neurons.

Here we present spike-timing neural network as an attempt
to simulate realistically the interactions between all described
processing stages of encoding of dynamic visual information
in the human brain. To take into account the process of
decision making based on perceived visual information and the
preparation of a saccade to the desired location, we included the
lateral intraparietal area (LIP) as the output layer. The model
behavior was tested with simplified visual stimuli mimicking self-
motion with gaze fixed, considering its output as a decision for
saccade toward the determined heading direction.

The model is implemented using NEST 2.12.0 simulator
(Kunkel et al., 2017).

The paper is organized as follows: Section Model Structure
describes briefly the overall model structure; Section Simulation
Results reports results from its performance testing; Section
Discussion presents a brief discussion of the model limitations
and the directions of future work.

MODEL STRUCTURE

The proposed here hierarchical model, shown on Figure 1, is
based on the available data about brain structures playing a
role in visual motion information processing and perceptual
decision making, as well as their connectivity. Each layer consists
of neurons positioned in a regular two-dimensional grid. The
receptive field of each neuron depends both on the function
of the layer it belongs to and on its spatial position within
its layer.

The reaction of RGC to luminosity changes is simulated by
a convolution of a spatiotemporal filter with the images falling
on the retina, following models from Troyer et al. (1998) and
Kremkow et al. (2016). Its spatial component has a circular
shape modeled by a difference of two Gaussians (DOG) while
the temporal component has a bi-phasic profile determined by
the difference of two Gamma functions. The model contains
two layers of ON and OFF RGC and their corresponding
LGN and IN/TRN neurons, having identical relative to visual
scene positions and opposite [“on-center off-surround” (ON)
and “off-center on-surround” (OFF)] receptive fields placed
in reverse order like in Kremkow et al. (2016). Each layer
consists of totally 400 neurons, positioned on 20 × 20 grid.

FIGURE 1 | Model structure. Each rectangle denotes a two-dimensional grid

of neurons having corresponding to the layer functionality and receptive fields.

The model output has two LIP neurons with a preference for preparing a

left/right saccade decision based on sensory data. MTSe and MTSc represent

MTS neurons with expansion/contraction movement templates.

The continuous current generated by RGC is injected into LGN
and IN via one-to-one connections. The structure of direct
excitatory synaptic feedforward connectivity between LGN and
V1 is also adopted fromKremkow et al. (2016). LGN also receives
inhibitory feedback from V1 via IN and TRN according to
(Ghodratia et al., 2017).

As in Kremkow et al. (2016), the neurons in V1 are separated
into four groups—two exciting and two inhibiting, having a ratio
of 4/1 exciting/inhibiting neurons (400/100 in our model) and
connected via corresponding excitatory and inhibitory lateral
connections. All exciting neurons are positioned at 20 × 20 grid
while the 10 × 10 inhibiting neurons are dispersed among them.
Being orientation sensitive, V1 neurons have elongated receptive
fields defined by Gabor probability function as in Nedelcheva
and Koprinkova-Hristova (2019). The “pinwheel structure” of
the spatiotemporal maps of the orientations and phases of V1
neurons receptive fields was generated using a relatively new
and easily implemented model (Sadeh and Rotter, 2014). An
example of V1 orientation map (Nedelcheva and Koprinkova-
Hristova, 2019) for a spatial frequency λ of the generating
grating stimulus is shown in Figure 2A. Lateral connections in
V1 are determined by Gabor correlations between the positions,
phases, and orientations of each pair of neurons. As in Kremkow
et al. (2016), neurons from inhibitory populations connect
preferentially to neurons having a receptive field phase difference
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FIGURE 2 | Representation of some of the model layers and their connections: (A) orientation columns of V1 layer; (B) direction selectivity of MT layer; (C) expansion

(a) and contraction (b) binary patterns T (δ) of MT–MST connections (blue star and red dot denote the expansion/contraction focal points while the arrows show the

direction selectivity of MT cells eligible to be connected to corresponding MST pattern) and corresponding to them connection templates Te(c) on (c,d).

of around 180◦. In our model, the frequencies, and standard
deviations of Gabor filters for lateral connections were chosen
so that all neurons in the layer have approximately circular
receptive fields.

MT has identical to V1 size and structure and its lateral
connections are designed in the same way while the connections
from V1 cells depend on the angle ϕij between the orientation
preferences of each two cells like in Escobar et al. (2009):

wij =

{

kcwcs

(

xMT
i − xV1j , yMT

i − yV1j

)

cosϕij, 0 ≤ ϕij ≤
π
2

0, π
2 < ϕij < π

Here kc is amplification factor and wcs is weight factor associated
with the MT neuron receptive field, modeled as DOG function:
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where ac and as are the center and surround weights and σc and
σs are the corresponding standard deviations. The orientation
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and phase maps of this layer were generated in the same way as
those of V1. An example of direction selectivity map of MT is
shown on Figure 2B.

The MST consist of two layers, each one containing
400 neurons positioned on 20 × 20 grid, sensitive to
expansion and contraction movement patterns, respectively,
like in Layton and Fajen (2017). Each MST cell has assigned
an expansion/contraction connection template Te(c) having a
circular shape with width d and focal point

(

xe(c),ye(c)
)

at MT
as follows:

Te(c)

(

xe(c), ye(c), xMT , yMT

)

= T (δ) e
−d

(

(xe(c)−xMT)
2
+(ye(c)−yMT)

2
)

δ = arctg
ye(c) − yMT

xe(c) − xMT

Here δ is the radial template angle determined by the
position of each MT cell

(

xMT ,yMT

)

and the given pattern
expansion/contraction focal point. The binary pattern variable
T (δ) is non-zero only if the corresponding MT cell has
direction preference toward/against the contraction/expansion
center of MST. Figure 2C shows examples of MT cells (with
direction selectivity presented by arrows at corresponding
positions) that are eligible for connection to corresponding
expansion/contraction MST cells having focal points marked
by blue star and red dot [(a) and (b)] and the corresponding
connection templates [(c) and (d)].

The MST neurons have on-center receptive fields with
standard deviation σ . EachMST neuron collects inputs fromMT

FIGURE 3 | Test stimulus consisting of horizontal and diagonal bars moving

parallel to the bar orientations in each of the two stimulus regions as shown by

dashed pink lines). The blue thick line shows estimated in V1 layer average

orientation of the stimulus. The red arrow points toward estimated in MT layer

average direction of bar movement within the stimulus.

cells corresponding to its pattern template as follows:

we(c)

(

xMT , yMT , xMST , yMST

)

= Te(c)

(

xe(c), ye(c), xMT , yMT

)

e
−
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2σ2I

√

2πσ 2
I

Both layers have intra- and interlayer excitatory/inhibitory
recurrent connections between cells having similar/different
sensitivity as shown on Figure 1.

These lateral connections are determined based on neurons’
positions and template similarities. All neurons have Gaussian
receptive fields. Connections within expansion/contraction
layers are excitatory or inhibitory in dependence on their focal
points similarity as follows:

wintra
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Connections between expansion and contraction layers are all
inhibitory and depend both on similarities of their positions and
focal points as follows:

w
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In present work, we used only three focal points having identical
vertical positions ye(c) = 0.

Since our model aims to decide whether the expansion
center of a moving dot stimulus is left or right from
the stimulus center, here we proposed a task-dependent
design of excitatory/inhibitory connections from MST
expansion/contraction layers to the two LIP sub-regions
whose increased firing rate corresponds to two taken decisions
for two alternative motor responses—eye movement to the left
or to the right. Both LIP areas are modeled by two neurons
receiving excitatory input from MST expansion layer neurons
having focal points corresponding to their decision responses
(left or right) and inhibitory input from all other MST neurons.
There are also lateral inhibitory connections between both LIP
areas (Figure 1).

For the neurons in LGN conductance-based leaky integrate-
and-fire neuron model as in Casti et al. (2008) (iaf_chxk_2008
in NEST) was adopted. For the rest of neurons, leaky integrate-
and-fire model with exponential shaped postsynaptic currents
according to Tsodyks et al. (2000) (iaf_psc_exp in NEST) was
used. All connection parameters are the same as in the cited
literature sources.
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FIGURE 4 | LIP neurons spikes induced by moving dot stimuli (on the top) having expansion centers (denoted by stars indicating the predominant directions of

motion of the dots) with varying displacements to the left or to the right from the screen center. The arrows pointing to the left and right denote the corresponding

neuron spikes (blue for the left and red for the right, respectively).

SIMULATION RESULTS

In our previous work (Nedelcheva and Koprinkova-Hristova,
2019) we tested orientation selectivity of V1 in order to tune
parameters of receptive fields of both LGN and V1 and the spatial
frequency of V1 orientation columns using moving bar stimuli
with two orientations. In Koprinkova-Hristova et al. (2018) we
demonstrated that feedback inhibitory connections from V1 to
LGN via TRN/IN modulates V1 neurons selectivity.

Further, we tested responses ofMT using a stimulus composed
of horizontal and diagonal bars moving with equal speed
along different directions. To evaluate model responses, the

vector-averaged population decoding of V1, and MT was
determined as in (Webb et al., 2010):

ORest = arctg

∑

i nisinθi
∑

i nicosθi

where ni is the total number of spikes generated by neurons
having sensitivity to i-th orientation/direction. Estimated
orientation and direction of stimulus shown on Figure 3 in V1
and MT were 50.83◦ and 93.26◦ and correspond approximately
to the mean values of the underlying stimulus characteristics.
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The overall model was tested using visual stimulation
simulating an observer’s motion on a linear trajectory with eyes
fixed in the heading direction. The stimuli consisted of 50moving
dots (36 of which moved radially and 14 with randommovement
directions) having expansion centers left or right from the visual
scene center. Each dot lasted for 100ms after which it was re-
positioned randomly preserving its motion direction. On every
frame, only one-third of the dots changed position. Variations
of stimuli having seven expansion center positions ranging from
0.67 to 4.67◦ of arc (20–140 pixels) to the left or to the right
of the screen center were generated. A detailed description of
the experiment and the results with human subjects are given in
Bocheva et al. (2018).

Spike trains generated by both LIP neurons (left and
right) in response to the stimuli with varying center
displacements (in pixels) moving for a duration of 600ms
are presented on Figure 4.

The simulation data showed that in all cases after a period of
uncertainty the firing rate in the LIP area corresponding to the
correct expansion center position is higher. The moment when
correct decision starts to prevail depends on the task difficulty,
i.e., the displacement magnitude. The LIP neuron reaching the
correct decision has a shorter period of uncertainty with length
inversely proportional to the center displacement magnitude.We
also observed asymmetrical behavior of left/right LIP areas: the
right decision is taken faster while for the left the model needed
300–400ms to switch to the correct decision for intermediate
displacements and longer time for the largest one.

DISCUSSION

The model has several limitations. We have focused only on
the dorsal pathway and disregarded the interactions between
the two visual pathways. However, the stimulation we used
for model testing does not require additional complication
even though its performance might be better at the MT stage
if the information about the motion boundaries between the
two regions of the stimulus configuration were extracted and
supplied by the ventral pathway. The model parameters are based
predominately on the data published in the literature. They have
to be additionally tuned to represent the human performance in
behavioral experiments with the same type of stimuli, as those
reported by Bocheva et al. (2018).

The simulation data were obtained for fixed stimulus duration
and suggest that the correct choice is achieved in <600ms.
However, the human observers, especially the older ones, needed
more time to make a response. Only about 10 percent of the
responses were shorter than 600ms and only 53.4% of these

short responses were correct. While this suggests that the model
outperforms the observers in accuracy and speed and is more
effective in integrating the spatial and temporal information
than the human observers, it needs to be emphasized that the
reaction time of the human observers contains also non-decision
components that involve the preparation of the motor response.
Indeed, our data show that the component of the reaction
time not related to decision-making is on average 342ms for
the young age group, 520ms for the middle aged and 825ms
for the elderly. This non-decision time could not be taken
into account in the model as it simulates only the decision
making based on the accumulation of sensory information.
In the future, we will test the model for longer stimulus
duration and implement an ability to make a choice after the
stimulus extinction.

In spite of its limitations, our model reproduced certain
characteristics of the behavioral data like the trend for
increased response times with the decrease in expansion
center displacement.

We need to emphasize also that more elaborated stimuli were
used for model testing than the typically used gratings or random
dot patterns with the supposition that if the model performs well
with these stimuli, it will perform well with simpler stimuli as
well. However, even though our stimuli are more complex than
the typical ones, they are simplified versions of the stimulation
experienced in natural conditions and tasks. Additional tests with
a larger set of stimuli are needed in order to improve model
behavior. This will allow adjusting model parameters so that they
replicate the age differences in performance in different tasks in
dynamic conditions. The involvement of other brain structures
contributing to saccade programming is another direction in our
future work.
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