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Purpose: Real-time monitoring of cardiac output (CO) requires low-latency
reconstruction and segmentation of real-time phase-contrast MR, which has
previously been difficult to perform. Here we propose a deep learning framework
for “FReSCO” (Flow Reconstruction and Segmentation for low latency Cardiac
Output monitoring).
Methods: Deep artifact suppression and segmentation U-Nets were indepen-
dently trained. Breath-hold spiral phase-contrast MR data (N = 516) were
synthetically undersampled using a variable-density spiral sampling pattern and
gridded to create aliased data for training of the artifact suppression U-net. A
subset of the data (N = 96) was segmented and used to train the segmentation
U-net. Real-time spiral phase-contrast MR was prospectively acquired and then
reconstructed and segmented using the trained models (FReSCO) at low latency
at the scanner in 10 healthy subjects during rest, exercise, and recovery periods.
Cardiac output obtained via FReSCO was compared with a reference rest CO
and rest and exercise compressed-sensing CO.
Results: The FReSCO framework was demonstrated prospectively at the scan-
ner. Beat-to-beat heartrate, stroke volume, and CO could be visualized with a
mean latency of 622 ms. No significant differences were noted when compared
with reference at rest (bias = −0.21± 0.50 L/min, p = 0.246) or compressed
sensing at peak exercise (bias = 0.12± 0.48 L/min, p = 0.458).
Conclusions: The FReSCO framework was successfully demonstrated for
real-time monitoring of CO during exercise and could provide a convenient tool
for assessment of the hemodynamic response to a range of stressors.
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1 INTRODUCTION

Continuous assessment of cardiac output (CO) has several
applications such as evaluating the response to exercise or

pharmacological innervations.1–4 The noninvasive refer-
ence standard method of measuring CO is phase-contrast
MR (PCMR).5–7 However, conventional PCMR uses
segmented k-space acquisitions, and therefore cannot
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be used to continuously monitor CO. Real-time PCMR
can be used for this application, but ensuring adequate
spatiotemporal resolution requires significant data under-
sampling, often combined with efficient trajectories (eg,
spiral).8

Unfortunately, reconstruction of highly acceler-
ated non-Cartesian data is time-consuming due to
the iterative nature of state-of-the art reconstruc-
tion algorithms (eg, compressed sensing [CS]). This
problem has been partly mitigated by graphics pro-
cessing units that enable low-latency reconstruction of
continuously acquired real-time data.9 However, pro-
cessing the large amounts of data produced is time-
consuming, and current methods do not enable real-time
monitoring.

We have recently shown that deep learning (DL) can
be used to remove aliasing artifact (deep artifact suppres-
sion) from both magnitude and phase images of highly
accelerated real-time spiral PCMR data acquired at rest.10

The U-Net architecture used for deep artifact suppression
was originally proposed for segmentation of biomedical
images11 and performed excellently for a wide range of
segmentation applications.12 We propose extending our
previous work10 by performing both low-latency deep
artifact suppression and segmentation on real-time flow
data and combining this with optimized communication
and visualization for near real-time monitoring of CO
during exercise. The specific aims were to (1) develop and
demonstrate the feasibility of a low-latency continuous
CO monitoring framework on the scanner in 10 healthy
subjects during a simple exercise study, (2) compare CO
measurements at rest between our proposed “FReSCO”
(Flow Reconstruction and Segmentation for low latency
CO monitoring) method and reference free-breathing
retrospectively electrocardiogram (ECG)–gated Carte-
sian PCMR, and (3) compare CO measurements at
rest and peak exercise between FReSCO and CS
reconstruction.

2 METHODS

Our proposed framework for low-latency CO monitoring
relies on (1) a highly accelerated real-time spiral PCMR
acquisition, (2) an open-source cross-platform commu-
nication framework (Gadgetron), and (3) two sequen-
tial U-Nets for fast deep artifact suppression and seg-
mentation of the real-time data. The FReSCO frame-
work is illustrated in Figure 1. Cohort and acquisition
information relative to the prospective and retrospec-
tive studies is summarized in Supporting Information
Table S1.

2.1 Acquisition

The real-time flow acquisition uses a golden-angle vari-
able density spiral13 trajectory, with the outer 10% of
k-space 2.5× less densely sampled than the inner 20%
(with linearly decreasing density in between [trajectory
depicted in Supporting Information Figure S1]). One-sided
velocity encoding was achieved by acquiring each read-
out twice (velocity encoded and compensated), and three
spiral interleave positions (six readouts) were acquired
per frame, leading to an acceleration factor of about
8.7/21.7 for inner/outer k-space. Scan parameters included
FOV = 400× 400 mm, voxel size = 2.1× 2.1× 6.0 mm,
TR/TE = 5.8/2.1 ms, temporal resolution = 35.0 ms, flip
angle = 20◦, and velocity encoding = 200 cm/s.

Reference standard flow imaging was acquired per
our clinical protocol with high spatial/temporal reso-
lution (enabled through cardiac gating and respiratory
averaging) to assess accuracy of our method at rest. It
consists of a free-breathing, retrospectively ECG-gated,
Cartesian PCMR sequence with the following parameters:
FOV = 254× 370 mm, voxel size = 1.4 × 1.4 × 6.0 mm,
TR/TE = 5.1/2.7 ms, temporal resolution ∼ 30 ms, flip
angle = 20◦, velocity encoding = 180 cm/s, averages = 3,
and acquisition time = 95.71± 21.4 s.

2.2 Training data

The FReSCO DL framework consisted of independently
trained deep artifact suppression and aortic segmenta-
tion networks. The training data for deep artifact sup-
pression were created from 516 breath-hold, retrospec-
tively ECG-gated, uniform density spiral PCMR8 data sets
(Supporting Information Table S1) in the aortic position
of patients with pediatric and/or congenital heart dis-
ease (age: 32.9± 14.0 years, heartrate: 74.3± 15.3 bpm).
Each data set consisted of magnitude and phase-subtracted
images (as stored within clinical routine). To create the
paired synthetically corrupted and truth images for train-
ing, the complex data were first Fourier-transformed
and undersampled with the proposed trajectory. The
synthetic undersampled k-space data were then inverse
Fourier–transformed to produce the aliased images. This
deep artifact suppression data set was split into 470/30/16
for training, validation, and testing.

The training data for segmentation were created from
96 of these data sets (age: 20.9± 13.5 years, heartrate:
74.5± 15.9 bpm) using a semi-automatic method based
on an optical flow registration with manual operator cor-
rection14 by an expert (V.M.). This segmentation data set
(complex images as input and segmentation masks as out-
put) was split into 70/10/16 for training, validation, and
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F I G U R E 1 The “FReSCO”
(Flow Reconstruction and
Segmentation for low latency
Cardiac Output monitoring)
framework for low-latency
monitoring of aortic flow. A,
Real-time golden-angle variable
density spiral data are forwarded to
an external computer using
Gadgetron. The pipeline is
initialized using the 10 first frames
(eg, module imports, trajectory,
density compensation, coil
estimation, Maxwell correction),
and the proposed reconstruction
and flow monitoring are performed
during scanning. Flow maps and
segmentations are sent back to the
scanner. B, Illustration of the
proposed real-time monitoring
interface at the end of a 3-min
exercise scan. Top left: segmented
magnitude images; top middle:
phase images; top right: flow
curves; bottom left: beat-to-beat
heartrate; bottom middle: stroke
volume; bottom right: cardiac
output. Abbreviation: nuFFT,
nonuniform fast Fourier transform

testing (with the same test set as used for the artifact
suppression network).

Collection of all retrospective data was approved by the
national research ethics committee (Ref. 06/Q0508/124).

2.3 Networks and training

The overall DL framework for deep artifact suppression
and segmentation is shown in Figure 2A and consisted of
two consecutive, independently trained, 3D U-Nets. The

artifact suppression model was trained on center-cropped
(128× 128), paired complex corrupted and truth images
in blocks of 24 frames, with real and imaginary channels,
using an average 2D structural similarity index (SSIM)
based loss (L)10:

L = 1 −
SSIM
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where y is the ground-truth image; ŷ is the predicted image;
and real and imag are the real and imaginary components.
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Data augmentation was performed during training, and
included random smooth phase offsets, image flips, rota-
tions, and roll (ie, time shift). In addition, translational
motion was applied to 50% of cases to simulate exercise and
rest cases. A Hyperband optimization15 was performed to
choose the optimum U-Net parameters, including number
of scales, initial filters, convolution blocks per scale, and
learning rate (the tunable U-Net architecture is depicted in
Supporting Information Figure S2 and range of parameters
explored in Supporting Information Table S2).

The segmentation model was also trained on 24 frames
of cropped (128× 128) paired complex images (as real
and imaginary channels) and segmentation maps. The
magnitude data underwent contrast limited adaptive
histogram equalization (CLAHE)16 for more robust
segmentation. Data augmentation and hyperparameter
optimization were broadly the same as in the artifact
suppression model, except that the type of segmenta-
tion loss was also optimized (as described in Supporting
Information Table S2).

Hyperband parameters for the deep artifact suppres-
sion/segmentation models included 100/150 maximum
number of epochs, hyperband factor of 3 (discarded pro-
portion within each bracket), and 172 of 172 configura-
tions tested. All training was performed using Tensor-
Flow17 on a Linux Workstation (with NVIDIA TITAN RTX
24GB).

2.4 In silico validation

Evaluation of both tasks was performed on the test set
(including motion in all 16 cases) using (1) imaging met-
rics (mean absolute error, peak SNR, and average SSIM)
and (2) segmentation metrics (binary cross entropy and
Dice score). The segmentation network’s performance was
tested on both the original “truth” test images and on
the DL restored corrupted images to evaluate any loss in
performance due to the DL reconstruction.

2.5 Prospective experiments

Ten healthy subjects (age: 33.2± 4.3 years) were prospec-
tively acquired (Aera 1.5 T; Siemens Healthineers). Ref-
erence standard resting aortic PCMR data were acquired
using a retrospectively ECG-gated, breath-hold cartesian
PCMR scan followed by 3 min of continuous real-time
imaging (5143 frames) during rest, exercise, and recovery.

A simple exercise protocol was used to demonstrate
feasibility of the framework consisting of 40 s of rest, 80 s
of moderate exercise, and 60 s of recovery. The exercise
consisted of supine repeated leg extensions (following a

metronome at 1 beat per second) using an extensible band
held by the subject to provide resistance.

Collection of prospective data was approved by the
national research ethics committee (Ref. 17/LO/1499), and
written consent was obtained in all subjects.

2.6 In vivo real-time reconstruction

Prospective images were reconstructed in near-real time
during scanning using Gadgetron18 for low-latency com-
munication with an external reconstruction and visualiza-
tion computer (Linux Workstation with NVIDIA GeForce
RTX 3060 12GB). TensorFlow MRI19 was used for gridding,
and the proposed networks were used for deep artifact
suppression and segmentation.

At the start of acquisition, the framework was ini-
tialized. This included setting up the Gadgetron pipeline,
importing the necessary modules, and computing tra-
jectories, density compensation weights,20 coil sensitivity
maps21 (from first 10 frames of data), and Maxwell correc-
tion terms.22

Figure 2 depicts the pipeline at inference.
Flow-encoded and flow-compensated frames were grid-
ded, coil-combined, cropped, normalized, and buffered
into 2D+ time blocks. Deep artifact suppression was then
performed in a sliding window fashion (window = 24
frames, step size = 18 frames, keeping only central frames
to remove edge effects) separately on the flow-encoded
and compensated blocks.

The artifact-suppressed data were then combined
(average magnitude and phase subtraction), and the mag-
nitude images were equalized using CLAHE. The mag-
nitude and phase subtracted data were then passed to
the segmentation network (as real and imaginary chan-
nels) for aortic segmentation. These segmented data
were used to quantify flow from the phase-subtracted
PCMR data (after Maxwell correction). Peak detection
was then performed for real-time monitoring of heartrate,
stroke volume, and CO. The resultant images, seg-
mentation, and flow curves were displayed with low
latency on the external computer (interface shown in
Figure 1B).

Reconstruction timings were recorded during acquisi-
tion on the last 1000 frames. Latency is approximated as
the time between the start of an acquisition block of 24
images, until completion of the reconstruction and seg-
mentation of the block of images.

Real-time images at rest (4–14 s) and at peak exer-
cise (107–117 s) were additionally reconstructed offline to
compare the proposed method with a CS reconstruction
of the same data using temporal total variation regulariza-
tion (BART23 toolbox). The CS regularization factor was
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F I G U R E 2 A, Overview of the FReSCO framework at inference. Deep artifact suppression is performed on the buffered gridded
flow-encoded and compensated data. Segmentation is performed on the combined magnitude contrast limited adaptive histogram equalized
(CLAHE) images. B, Sliding window reconstruction timings (at scale). Each acquired frame is gridded independently but deep
artifact–suppressed and segmented as a block of 24 frames

set empirically (λ = 5E-4), and data were reconstructed in
the same blocks as the DL reconstruction (window = 24
frames, step size= 18 frames, keeping only central frames).
Cardiac output was extracted for both proposed DL and
CS methods using the same segmentation (obtained from
the proposed DL segmentation network of the DL recon-
structed images) to limit the source of discrepancies to
reconstruction differences only.

Additionally, real-time CO obtained at rest was com-
pared with the reference standard PCMR, which was seg-
mented using a semi-automatic method based on an opti-
cal flow registration with manual operator correction (by
an expert [J.B.]).

2.7 Statistical analysis

Statistical analyses were performed using Python. All
compared distributions were tested for normality using
Shapiro–Wilk tests. In silico metrics were compared using
paired t tests. In vivo, Bland–Altman analysis of the
prospective extracted flow volumes was performed among
the reference PCMR (at rest only), FReSCO, and CS
measurements. Cardiac output mean biases and limits of
agreement were reported. These biases were tested for
statistical significance using a repeated-measures one-way
ANOVA (if> 2 groups) or paired t tests otherwise.

3 RESULTS

3.1 Training and in silico validation

Training with hyperparameter optimization of the deep
artifact suppression and segmentation networks took 67
and 10 h, respectively. The range of parameters explored
and final selected network parameter values for both tasks
are found in Supporting Information Table S2.

In silico results are shown for 4 test subjects (including
the worst test case with Dice score of 0.56) in Support-
ing Information Figure S3 (and 1 representative subject
in Supporting Information Video S1). For deep artifact
suppression, the mean absolute error, peak SNR, and aver-
age SSIM were 0.023± 0.004, 29.3± 1.4, and 0.88± 0.03,
respectively. For the segmentation model, the binary cross
entropy and Dice were 0.048± 0.054 and 0.87± 0.13. It
should be noted that segmentation accuracy on restored
images was not statistically significantly different from
the segmentation accuracy obtained from “truth” images
(binary cross entropy= 0.061, p= 0.09; Dice 0.87, p= 0.71).

3.2 Feasibility of proposed method

A video of the proposed interface for real-time monitor-
ing as recorded during scanning is provided in Supporting
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F I G U R E 3 Heartrate (HR), stroke volume (SV), and cardiac output (CO) curves obtained from two subjects with different responses to
exercise. In white, the median filtered curves. Blue arrows depict the 10 s areas used for comparison to CS and reference at rest (4–14 s) and
CS only at peak exercise (107–117 s)

Information Video S2 and a snapshot of the interface at
the end of acquisition in Figure 1B. The FReSCO frame-
work was able to adequately remove artifact and segment
the aorta with a latency < 1 s both at rest and during
exercise without any user interaction. The CO increased
from 5.82± 1.10 L/min at rest to 7.42± 1.34 L/min at
peak exercise, and heartrate increased from 68± 8 bpm
at rest to 94± 8 bpm at peak exercise. Two representa-
tive curves recorded during exercise are shown in Figure 3
and demonstrate different responses to exercise better seen
with continuous monitoring.

A schematic of reconstruction timings is shown
in Figure 2B. The gridding time was approximately
16.2 ms/frame, compared with an acquisition time of
about 35 ms/frame. After the final frame in a block was
gridded, deep artifact suppression of both encodings and
segmentation of a block took on average of 151 ms. It
should be noted that initialization of the pipeline led to an
initial latency of about 16 s. However, as the total recon-
struction time for a block was shorter than the acquisition
time (for 18 central frames, gridding and deep artifact sup-
pression added up to ∼443 ms vs ∼630 ms of acquisition),
the reconstruction was able to catch up after 26 s (42 s into
the acquisition). After this transition period, mean latency
was about 622 ms for the central frame of the block, and
902 ms for the first frame.

3.3 Comparison with CS reconstruction
and reference standard PCMR

Magnitude and phase-subtracted images, reconstructed
using FReSCO and CS, as well as reference ECG-gated
data, are shown in Figure 4 (Supporting Information
Video S3). Time-averaged and real-time curves are shown
for 1 subject in Supporting Information Figure S4 (blood
flow) and Supporting Information Figure S5 (mean veloc-
ity and segmentation area). At rest, there was good
agreement between the proposed method and the refer-
ence (Figure 5A), with no significant differences in CO
(bias = −0.21± 0.50 L/min, p = 0.246). There was a small
but statistically significant negative bias in CO between CS
and the reference (bias = −0.38± 0.35 L/min, p = 0.009;
Figure 5B) and a trend toward significance between the
proposed DL method and CS (bias = 0.18± 0.24 L/min,
p = 0.052; Figure 5C). During exercise, there was
good agreement in peak CO between CS and FReSCO
(bias = 0.12± 0.48 L/min, p = 0.458; Figure 5D).

4 DISCUSSION

In this study, we demonstrated the feasibility of
low-latency real-time CO monitoring using real-time
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F I G U R E 4 Reference (repeated for three cycles), compressed sensing (CS), and FReSCO images at rest, and CS and FReSCO images
during exercise in a representative subject. Magnitude x-y, magnitude x-t, phase x-y, and phase x-t images are shown. Automatic
segmentations (computed from the proposed deep learning [DL] images) are overlaid on top of the magnitude images. Corresponding video
in Supporting Information Video S3

PCMR, combined with DL-based artifact suppression and
automated segmentation during exercise. There was good
agreement between CO measured using this method and
conventional gated PCMR (at rest), and CS reconstruction
of the same data (at rest and exercise). Thus, we believe
our approach has the potential to simplify continuous CO
measurement during various stress protocols.

4.1 Networks and training

We have previously shown the utility of deep artifact sup-
pression for fast reconstruction of highly undersampled
spiral real-time PCMR.10 As our application also required
processing of PCMR data, we additionally trained a
network for fully automated segmentation. We showed
excellent network performance for both tasks, and the

combined inference time was short enough for a latency
< 1 s. Thus, more sophisticated joint reconstruction and
segmentation networks24,25 that could have had shorter
inference times were not necessary. Further benefits
of splitting the tasks were that it allowed the use of a
larger data set for learning deep artifact suppression, dif-
ferent preprocessing of the inputs (eg, CLAHE before
segmentation), and separate optimization of network
hyperparameters.

Our labeled data set was relatively large, using 70
data sets for training the segmentation. Preliminary results
showed that similar performance could be obtained with
as few as 10 training data sets (violin plots and qual-
itative comparisons are shown in Supporting Informa-
tion Figures S6 and S7), which might indicate that less
time-consuming labeling is required. However, failure in
segmentation was observed in the in silico data, potentially
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F I G U R E 5 Correlation and Bland Altman plots comparing cardiac output from proposed FReSCO to reference at rest (A), compressed
sensing (CS) to reference at rest (B), FReSCO to CS at rest (C), and FReSCO to CS at peak exercise (D). The values reported for CS and
FReSCO are the average cardiac output obtained over 4 to 14 s (rest) and 107 to 117 s (exercise) of the real-time acquisition

due to unusual anatomy, image artifacts, or position of the
aorta in the FOV.

Future improvements could include using multicoil
raw data for training26 and using a more end-to-end
approach to optimize acquisition, reconstruction,27–29

and segmentation.24 However, iterative model-based
approaches would require significant changes/op-
timization to provide reasonable latencies, as each
data-consistency step requires two additional nonuniform
fast Fourier transforms (taking 16.2 ms each in our current
framework); thus, one iteration would take 48.6 ms, which
is already much larger than the acquisition time (∼35 ms).

4.2 Real-time reconstruction
and visualization

The proof-of-concept framework was demonstrated at the
scanner during continuous exercise. It was able to remove
artifacts and segment images without user intervention
and with low enough latency to provide almost real-time
monitoring. Latency could be further reduced by including
(1) initialization of the pipeline before the start of acqui-
sition to reduce the initial latency, (2) parallelization of
gridding and deep artifact suppression for higher frame
rate, and (3) using a memory-based network to recon-
struct the latest frame rather than blocks, while still using
temporal redundancies.30

4.3 Comparison with CS reconstruction
and gated reference standard

There was reasonable agreement between FReSCO and
the reference standard ECG-gated PCMR sequence
for measurement of CO at rest. This was despite
FReSCO’s lower resolutions required for real-time
imaging and higher velocity encoding necessary for
exercise studies. There was also reasonable agreement
between the proposed DL and CS reconstructions of
the same data at rest and exercise. This is in keeping
with previous larger studies comparing deep artifact
suppression to CS and gated PCMR. However, in our
case, agreement with reference PCMR also relied on
the accuracy of automated segmentation. The good agree-
ment suggests that both deep artifact suppression and
automated segmentation worked robustly within our
framework.

Beat-to-beat curves showed variations of CO
(Figures 1B and 3). We believe that this variability could
be due to physiological variations in stroke volume due
to respiration, which could be a relevant biomarker
in itself.31 It could also be due to remaining inaccu-
racies in segmentation and reconstruction. However,
Supporting Information Figure S5 shows plausible phys-
iological changes in beat-to-beat mean velocity and
area without obvious segmentation or reconstruction
failures.
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Nevertheless, further testing in larger and more het-
erogenous populations is required before more general
use.

4.4 Applications

Stress testing, particularly with exercise, is becoming
increasingly important in cardiac MRI, as it provides
important information about hemodynamic responsive-
ness. However, it has been difficult to continuously mon-
itor CO due to long reconstruction times and difficulty in
segmenting thousands of frames of PCMR data. We have
demonstrated this is easily achieved with our framework,
and we showed that the dynamic response to exercise was
highly variable.

Thus, continuous CO data may provide new insights
into cardiovascular disease. In future work we aim to
assess the feasibility of this approach in more strenuous
forms of in-scanner exercise (eg, recumbent bicycle).

5 CONCLUSIONS

The FReSCO framework enables real-time monitoring
of CO during exercise and could greatly simplify work-
flow and provide a convenient tool for assessment of the
hemodynamic response to a range of stressors (eg, exer-
cise, adenosine, dobutamine, eating, mental tasks). Future
work will aim to generalize the framework to multiple ves-
sels of interest and use the proposed framework within
research protocols.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Left: Example of variable-density golden angle
spiral trajectory for one cardiac phase image. Three spiral
arms rotated by the golden angle are combined for each
cardiac phase with a golden angle increment. The same

spiral arm is acquired twice consecutively with and with-
out flow encoding. Each spiral arm is accelerated by 26 ×
in the center 20% of k-space and 65 × in the outermost 20%
of k-space. Right: Trajectories covered in two consecutive
cardiac phases. Each frame is accelerated by 8.7 × in the
center 20% of k-space and 21.7 × in the outermost 20% of
k-space
Figure S2. Diagram showing the U-Net architecture and
explored hyperparameters (in red). Range explored and
final selected parameter values for both tasks are provided
in Table S1
Table S1. Information relative to the retrospective (deep
artifact suppression and segmentation) and prospective
cohorts and studies
Table S2. A, Information relative to the data augmentation
and training of individual networks. B, Resulting values
selected from the hyperband optimization as well as the
range explored for each hyperparameter
Figure S3. Top to bottom: Four test subjects (includ-
ing worst Dice score on the restoration + segmentation
task). Left to right: Ground-truth images and segmenta-
tion, ground-truth images and DL segmentation calcu-
lated from ground-truth images, undersampled images
(input to deep artifact suppression network) and DL
restored images, and DL segmentation (estimated from
DL images). The segmentations are overlaid in red when
applicable
Figure S4. Left: Averaged FReSCO, averaged compressed
sensing (CS), and reference flow curves. Right: Real-time
FReSCO and CS flow curves obtained at rest (A) and
during exercise (B) showing good agreement between
methods
Figure S5. Left: Averaged FReSCO, averaged CS, and ref-
erence mean velocity and area curves. Right: Real-time
FReSCO and CS mean velocity and area curves obtained at
rest (A) and during exercise (B)
Figure S6. Violin plots showing test-set segmentation
Dice scores obtained from restored images for models
trained using 70 (used model), 50, 20, 10, and 5 train-
ing data sets. The segmentation quality was significantly
lower only when using 5 training data sets when compared
with using 70 data sets. *Statistically significant; n.s., not
statistically significant
Figure S7. Representative test case. From left to right: Top:
Ground-truth images and overlaid segmentations from
the original data set and from the models trained with
70, 50, 20, 10, and 5 data sets. Bottom: Input images,
denoised images, and overlaid segmentations from best
models trained with 70, 50, 20, 10, and 5 data sets

Video S1. Representative test-set subject. Top row: Mag-
nitude ground-truth images and segmentation, overlaid
predicted segmentation from ground truth, undersampled
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input, restored images, and overlaid predicted segmenta-
tion from restored images. Bottom row: Matching phase
images
Video S2. Real-Time flow monitoring during exercise.
Interface during the start of exercise, peak exercise, and
end of recovery (40–50, 110–120, and 170–180 s). Top
row: Magnitude and overlaid segmentation, phase, and
extracted blood flow curve with marked detected peaks.
Bottom row: Beat-to-beat heartrate, stroke volume, and
cardiac output as provided in real time
Video S3. Comparison depicting the magnitude, segmen-
tations, and flow maps for reference, CS at rest, FReSCO

at rest, CS at exercise, and FReSCO at exercise of the same
subject
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