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Tellurium is a rare element that has been regarded as a toxic, nonessential element, and its biological role is not clearly established.
In addition, the biological effects of elemental tellurium and some of its organic and inorganic derivatives have been studied, leading
to a set of interesting and promising applications. Diphenyl ditelluride (DPDT), an organic tellurium derivate, showed antioxidant,
antigenotoxic, antimutagenic, and anticancer properties. The antioxidant and prooxidant properties of DPDT are complex and
depend on experimental conditions, which may explain the contradictory reports of these properties. In addition, DPDT may
exert its effects through different pathways, including distinct ones to those responsible for chemotherapy resistance phenotypes:
transcription factors, membrane receptors, adhesion, structural molecules, cell cycle regulatory components, and apoptosis
pathways. This review aims to present recent advances in our understanding of the biological effects, therapeutic potential, and
safety of DPDT treatment. Moreover, original results demonstrating the cytotoxic effects of DPDT in different mammalian cell
lines and systems biology analysis are included, and emerging approaches for possible future applications are inferred.

1. Introduction

Tellurium (Te) is a stable and solid element that pertains to
chalcogens (group 16 in the periodic table), which is the same
group that includes sulfur, selenium, and polonium. Te is
classified as a metalloid because of its features between metals
and nonmetals [1, 2]. It was discovered by Franz Joseph
Müller von Reichenstein in 1782, 35 years before the lighter,
closely related metalloid, selenium, was discovered [1]. In
contrast to selenium, sulfur, and oxygen, Te does not have
physiological functions in mammalian cell biology [3];

however, some publications have reported that Te is present
in body fluids [1]. Whereas Te-containing proteins were not
identified in human cells, Te in telluromethionine and tellur-
ocysteine was found in proteins in yeast, fungi, and bacteria
[4]. In a comprehensive review of the biological activities of
Te compounds, it was pointed out that Te could be facing
the same discrimination as selenium once did and that the
natural biological functions of Te may be revealed in the
future [5].

The industrial applications of inorganic Te compounds
include production of nanoparticulate semiconductors and
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metal-oxidizing solutions [6, 7]. Furthermore, the use of
organotellurium compounds in insecticides, magnetic disks,
catalysts, and stabilizers is tending to increase [6, 8]. Te was
also utilized in the composition of thermoelectric materials
and quantum dots for diagnostics and treatment [9].

The risk of human environmental exposure to Te is
unpredictable due to its elevated usage [10]. The use of Te
in the manufacturing of electronic devices and nanomaterials
demands safety risk assessment to deal with the electronic
material constituents. Moreover, these materials usually can
be numerous toxic elements, explaining why research on
the environmental and occupational toxicity of these mate-
rials has been widely conducted [11–14]. The biological func-
tions of elemental Te have been a matter of interest although
few studies examining the toxicity of its ionic forms have
been conducted [15, 16]. In the environment, Te can be
(bio)methylated and, therefore, activated to a variety of inter-
mediates from soil or aquatic bodies to the air [11, 17].

Although there was limited use of synthetic organotel-
lurium (OT) compounds in the past, they have turned a
promising alternative for various applications, as evidenced
by the increase in reports on OT compounds in the liter-
ature [18, 19]. Synthetic OT compounds have boomed in
the last years, and their antioxidant, anti-inflammatory, anti-
proliferative, and immunomodulatory activities have been
reported [18–20].

In the present review, we emphasize the biological
activities of an OT compound, diphenyl ditelluride (DPDT)
(Figure 1), aiming to argue and discuss its contrasting anti-
oxidant [21], cytotoxic [22], and antiproliferative [20, 23]
effects.

2. Antioxidant and Chemopreventive Effects

The antioxidant effects of certain molecules are based on
their ability to retard or inhibit oxidative damage. Their anti-
oxidant role includes blocking oxidative reactions induced by
highly reactive oxidant molecules—the so-called free radicals
or reactive oxygen species (ROS)—that damage other mole-
cules. The antioxidant properties of substances such as OT
compounds can protect the biomolecules and cell compo-
nents against oxidative damage [24–26]. OT compounds
can act as ROS scavengers thus preventing the oxidation
induced by highly reactive agents, including hydrogen perox-
ide and peroxyl radicals [19].

The oxidative stress plays an important role in the etiol-
ogy of several conditions such as diabetes, autoimmune dis-
orders, cardiovascular diseases, neurodegenerative diseases,
and cancer [27]. The mammalian models have been exten-
sively used for the evaluation of ROS-generated cellular dam-
age and the protective effect of antioxidants [28]. In this
context, the antioxidant properties of OT compounds and
their potential use for treatment of oxidative stress-related

conditions have been of interest to several research groups
[19, 29, 30]. The efficacy of the organochalcogens in attenu-
ating the oxidative stress in both in vitro studies and rodent
models could be attributed to their ROS scavenging and glu-
tathione peroxidase mimetic properties [25, 31, 32].

Puntel et al. (2012) intended that Te compounds have
to be metabolized to tellurol/tellurate intermediates by dif-
ferent types of thiols, producing disulfides and regenerat-
ing the initial diorganotelluride as shown in Scheme 1,
and proposed the mechanism of the thiol-peroxidase activ-
ity or thioredoxin-thiol-peroxidase-like activity of organo-
tellurium compounds.

In vitro studies comparing the antioxidant properties of
organochalcogenide compounds have demonstrated that
their protective effects against lipid peroxidation reactions
are mediated by free radical-scavenging activities (Table 1)
[24, 26, 33]. In fact, 1.63 μMDPDT inhibited lipid peroxida-
tion in rat brain homogenates with higher efficacy than sele-
nides and with similar efficacy to ebselen [34]. Also, DPDT
provided protection against neurotoxicity and oxidative
stress induction by 4-aminopyridine in mice [35]. The
Na+/K+-ATPase activity in the rat brain significantly
increased after treatment with low doses of DPDT, suggest-
ing an antioxidant activity [36]. Further reports on the anti-
oxidant activity of DPDT are summarized in Table 1.

The above results show that pretreatment with noncy-
totoxic concentrations of DPDT increased the survival of
V79 cells exposed to methyl methanesulfonate, hydrogen
peroxide, t-butyl hydroperoxide, and ultraviolet C radia-
tion [21]. Furthermore, the pretreatment with the DPDT
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Figure 1: Chemical structure of diphenyl ditelluride.
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Scheme 1: The proposed mechanism of the thiol peroxidation and
thiol oxidation cycle of diorganotellurides. In the prooxidant
pathway, the formation of the tellurol is associated with oxidation
of low-molecular-mass (RSH) or protein-thiol (PSH) groups
causing depletion of glutathione (GSH) through conjugation,
oxidation, or export and/or protein loss of function. In the
antioxidant pathway, organotellurium compounds decompose
peroxides either as a substrate for mammalian thioredoxin
reductase (TrxR) or as glutathione peroxidase-like activity via the
formation of the tellurol/tellurate (PhTeh/PhTe-) (the scheme is
reproduced from Puntel et al. (2012), under the Creative Commons
Attribution License/public domain).
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reduced oxidative DNA damage (oxidized pyrimidines
and oxidized purines) detected by formamidopyrimidine
DNA-glycosylase (Fpg) and endonuclease III (Endo III).
Therefore, the protective effect of low-concentration DPDT
preexposure can be explained by its antioxidant capacity in
V79 cells (Table 1) [21].

Some chemotherapeutic regimens have proposed the uti-
lization of antioxidants to limit cytotoxicity and genotoxicity
of free radical-inducing antitumor agents in normal tissues.
The anthracycline doxorubicin (DOX) is a chemotherapeutic
agent applied in the treatment of breast cancer and hemato-
logic malignancies [37]. However, its use is limited due to
induced cardiotoxicity via generation of ROS [37]. In view
of the antioxidant effect of DPDT, we assessed the impact
of low DPDT concentrations on DOX-induced cytotoxicity
and genotoxicity in different cell lines (V79, MRC5, and
XPD). For this purpose, the cell lines MRC5 and V79 were
treated with DOX in the presence or absence of DPDT pre-
treatment and cell viability was evaluated using MTT assay.
The pretreatment with 10 and 50nM DPDT in V79,
MRC5, and XPD cell lines increased the cell survival after
0.6 μg/mL DOX treatment (Figure 2).

The genotoxic effects induced by DOX were assessed by
alkaline comet assay and enzyme-modified alkaline comet
assay, which includes incubation with the enzymes Fpg and
Endo III. DOX (0.6μg/mL) induced increase in the Fpg-
and Endo III-sensitive sites (Figure 3), and after 3 h of DOX
treatment, elevated intracellular ROS levels were detected
via flow cytometry using dichlorofluorescein diacetate
(DCFH-DA) (Figure 4). The effects of preexposure to low
DPDT concentrations (10, 50, and 100nM) on DOX-
induced cytotoxicity and genotoxicity were evaluated, and
all DPDT concentrations tested decreased DOX-induced
genotoxicity (Figure 3) and ROS formation (Figure 4) in
mammalian cells. These results demonstrate that low DPDT
concentrations have a chemoprotective effect on DOX-
induced DNA damage and do not affect its cytotoxicity in
mammalian cells. This finding suggests possible utility of
DPDT to prevent DOX-induced toxicity in normal tissues.

Compounds modulating cellular antioxidant defenses
may influence the effectiveness of chemotherapy. Recently,
some mechanisms related to DPDT antioxidant properties
have been proposed in order to explain the chemoprotective
effects [21]. DPDT can suffer nucleophilic attack in the Te
atom thus interacting with thiol group-containing proteins

and GSH [38, 39]. In agreement, DPDT was reported to
inhibit the enzyme δ-aminolevulinic acid dehydratase in
mice [38] and to decrease the GSH/GSSG ratio in yeast
(50 μM) and V79 cells (0.5μM) [22]. In contrast, DPDT
induced an adaptive response increasing the sulfhydryl group
content in the mouse brain [38]. As shown in Scheme 1,
DPDT can cause depletion of GSH through oxidation,
increasing the ROS formation or as a possible substrate for
GSH conjugation. Reinforcing this hypothesis, it was shown
that an organoselenium compound (structural analog of
DPDT) is detoxified by conjugation with GSH in the rat liver
[40, 41]. Thus, DPDT could modulate important endogenous
antioxidant systems inducing GSH synthesis (Scheme 1)
[22]. In part, this mechanism could explain previous results
of our group showing DPDT antimutagenic and antigeno-
toxic effects [21], similar to that of DPDS (1.62–12.5 μM)
[41] but at lower concentrations.

For those compounds that display antioxidant activity,
evaluation of their antimutagenic mechanisms of action is
vital. The search for synthetic antimutagens is an important
trend in the area of antimutagenicity research [42, 43]. Such
compounds should act removing ROS through multiple anti-
oxidant mechanisms, including modulation of the GSH level
and activity of antioxidant enzymes such as superoxide
dismutase (SOD) and catalase (CAT). Accordingly, DPDT
significantly decreased the mutagenicity induced by two
mutagens, MMS and UVC, possibly by restoring the GSH
content, thus revealing its antioxidant and protector effects
[21]. It was found that the antimutagenic potential of a vari-
ety of compounds could be attributed to their antioxidant
activity (Table 1), and based on current knowledge, antioxi-
dant activity is a desirable property since it can provide anti-
mutagenic effects [21, 43].

3. Diphenyl Ditelluride Mechanisms of
Antiproliferative Action in Cancer and
Noncancer Cells

Cell death induction mechanisms are diverse, and it is
broadly recognized that the effectiveness of Te compounds
as anticancer agents is dependent on their chemical form
and dose as well as on their redox state and the experimental
model used [23, 33, 44, 45]. There is emerging evidence that
cell death induced by Te compounds is associated with ROS

Table 1: The chemopreventive effects of diphenyl ditelluride.

Model DPDT (μM) Effects Inducing agent Reference

Rat brain 1.63
Inhibition of thiobarbituric acid reactive
species (TBARS) formation by 50%

Quinolinic acid (QA) and sodium
nitroprusside (SNP)

[24]

Rat brain 150 (μmol/kg) Neuroprotective activity 4-Aminopyridine [35]

Rat brain 1–4 Increased Na+/K+-ATPase — [36]

V79 cell line 0.01–0.1
Reduced cytotoxicity; reduced DNA
damage, micronucleus, and ROS

formation

Hydrogen peroxide (H2O2), t-butyl
hydroperoxide (t-BOOH), methyl

methanesulfonate (MMS), and UVC
[21]

V79, MRC5, and
XPD cell lines

0.01–0.1
Reduced DNA damage and ROS

formation
Doxorubicin (DOX) Figures 2–4
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formation, cell cycle arrest, induction of programmed cell
death, and immunomodulatory effects [33]. Moreover, Te
compounds may induce cell death by distinct pathways,
either caspase-dependent or caspase-independent, depend-
ing on the chemical form and system studied [22, 23, 44].

Some mechanisms and actions of DPDT and other Te com-
pounds are discussed below.

3.1. Stress Response and Cellular Targets. Due to increasing
applicability of oxidative agents in the treatment of cancer,
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Figure 2: Protective effect of 2 h DPDT pretreatment in serum-free medium on doxorubicin-induced cytotoxicity in Chinese hamster
fibroblasts (V79) as well as in human fibroblasts proficient (MRC5) and deficient (XPD) in NER evaluated by MTT assay 72 h after
pretreatment. Data are reported as means ± SD of three independent experiments. Significantly different at ∗p < 0:05 and ∗∗p < 0:01
compared with cells treated with doxorubicin only (one-way ANOVA followed by Tukey test).
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Figure 3: Antigenotoxic effects of 2 h DPDT pretreatment in serum-free medium on the genotoxicity of doxorubicin in Chinese hamster
fibroblasts (V79) and human fibroblasts proficient (MRC5) and deficient (XPD) in NER, evaluated by comet assay and modified comet
assay. Data are reported as means ± SD of three independent experiments. Significantly different at ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001
compared with cells treated with doxorubicin only (one-way ANOVA followed by Tukey test). The damage index is an arbitrary score
calculated from cells in different damage classes, which are classified by visual evaluation of the DNA migration length and the amount of
DNA in the comet tail. The oxidative damage score represents the difference in the damage scores between cells incubated with the Fpg
and Endo III enzymes and the cells incubated with the incubation buffer only.
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the use of antioxidant compounds for development of new
anticancer agents has been a promising therapeutic strategy
[44, 46]. ROS are essential for various biological processes
in normal cells and can act in multiple signaling cascades in
the cancer cell, regulating survival, proliferation, angio-
genesis, and metastasis. Noncancer cells are characterized
by a low basal level of ROS compared with cancerous cells
[9, 42, 47]. In addition, the cancer cells develop an increased
antioxidant capacity as a compensatory mechanism to escape
the ROS-induced cell death, thus increasing their vulnera-
bility to redox state-modulating agents [27]. The balance
between oxidants and antioxidants determines the redox
state of cells and tissues [9, 47]. Humans have developed
highly complex antioxidant systems (enzymatic and nonen-
zymatic), such as GSH, thioredoxin (Trx) system, SOD,
CAT, and peroxidase. These systems are dependent on either
thiol antioxidants (GSH systems or the Trx system) [38].

The GSH can act as a cofactor for several detoxifying
enzymes; participate in amino acid transport across the
plasma membrane; scavenge hydroxyl radical and singlet
oxygen directly; regulate and activate transcription factors,
such as AP-1and NF-κB; and interact with other antioxidants
regenerating (antioxidant network) their original properties,
such as vitamins C and E [46]. The Trx system is a major
antioxidant system integral to maintain the intracellular
redox state and consists of Trx and TrxR, and the functions
of this system in thiol-disulfide exchange reactions are
essential to intracellular redox environment control, cellular
growth, scavenging ROS, and apoptosis, thus displaying mul-
tiple roles in mammalian cells, including implications in can-
cer [48]. High concentration of Trx on plasma is raised in
diseases associated with oxidative stress such as neurological
disorders, arthritis, diabetes, and ischemia reperfusion injury
and has been observed from many normal or tumoral cells
[48, 49]. TrxR inhibition promotes a switch from an antioxi-
dant to a prooxidant state and cell death induction; thus, TrxR
inhibitors can be used for treatment of chemotherapy-
resistant tumors (Scheme 1) [48–50]. TrxR-targeting may

contribute to preventing resistance mechanisms, and there
is evidence that the expression of TrxR correlates with apo-
ptotic resistance in various cancer cell types [48]. In this man-
ner, inhibition of TrxR and its related redox responses can
contribute to adjuvant cancer treatment [50]. The Te com-
pounds received special attention between other cancer cell
redox modulators in relation to their promising chemothera-
peutic potential [51]. Additionally, the chemotherapeutic
potential of a number of effective synthetic and natural TrxR
inhibitors are evaluated regarding induction of oxidative
stress and apoptosis [48, 52]. Cyclodextrin-derived diorganyl
tellurides were identified as novel inhibitors of TrxR with
tumor growth inhibition capacities in submicromolar con-
centrations [52]. In addition, acute exposure of mice to 10
and 50 μmol/kg DPDT caused TrxR inhibition (Table 2)
(Scheme 2) [38].

3.2. Cytotoxic and Antiproliferative Effects. Different concen-
tration thresholds for DPDT cytotoxicity were revealed for
each biological model, Salmonella typhimurium (20 μM),
Saccharomyces cerevisiae (100μM), and V79 cells (1μM)
[22, 23] (Table 2).

In another study, a significant decrease in cell viability
was observed in a human colorectal adenocarcinoma cell line
(HT-29) and heterogeneous human epithelial colorectal ade-
nocarcinoma cells (Caco-2) treated at the concentration
range of 62.5–1000 μM DPDT and evaluated using MTT
and luminescence assays (Table 2) [53]. The cytotoxic effects
of 72 h DPDT treatment were studied also in acute promye-
locytic leukemia (HL-60), human ileocecal adenocarcinoma
(HCT-8), human glioblastoma (SF-295), and melanoma
(MDAMB-435) cell lines. Table 3 shows that the IC50 of
DPDT was quite low for HL-60 (IC50: 0.03 μg/mL), HCT-8
(IC50: 0.25μg/mL), and SF-295 (IC50: 0.28μg/mL) cell lines.
The IC50 in the MDAMB-435 cancer cell line (2.16μg/mL)
was higher than that in normal human peripheral blood
mononuclear cells (CMSPH) (0.4μg/mL). DPDT was toxic
in HL-60 cells (IC50: 0.03μg/mL) at a concentration close
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Figure 4: Effect of DPDT on DOX-induced ROS generation and ROS induction was evaluated via flow cytometry using DCFH-DA in cells
pretreated with DPDT for 2 h in serum-free medium, followed by treatment with doxorubicin for 3 h. V79: Chinese hamster fibroblasts;
MRC5 and XPD: human fibroblasts proficient and deficient in NER, respectively. Data are reported as means ± SD of three independent
experiments. Significantly different at ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with cells treated with doxorubicin only (one-way
ANOVA followed by Tukey test).
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to that of the known chemotherapeutic agent DOX
(IC50: 0.02μg/mL) and in an order of magnitude lower
than the toxic DPDT concentration in normal CMSPH cells
(0.4μg/mL). The cytotoxicity of DPDT is not due to unspe-
cific damage to cell membranes since the hemolytic potential
in erythrocytes was observed at a much higher concentration
(244.25μg/mL) (Table 3).

The antiproliferative effects of DPDT in human glioblas-
toma U87 and U251 cell lines and in a rat glial tumor cell line
(C6) was evaluated by clonogenic assay. The cells were
treated for 72h at 0.028, 0.28, and 2.8 μg/mL DPDT for all
cell lines. A DPDT concentration of 0.28μg/mL induced a
greater reduction in cell viability, about 40–50%, for all cell
lines (Figure 5). These results expand the possible utility of
DPDT as an antiproliferative agent.

3.3. Effect on Cell Cycle and Cell Death. The administration of
traditional chemotherapeutic agents inhibits the cell division
inducing not only cell cycle alterations and apoptosis but
other forms of nonapoptotic cell death such as necrosis,
autophagy, and mitotic catastrophe. Since the most effective
cancer treatment method used after surgery is chemotherapy,
the search for new drugs with antiproliferative properties is
currently ongoing [54, 55].

In a human promyelocytic (HL-60) cell line, the DPDT
treatment showed cell cycle alteration, an accumulation of
S-phase cells after exposure to 1 μMDPDT. This was the first
study showing the effects of DPDT on the cell cycle (Table 2)
[20]. In another study, we showed that treatment with 5 μM
DPDT resulted in the accumulation of S-phaseV79 cells [23].
Moreover, for all exposure times, 1 μM DPDT did not affect

the percentage of cells in any phase of the cell cycle (Table 2).
We also evaluated the effects of DPDT (0.028–2.8μg/mL) on
the progression of the cell cycle of different cancer cell lines
(C6, U251, and U87) via flow cytometry analysis. After 24 h
of treatment with DPDT (2.8μg/mL), the sub-G1 fraction
of cells increased in the C6 and U87 cell lines (Figure 6).
Furthermore, after 48 h DPDT (2.8μg/mL) treatment, an
increase in sub-G1 cells was detected in all cell lines tested.
It is important to note that 72 h of DPDT (0.28μg/mL) treat-
ment also induced cell cycle arrest in the G2/M phase in C6
cells (Figure 6).

Similarly, in another study was reported an increase in
the activity of caspases 3, 7, and 9 in HT-29 cells and in
human colon fibroblasts (CCD-18Co) after treatment with
DPDT (500–1000μM) (Table 2) (Scheme 2) [53]. In another
study, Jorge et al. showed apoptosis and/or necrosis induc-
tion and an increase in the activity of caspases 3 and 7 at all
treatment concentrations (1–10μM) in V79 cells [23]. On
the other hand, DPDT treatment induces not apoptotic cell
death in rat hippocampal astrocytes [56]. These differences
may be due to variations in the GSH content of the different
cell types (Table 2) [22]. Taking into account the ability of Te
to bind thiol group-containing proteins, a decrease in the
GSH/GSSH levels may be responsible for the induction of cell
death (Scheme 2) [22, 23]. In this sense, DPDT was shown to
reduce the activity of mitochondrial respiratory chain com-
plexes (complexes I and II) by interaction with thiol groups.
In this manner, DPDT can be considered as a putative apo-
ptotic cell death inductor, acting via suppression of the pen-
tose phosphate pathway caused by NADPH and thiol
oxidation [57]. These results suggest that mitochondrial

Table 2: Diphenyl ditelluride mechanisms of action in cancer and noncancer cells.

Model DPDT Results Reference

V79 cell line 0.5–1 μM
Reduced superoxide dismutase (SOD) activity;

increased TBARS and ROS formation
[21]

V79 cell line 0.5–50 μM Increased TBARS; reduced GSH : GSSH ratio [21]

Mouse brain 10–50 μmol/kg
Reduced SOD, catalase (CAT), glutathione
peroxidase (GPx), glutathione reductase, and

thioredoxin reductase (TrxR) activities
[38]

V79 cell line 1–50 μM Cytotoxic and genotoxic effects [22]

Caco-2 cell line 62.5–1000 μM Antiproliferative effect [53]

HL-60 cell line 1 μM
Antiproliferative effect, apoptosis induction,

and accumulation of S-phase cells
[21]

HL-60, HCT-8, SF-295, MDAMB-43,
and CMSPH cell lines

0.03–2.16 μg/mL Antiproliferative effect Table 3

C6, U87, and U251 cell lines 0.28–2.8mM
Antiproliferative effect; increase of G2/M

phase cells in the C6 cell line and in sub-G1
phase cells in C6, U87, and U251 cell lines

Figures 5 and 6

HT-29 and CCD-18Co cell lines 500–1000 μM
Apoptosis induction; increase in caspases

3/7 and caspase 9 activity
[53]

V79 cell line 1–10 μM
Increased caspase 3/7 activity, apoptosis, necrosis,

and inhibition of human TopoI activity
[23]

C6 cell line (systems biology) — Interaction with Akt1 protein kinase Figure 7

Astrocytes and neurons 0.1–0.5 μM
Hyperphosphorylation of GFAP and vimentin
mediated by NMDA receptors and L-VDCCs;

activation of Erk and p38MAPK
[79]
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Table 3: Cytotoxic effects of diphenyl ditelluride compared with those of doxorubicin on different cell lines.

Compound (μg/mL)
Cell line

HL-60 HCT-8 SF-295 MDAMB-435 CMSPH Erythrocyte

DPDT (IC50) 0.03 0.25 0.28 2.16 0.40 >100 μg/mL (244.25)

DOX (IC50) 0.02 0.01 0.24 0.48 0.97 ND∗

∗Not determined.
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dysfunction could be an important factor in oxidative stress-
related diseases (Scheme 2).

The results reported in DPDT studies lead us to infer the
possible mechanisms of action of this drug and suggest its
application as an antiproliferative agent in cancer therapy.
As previously mentioned, results from our group demon-
strated that DPDT can induce frameshift mutations in bacte-
rial DNA and induce the formation of micronuclei in V79
cells [21, 22]. On the other hand, chemical substances with
planar topologies are often capable of intercalation between
the base pairs of DNA [58]. DNA-intercalating drugs can
induce frameshift mutations in Salmonella typhimurium
and S. cerevisiae and can be clastogenic in V79 cells [42]. In
this way, the frameshift mutation induction by DPDT in
bacteria and yeast and double-strand break induction in

mammalian cells could be a result of intercalation activity
as well as interaction with DNA topoisomerase enzymes
(Table 2). In this sense, using S. cerevisiae mutants defective
in topoisomerase enzymes, the results of Jorge et al. (2015)
showed pronounced tolerance in the top1Δ strain to DPDT
exposure. The same study also reported DPDT-induced inhi-
bition of human TopoI activity in vitro using DNA relaxation
assays [23]. These results suggest that DPDT could interact
with the Top1p enzyme, inducing DNA lesions responsible
for induced cell death.

Regarding the possibility of TopoI inhibition, the search
for a noncamptothecin (CPT) TopoI inhibitor has been the
target of several studies because of the limitation of CPT
and its derivatives [59–62]. The aforementioned effects of
DPDT, including cytotoxic effects and cell cycle arrest in
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the S- and G2/M phases, are consistent with those of other
TopoI inhibitors (Scheme 2) [63]. The organotellurate
immunomodulator AS101 induces G2/M arrest in myeloma
cells and downregulates Cdc25C, Plk-1 (a serine/threonine
kinase), and Ilk-1 (essential for regulating the activity of
Akt) in mouse 5T33 myeloma cells [64, 65]. Halpert et al.
demonstrated that AS101 targets several proteins and path-
ways in mice, such as pAkt, Bax, and Bcl-2 [66].

The intertwining of DNA strands and helices, produced
during the essential cellular processes of replication, tran-
scription, recombination, and chromosome segregation,must
be resolved in order to maintain genome stability and cell via-
bility. DNA topoisomerases supply an important solution for
resolving such topological DNA problems [67]. However,
they act through the formation of a covalent enzyme-DNA
reaction intermediate, which is a potentially toxic lesion itself
when stabilized. Indeed, targeting topoisomerase-DNA com-
plexes has been widely explored in the identification and
development of antibacterial and anticancer agents [67, 68].
These agents are known as “poison” inhibitors to indicate a
mechanism of trapping topoisomerase and consequently
forming a covalent enzyme-DNA complex, rather than a
classic enzymatic inhibition mechanism, which would signify
the lack of DNA binding or cleavage activity by the enzyme
[69]. In this manner, increased production of drug-stabilized
topoisomerase-DNA adducts increases the cytotoxic activity
of a “poison,” while elevated levels of the enzyme could
confer resistance to standard inhibitors. Furthermore, several
DNA topoisomerases targeting drugs act as interfacial
inhibitors (poisons) [67, 70], which are different from
competitive (orthosteric) inhibitors and noncompetitive
(allosteric) inhibitors because they interact at the interface
between two or more molecules. The collision of DNA rep-
lication forks with the ternary complexes produce DNA
double-strand breaks and cell death induction [70]. Our
understanding of cell cycle arrest and cell death induction
by DPDT and other OT compounds requires further
investigation, but results obtained thus far lead us to some
interesting insights. DPDT behaves like a molecule that
presents several targets and could be of interest for cancer
therapy research.

4. Systems Biology and Signaling

As described in previous sections, DPDT promotes different
cellular phenomena. However, no molecular target associ-
ated with DPDT has yet been identified. We used a systems
biology approach to predict putative cell signaling pathways
or specific protein targets for DPDT. To this end, we pros-
pected networks based on C6 cell line gene expression data.
Contrast analysis was applied, and differentially expressed
genes before simulation of DPDT treatment were selected
using the rank product method, a technique based on calcu-
lating rank products (RP) from replicate experiments. We
used three sample replicates of the C6 rat glioma cell line
(untreated) from the GEO database (GSE1139 accession
number) under culture conditions similar to those of our
experimental model. For each sample, the average of the
signal between the same probes was calculated and applied

to the normalized microarray data using the limma package
in the R/Bioconductor software [71, 72]. The parameters
used to run the RP were the following: permutation = 1000
and p value ≤ 0.01. After this, we obtained initial C6
protein-protein interaction (PPI) networks based on physical
interactions from the GeneMANIA prediction server [72].
The network is composed of 254 nodes and 7539 interactions
(Figure 7(a)). To simulate DPDT action, we used STITCH
software [73] which allows construction of chemical-
protein (CP) and PPI networks (please see Figure 7(b)).
Based on this strategy, a network designated C6 CP-PPI was
obtained. The analysis showed DPDT interaction with a
molecular target, Akt serine/threonine-protein kinase, which
is involved in the regulation of multiple signaling pathways
involved in cell metabolism and angiogenesis (Scheme 2)
[74]. It is also a member of the most frequently activated cell
proliferation, drug resistance, and survival pathways in
several cancer types [75–77].

In addition, to define Akt interconnectivity and relevance
in the C6 CP-PPI network, we analyzed some topological
parameters. Firstly, we applied CentiScaPe software to
explore node degree and betweenness centralities [78]. Based
on this analysis, Akt appeared as a major hub-bottleneck
node when compared with the other proteins in the network
(Figure 7(c)). Similarly, clustering showed that Akt is a point
with high information flux (Figure 7(d)).

Our strategy is valid to explore potential targets for
DPDT. However, targets for this compound appear to be
different according to the exposed cell type. Heimfarth et al.
showed DPDT-induced hyperphosphorylation of glial fibril-
lary acidic protein, vimentin, and neurofilament subunits
from glial cells [79]. The authors reported that excessive
Ca2+ influx activated protein kinase A and protein kinase C
in astrocytes, causing the hyperphosphorylation of glial
fibrillary acidic protein and vimentin. These disrupt the orga-
nization of actin stress fibres formed by endogenous RhoA
activation and led to altered cell morphology. In neurons,
the overexpression Ca2+ levels activated Erk and p38MAPK,
beyond the protein kinase A and protein kinase C, provoking
hyperphosphorylation of neurofilament subunits (Table 2),
and as a consequence must have caused cellular redox imbal-
ance, increasing ROS and inducing cell death (Scheme 2).

Systems biology strategies combined with in vitro and
in vivo studies could elucidate the molecular mechanisms
responsible for the multiple effects of DPDT. To this end,
future investigations are necessary to establish the suitability
of DPDT application for targeted cancer therapies.

Many authors have shown that DPDT treatment induces
different cell death pathways in several model systems,
including apoptosis and/or necrosis, but the regulating
mechanisms of this agent look very complex. Based on the
results discussed above, we can summarize the mechanisms
of antiproliferative action in cancer and noncancer cells of
DPDT action in Scheme 2.

5. Conclusion

In the past decade, several organometallic compounds have
entered clinical trial owing to their unique redox-modulating
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GeneMANIA
C6 PPI network
254 nodes
7539 edges
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C6 CP-PPI network
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features and great potential in cancer therapy [80, 81]. The
toxicology of DPDT has been evaluated by few laboratories,
by either animal studies or assessment of cell growth inhibi-
tion in vitro. It is important to note that in HL-60 cells, the
cytotoxic effect of DPDT (IC50: 0.03 μg/mL) was observed
at a similar concentration range to that of the antitumor
agent DOX (IC50: 0.02μg/mL). This concentration is more
than an order of magnitude lower compared to the toxic
DPDT concentration in normal CMSPH cells (0.4μg/mL).
Furthermore, the hemolytic potential in erythrocytes was
observed at high concentration, and the cytotoxicity of
DPDT cannot be attributed to unspecific damage to cell
membranes. Albeit the conventional prejudice concerning
organotellurium compounds, DPDT use should be consid-
ered with caution because of its high reactivity and toxicity
at relatively low concentrations. The exact nature of DPDT
cytotoxic effects remains unclear, although some mecha-
nisms have been proposed that differ depending on the
system studied. New trials regarding toxicity, checkpoint
activation, and mechanisms of cell death induction by DPDT
should be explored in a greater number of cell lines. More-
over, its topoisomerase inhibition potential should be further
investigated, keeping in mind that this compound probably
presents several distinct mechanisms of action. DPDT have
particular chemistry with the thiol which is related to many
of the biological effects observed so far. The DPDT depletes
GSH because of oxidation and/or as a possible substrate for
GSH conjugation and could modulate cellular antioxidant
defenses inducing GSH synthesis. The dual action of DPDT
(protective and toxic) opens possibilities for distinct appli-
cations in cancer treatment (Figure 8). In neurons, the high
intracellular Ca2+ levels activated Erk and p38MAPK,
beyond the PKA and PKC, provoking hyperphosphorylation
of neurofilament subunits, and as a consequence must have
caused cellular redox imbalance, increasing ROS and induc-

ing cell death. ROS-generating drugs induce cancer-specific
cytotoxicity by elevated endogenous ROS production in pre-
clinical studies [82, 83]. Thus, low DPDT doses may be
useful in the development of adjuvant therapies or rational
combinations that may be predicted to have synergistic or
additive effects in combination with currently used chemo-
therapeutics. In addition, the role of DPDT in the prevention
of ROS-mediated diseases warrants additional studies to bet-
ter understand and elucidate the mechanisms of its antioxi-
dant and prooxidant activities before further developments
of the uses of tellurium compounds in biology and medicine.
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ROS formation and redox modulation. High concentrations of
DPDT-induced toxicity and mutagenicity.
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