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Abstract
Currently, there is very little information available regarding the microbiome associated with

the wine production chain. Here, we used an amplicon sequencing approach based on

high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial

community associated with the production of three Apulian red wines, from grape to final

product. The relationships among grape variety, the microbial community, and fermentation

was investigated. Moreover, the winery microbiota was evaluated compared to the autoch-

thonous species in vineyards that persist until the end of the winemaking process. The anal-

ysis highlighted the remarkable dynamics within the microbial communities during

fermentation. A common microbial core shared among the examined wine varieties was

observed, and the unique taxonomic signature of each wine appellation was revealed. New

species belonging to the genus Halomonas were also reported. This study demonstrates

the potential of this metagenomic approach, supported by optimized protocols, for identify-

ing the biodiversity of the wine supply chain. The developed experimental pipeline offers

new prospects for other research fields in which a comprehensive view of microbial commu-

nity complexity and dynamics is desirable.

Introduction
In recent years, several investigations have been conducted to characterize the microbiome
associated with different ecosystems, such as natural niches, agricultural and industrial envi-
ronments, and plant and animal hosts. An understanding of this wide biodiversity is
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fundamental not only for ecological purposes, as a key to maintaining a healthy environment and
sustainable economy, but also for human health, revealing the crucial role of microbes in diseases
onset [1, 2] and food safety [3, 4]. In particular, the growing consumer demand for safeguarding
of food products and components has strongly encouraged the development of new tools and
approaches for investigating the taxonomical and functional complexity of microbial communi-
ties in order to assess their contribution to food quality, safety, and traceability. Although
microbes play important roles in human nutrition, much remains to be explored because the vast
majority of these microbes cannot be cultured by standard techniques [5, 2] (i.e., plate isolation,
enrichment, and cultivation of single strains). Furthermore, such classical methods are typically
labour-intensive and costly [6], and are limited for processing large numbers of samples, for
which comparison is often the only key to identifying unique traits or common trends.

Winemaking is a composite process in which numerous microorganisms, mainly yeast and
bacteria, play important roles. Yeast promote alcoholic fermentation (AF), converting the fer-
mentable sugars to ethanol and carbon dioxide, whereas lactic acid bacteria (LAB) carry out
malolactic fermentation (MLF). MLF is the conversion of L-malic acid to L-lactic acid and car-
bon dioxide [7]. MLF biological transformation is highly recommended for the production of
some white wines and nearly all red wines, because it enhances the microbiological stability of
the product [8, 9] and improves its organoleptic properties [10, 11]. Knowing the composition
and population dynamics of the microbial consortia throughout vinification is fundamental for
controlling the process and improving the quality and safety of the final product [12, 13, 14].
In fact, despite the number of studies on the microorganisms associated with fermentation,
especially fungi, in California, South Africa, and New Zealand [15, 16, 17], there is a poor
understanding of the bacterial community as a whole, its dynamics throughout the fermenta-
tion chain, and its correlation with wine appellation or geographic origin. In fact, the “wine-
making habitat” represents an emblematic case study since it could be described as a dynamic
network of microbial populations and biochemical flow.

Recently developed culture-independent methods, such as metagenomic approaches based
on the extraction of all the genetic material from a selected habitat and subsequent sequencing
and bioinformatic analyses, provide an unprecedented opportunity to enlarge the detectable
biodiversity of microbial communities. Large-scale sequencing of the entire metagenome (shot-
gun approach) and selective screening of particular species markers (target-oriented or ampli-
con sequencing approach), mainly one or more hypervariable regions of the 16S rRNA gene
for bacteria identification, are made possible through the use of high-throughput sequencing
(HTS) platforms, which are the only feasible instruments for handling the rapid production of
millions of sequences from multiple biological samples.

Using amplicon sequencing approaches to characterize the microbiome associated with
wine fermentation is a particularly problematic, as a large number of compounds in the wine
“habitat” can alter the quality and efficiency of microbial nucleic acid extraction and thus nega-
tively affect subsequent processing (e.g., Taq polymerase activity) [18, 19]. To date, only a few
HTS-based studies on the dynamics of the microbial population in wine production have been
published [20], and no Illumina 16S amplicon-based sequencing of red wine fermentation,
which includes spontaneous MLF, has been reported.

The goal of this study was to describe the taxonomic complexity and evolution of the bacte-
rial community throughout the production of typical Apulian wines, in particular, Cabernet,
Negramaro, and Primitivo, by investigating the bacterial composition from grape to the end of
MLF, a fermentative process that consistently shapes the organoleptic properties of the wine
and can adversely affect quality due to the production of undesirable metabolites [21, 22]. It is
widely accepted that autochthonous microbes are an important source of the distinctive metab-
olites that influence the chemical profile and flavour of wine [23, 20, 24].
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Cabernet Sauvignon is an international grape cultivar; although it is associated with the Bor-
deaux region of France, it is grown all over the world. Cabernet Sauvignon variety is “the
world’s most renowned grape variety for the production of fine red wine” [25]. Negramaro is a
non-aromatic red wine grape cultivar originally from southeast Italy that produces wines with
a pleasurable organoleptic bouquet largely appreciated by consumers. Negramaro wine has a
dark red colour, and it combines a peculiar aroma with earthy bitterness. Negramaro has eco-
nomic value because it is the essential grape cultivar in the production of 14 protected designa-
tion of origin (PDO) Italian wines [26, 27]. Primitivo cv. (Vitis vinifera L.) is an early, strong
wine grape cultivar that is widely grown throughout the Apulia region in southern Italy. Primi-
tivo is an economically important cultivar because it is the main grape variety for the produc-
tion of several PDO wines. Primitivo grapes produce a varietal wine characterized by high
alcoholic and tannic notes, with a ruby-purple colour and a spicy, red-fruit aroma [28].

Here, we describe, for the first time, a comprehensive assessment of the winemaking micro-
biome using an amplicon sequencing metagenomic approach optimized to drastically reduce
the technical difficulties of dealing with a very challenging matrix like must and aimed at char-
acterizing and comparing the diversity throughout production and among different Apulian
wine appellations.

Materials and Methods

Sampling
Grape musts (gm), belonging to three wine grape varieties, Cabernet (C), Negramaro (N), and
Primitivo (P), were collected throughout fermentation using grapes from the Tormaresca win-
ery fields located in San Pietro Vernotico (Apulia, Italy).

Must samples were collected in duplicate, corresponding to grapes from two adjacent rows
of vines, named 1 and 2, and at five different times during fermentation, as described below:

Time 0 (T0) (sample name sAF), after grape crushing and before adding exogenous starter
yeasts

T1 (24hAF), 24 hours after starter addition (Saccharomyces cerevisiae)

T2 (sMLF), end of AF (sugar level, 2 g/L), which corresponds to the start of spontaneous MLF

T3 (hMLF), half way through spontaneous MLF; and

T4 (eMLF), end of spontaneous MLF (malic acid = 0).

In order to characterize the resident winery microbiota, healthy grape bunches belonging to
the three wine grape varieties under investigation were collected, and the microbiota was iso-
lated from grapes by washing 24 bunches in sterile distilled water (1:1 weight/volume) on a
rotary shaker at 100 rpm for 5 min. The samples were centrifuged at 12,000 rpm for 12 min,
and the pellet was recovered and suspended in 10 mL of sterile distilled water. The grape must
(gm) samples and the bunch washing water (bww) were stored at -20°C until DNA extraction.

Tormaresca winery gave us permission to collect the grapes and corresponding must sam-
ples. The experimental procedures used in the study did not require specific permission and
did not involve endangered or protected species.

DNA extraction
Ten millilitres of gm or bww were centrifuged (30 min, 10,000 × g, 4°C), and the pellet was
washed in 2 mL of TE buffer (10 mM Tris HCl, 1 mM EDTA, pH 8.0). After a second centrifu-
gation (10,000 × g for 15 min at 4°C), the supernatant was discarded, and the pellet was
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dissolved in 300 μL of TE. Subsequently, total genomic DNA was isolated using the FastDNA
SPIN kit for soil (BIO 101, Carlsbad, CA) according to the manufacturer’s instructions. Cell
lysis was achieved by bead beating in a FastPrep Instrument (BIO 101) at speed 6 for 40 s. The
quantity and quality of extracted DNA were assessed by spectrophotometry (Eppendorf, Ham-
burg, Germany) and agarose gel (1%) electrophoresis, respectively.

16S rRNA library preparation and sequencing
An amplicon-based approach was applied to the DNA extracted from the tested samples for
prokaryotic identification. Of the nine hyper-variable regions present in the 16S rRNA gene,
the V5–V6 regions were chosen as amplification targets. Amplicon libraries were prepared
using 5 ng of metagenomic DNA extracted from each sample. The strategy used to prepare the
16S rRNA amplicon-based library is described in detail in Manzari et al. [29]. Equimolar quan-
tities of the purified amplicons were pooled and subjected to 2 × 250 bp paired-end sequencing
on the Illumina MiSeq platform. To increase the genetic diversity, as required by the MiSeq
platform, a phage PhiX genomic DNA library was added to the mix and co-sequenced. The
run was performed in duplicate (named A and B).

Taxonomic analysis
To characterize the prokaryotic composition of the tested samples, a stand-alone version of the
Bioinformatic analysis of Metagenomic AmpliconS (BioMaS) pipeline [30] was used to analyse
the obtained MiSeq paired-end (PE) reads. Overlapping PE reads were merged into consensus
sequences with Flash [31]. These were treated to remove sequences shorter than 50 bp, and
they were then dereplicated with Usearch [32] while retaining information about the total
number of original consensus sequences. Non-overlapping PE reads were cleaned by removing
low-quality regions (quality-score threshold = 25) and discarding PE reads containing
sequences shorter than 50 nt using Trim-Galore.

Subsequently, to minimize background noise due to host DNA contamination, which, due
to its abundance, could adversely affect the bacterial identification, leading to biased results,
both consensus and non-overlapping denoised PE reads were mapped against a collection of
Vitis viniferamitochondrial and plastidial 16S reference sequences using Bowtie2 [33].
Sequences with�97% identity were discarded.

To determine the taxonomic affiliations of the retained consensus and unmerged PE reads,
they were compared to the Ribosomal Database Project II (RDP-II; release 11.2) [34] using
Bowtie2. Mapping data were filtered according to two parameters: identity percentage and
query coverage (�95%). In particular, sequences that matched sequences in RDP-II, with at
least 97% identity were directed to species classification [35], while those with 90–97% identity
were classified at higher taxonomic levels.

Statistically significant differences in the bacterial taxonomic composition of the tested sam-
ples were determined at the family, genus, and species levels using DESeq2 [36] a R/Bioconduc-
tor package.

The alpha diversity index (Shannon Index, H-index) and the species richness estimator
(Chao1) were calculated by using the R package phyloseq [37] from the operational taxonomic
unit (OTU) matrix generated by QIIME as input [38]. The OTUmatrix was calculated by sum-
ming the OTU counts derived from the two biological replicates for each sample. The H-indi-
ces obtained for each sample were analysed by a two-tailed t-test. Pairwise comparisons were
made between time points and grape varieties. Finally, the R package Vegan [39] was used to
generate rarefaction curves based on the OTUmatrix.

Analysis of the Microbiome in Wine Supply Chain

PLOS ONE | DOI:10.1371/journal.pone.0157383 June 14, 2016 4 / 19



Principal coordinate analysis (PCoA) was performed using the R package Vegan based on
the Bray-Curtis dissimilarities calculated for the composition of the bacterial communities at
the genus level.

Results and Discussion
To characterize the prokaryotic microbiota associated with the winemaking process, grape
musts (gm), belonging to three wine grape varieties, Cabernet (C), Negramaro (N), and Primi-
tivo (P) grown in the Apulia Region of southern Italy, were sampled. The gm samples were col-
lected at five time points during winemaking (sAF, 24hAF, sMLF, hMLF, and eMLF, see
Experimental Procedures for details) and subjected to DNA extraction. The extracted DNA
samples were used as templates for library preparation and an amplicon sequencing approach
was applied to characterize the composition of the prokaryotic community.

Libraries containing 420-bp dual indexed amplicons were successfully sequenced on the
MiSeq platform using V2 2 × 250 bp PE sequencing chemistry. Approximately 10 million and
9 million PE reads were generated in the first (A) and second (B) runs, respectively (SRA acces-
sion number SRP072913). The median number of PE reads produced per sample was 334,000
and 308,000 for runs A and B, respectively (Fig 1). After adapter trimming and removing pairs
containing reads shorter than 50 bp, the PE reads were analysed with BioMaS [30] (S1 Table).
For both sequencing runs (A and B), the number of PE reads produced, including low-quality
reads removed after denoising, host reads mapped to the Vitis vinifera genome, and bacterial
reads taxonomically classified by BioMaS, are presented as box plots in Fig 1. The data obtained

Fig 1. Graphical summary of the results obtained by applying the BioMaS pipeline. Box plot showing the number of PE reads that
were produced by the MiSeq platform for both sequencing runs (raw data), including low quality reads removed after denoising, host reads
mapped to Vitis vinifera, and bacterial reads taxonomically classified by BioMaS.

doi:10.1371/journal.pone.0157383.g001
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from the two sequencing runs was highly reproducible. For all three wine varieties tested, the
number of PE reads that mapped to the host genome was related to the fermentation step;
while the number of host-mapping PE reads was remarkable in the first steps of fermentation
(sAF, 71.2%; 24hAF, 43.8%; sMLF, 51.33%) it dramatically decreased in the later steps (hMLF,
0.33%; eMLF, 0.15%) (see S1 Table). This reduction at later time points could be due to pro-
gressive deterioration of V. vinifera cells and subsequent DNA degradation in the harsh fer-
mentation environment (which is characterized by a low pH, the presence of degradative
enzymes in the must, and elevated temperature) [40, 41, 42].

To obtain a preliminary snapshot of the microbial biodiversity in term of richness and
abundance that might distinguish the analysed samples, the Shannon diversity index (H) was
calculated for the raw data. The PE reads were clustered into operational taxonomic units
(OTUs) by using QIIME [38], and for each sequencing run, the H index was calculated, as the
sum of the two biological replicates (Fig 2). The biodiversity trends were similar for the three
wine varieties, and the data from the two sequencing runs were highly reproducible. As shown
in Fig 2, at the beginning of the winemaking process, 24 hours after starter addition (24hAF),
there was a slight increase in the H indices compared to those recorded at sAF, followed by a
reduction until the end of the process (eMLF). These results suggest that the bacterial popula-
tion changed during vinification. The increased bacterial diversity at 24hAF could be due to
microbial contamination from the winery, as has been described by du Toit et al. [42] and
Bokulich et al. [43]. In particular, both authors stated that bacterial strains could be isolated
from the cellar environment, including barrels and winery equipment such as pipes and valves.
These strains would be in addition to those residing on the grapes, which were detected at sAF.
Moreover, the enhancement in bacterial diversity observed after starter addition could also be
caused by the interaction between yeasts and bacteria, as was reported by du Toit et al. [42]
and Lasik [44]. In particular, the S. cerevisiae starter strains could positively affect LAB growth
and MLF as a result of mannoprotein production and essential nutrient release due to autolysis.
In contrast, the decrease in the diversity of the bacterial population observed during fermenta-
tion (after starter addition) can be explained by the presence of different wild yeasts on the
berry skin that are not sensitive to the SO2 that is routinely added as a fungicide at the begin-
ning of the AF. Indeed, previous studies have indicated that wild yeast can exert antibacterial
effects, and thus can modify the composition and dynamics of the bacterial community during
fermentation [45, 46].

The statistical significance of differences between the H-indices of samples was evaluated by
a two-tailed t-test. For each tested grape variety, the pairwise comparisons showed statistically
significant differences (p< 0.05) between most time points, except sAF and sMLF for Cabernet,
sAF and hMLF and sMLF and hMLF for Negramaro, and hMLF and eMLF for Primitivo (S2
Table). Moreover, the significance of differences was also evaluated for the three different
grape varieties at each time point. The results are shown in S2 Table.

To estimate the expected species richness of the tested samples, the Chao 1 indices were cal-
culated based on the OTUmatrix generated by QIIME (Table 1). As expected, the estimated
richness decreased after starter addition and remained low until the end of fermentation, show-
ing a trend similar to that of the Shannon indices. The Chao1 index values ranged from
1342.64 to 5006.81. By comparing the number of observed OTUs and the Chao 1 values, we
were able to calculate the coverage (%) in terms of species richness achieved in our assay
(Table 1). Good coverage of the prokaryotic community was achieved, with values ranging
from 50% to 74%. These data were confirmed by the rarefaction curves obtained for each sam-
ple and sequencing run (Fig 3).

The taxonomic assignment of sequences was performed using BioMaS. The PE sequences
matching those in the RDP-II database (96.45% of sequences in run A and 96.55% of sequences

Analysis of the Microbiome in Wine Supply Chain

PLOS ONE | DOI:10.1371/journal.pone.0157383 June 14, 2016 6 / 19



Analysis of the Microbiome in Wine Supply Chain

PLOS ONE | DOI:10.1371/journal.pone.0157383 June 14, 2016 7 / 19



in run B) exceeding the 90% identity threshold were classified and assigned to a clade in the
NCBI taxonomy (S3 Table). The remaining reads (approximately 3%) that did not show any
significant match in the reference database were not assigned to any taxonomic clade. Those
reads are likely derived from novel taxa not yet identified and represented in RDP-II. For both
sequencing runs, about 96% and 98% of the classified sequences were assigned at the family
and genus levels, respectively, whereas about 76% of the PE reads were assigned at the species
level.

For each time point, the number of species identified for the three wine varieties was evalu-
ated and graphically represented as a Venn diagram (Fig 4). For all three varieties, the number

Fig 2. Scatter plot of the calculated Shannon index values. Shannon index values calculated based on the OTUmatrix, obtained
from the Illumina MiSeq raw data, are shown for all the tested wine varieties. Only the OTUs that were taxonomically labelled as
bacterial or not mapped to Vitis Vinifera plastids were considered. The values calculated for each sample are plotted for Cabernet (a),
Negramaro (b), and Primitivo (c). Different colours and shapes were used to distinguish the five time points (sAF, 24hAF, sMLF,
hMLF, and eMLF) and the technical replicates (sequencing runs A and B), respectively.

doi:10.1371/journal.pone.0157383.g002

Table 1. The number of observed OTUs, the species richness estimator (Chao 1), and coverage (calculated from the ratio of observed OTUs and
Chao 1) obtained for each sample and sequencing run (A or B).

Sample Observed OTUs Chao 1 Coverage (%)

C_sAF_A 3359 5006.81 67.09%

C_sAF_B 3368 4858.52 69.32%

C_24hAF_A 2899 3974.13 72.95%

C_24hAF_B 2964 4142.89 71.54%

C_sMLF_A 2279 3356.61 67.90%

C_sMLF_B 2336 3567.19 65.49%

C_hMLF_A 1338 2185.25 61.23%

C_hMLF_B 1439 2427.53 59.28%

C_eMLF_A 915 1553.13 58.91%

C_eMLF_B 981 1614.42 60.76%

N_sAF_A 2287 3303.67 69.23%

N_sAF_B 2270 3117.01 72.83%

N_24hAF_A 3117 4186.32 74.46%

N_24hAF_B 3185 4463.29 71.36%

N_sMLF_A 2020 3052.02 66.19%

N_sMLF_B 1963 2898.58 67.72%

N_hMLF_A 1401 2293.61 61.08%

N_hMLF_B 1557 2726.65 57.10%

N_eMLF_A 784 1342.64 58.39%

N_eMLF_B 868 1541.60 56.31%

P_sAF_A 2647 3749.22 70.60%

P_sAF_B 2578 3476.18 74.16%

P_24hAF_A 2543 3816.09 66.64%

P_24hAF_B 2529 3790.78 66.71%

P_sMLF_A 1802 2879 62.59%

P_sMLF_B 1793 2675.55 67.01%

P_hMLF_A 1328 2650.03 50.11%

P_hMLF_B 1326 2247.18 59.01%

P_eMLF_A 1098 1866.08 58.84%

P_eMLF_B 1076 1814.32 59.31%

doi:10.1371/journal.pone.0157383.t001
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Fig 3. Rarefaction curves for the tested samples.Rarefaction curves calculated using the OTUmatrix obtained
from the Illumina MiSeq raw data by using QIIME are shown for all the analysed samples and sequencing runs.
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of identified taxa changed during fermentation. At the first time point (sAF), 317, 277, and 381
species were identified in C, N, and P, respectively. At the 24hAF time point, the number of
taxa increased considerably compared to that at sAF (Fig 4A and 4B). From the beginning of
MLF (sMLF) until the end of fermentation (eMLF), a reduction in the number of taxa was
observed for all three varieties (Fig 4C–4E). Another Venn diagram was drawn including only
those species that were detected throughout the fermentation process (from sAF to eMLF; Fig
4F). A common taxonomic core of 98 species was observed among the three varieties. Each
variety was characterized by a unique microbial biodiversity pattern. In particular, 48, 31, and
92 species were exclusively detected in the C, N, and P samples, respectively. The number of
species common to two varieties are also shown in the diagram (Fig 4F).

The taxa at the genus level with a relative abundance�1% [47] determined by summing the
counts derived from the two biological replicates for each sample are plotted in Fig 5. As previ-
ously described, for all three varieties, there was an evident change in the taxa and their relative
abundance during fermentation. At the beginning of the winemaking process (sAF), the genera
that were common to all three varieties (with relative abundance�1%) were Candidatus_Li-
beribacter (average relative abundance 5.69% in C, 15.81% in N, and 4.59% in P), Gilliamella
(8.61% in C, 4.02% in N, and 20.39% in P), Gluconobacter (16.06% in C, 4.69% in N, and
10.86% in P), Halomonas (4.95% in C, 20.59% in N, and 4.12% in P),Halospirulina (3.05% in
C, 2.48% in N, and 1.58% in P), Komagataeibacter (14.76% in C, 5.24% in N, and 28.70% in P),
Pseudomonas (1.90% in C, 1.43% in N, and 1.44% in P), and Shewanella (2.03% in C, 8.83% in
N, and 1.78% in P). Statistically significant differences (adjusted p< 0.05) were evaluated by
comparing the normalized abundance values obtained for each variety. In particular, Candida-
tus_Liberibacter, Halomonas, and Shewanella were more abundant in N than in C and P, while
Gilliamella, Gluconobacter, and Komagataeibacter were more abundant in P than in N and C.
ForHalospirulina and Pseudomonas, no significant differences were detected among the varie-
ties. In addition to the above mentioned genera (shown in Fig 5), Amnibacterium (average rela-
tive abundance: 1.48% in C and 1.99% in N),Methylobacterium (3.50% in C and 2.95% in N),
Hymenobacter (1.53% in C and 2.26% in N), Sphingomonas (4.77% in C and 3.33% in N), and
Thermomonas (1.58% in C and 1.12% in N) were observed both in C and N, Enterobacter
(1.34% in N and 1.40% in P) andWolbachia (2.13% in N and 1.32% in P) were detected in N
and P, and Acetobacter (1.03% in C and 3.25% in P) and Frischella (1.03% in C and 1.51% in P)
were detected in C and P. Moreover, Cyanothece (average relative abundance, 1.17%),Microlu-
natus (1.60%), and Spirosoma (1%) were observed in C, while Acinetobacter (2.89%), Plankto-
thricoides (1.23%), and Tanticharoenia (1.52%) were detected in P. These genera were also
detected in the other wine varieties; however, their relative abundance was less than 1%. In Fig
5, the taxa for which the relative abundance was less than 1% were grouped and called “other,”
which corresponded to 648, 556, and 594 genera in C, N, and P, respectively. Concerning the
different bacterial genera identified during AF, the analyses showed a predominance of species
belonging to Gluconobacter, a genus of acetic acid bacteria that are typically associated with
berry skin [11], in the microbiome of the three wines. This finding is in agreement with the
results of similar studies using culture-independent methods conducted in Spain [48], the USA
[20], and Slovakia [49]. In addition to these dominant genera, a number of other species
belonging to several other genera, which were considered innocuous environmental contami-
nants [50], were detected during AF. Several of these genera, including Pseudomonas, Entero-
bacter, Acinetobacter, Pantoea,Methylobacterium, Gilliamella, and Amnibacterium, have been

The five time points are shown in different colours: sAF (yellow), 24hAF (green), sMLF (red), hMLF (blue), and
eMLF (black), and the wine varieties Cabernet, Negramaro, and Primitivo are shown as solid, dot-dash, and
dashed lines, respectively.

doi:10.1371/journal.pone.0157383.g003
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Fig 4. Venn diagrams showing the number of common and unique species detected in the tested wine
varieties. Venn diagrams showing the number of species detected in the three analysed wines (Cabernet,
Negramaro, and Primitivo) at each time point: sAF (a), 24hAF (b), sMLF (c), hMLF (d), and eMLF (e). (f) Venn
diagram showing the number of species detected in samples from the three wines throughout fermentation (from
sAF to eMLF).

doi:10.1371/journal.pone.0157383.g004

Analysis of the Microbiome in Wine Supply Chain

PLOS ONE | DOI:10.1371/journal.pone.0157383 June 14, 2016 11 / 19



Analysis of the Microbiome in Wine Supply Chain

PLOS ONE | DOI:10.1371/journal.pone.0157383 June 14, 2016 12 / 19



identified in other similar studies [43, 49, 20], whereas a number of novel genera, such as Can-
didatus_Liberibacter, Frischella,Halomonas,Hymenobacter, Komagataeibacter,Microlunatus,
Planktothricoides, Shewanella, Spirosoma, Tanticharoenia, Thermomonas, andWolbachia
were, to the best of our knowledge, uniquely associated with the wine habitat.

For the three wine varieties, the number of identified taxa gradually decreased in subsequent
winemaking steps. In the last two steps of MLF (hMLF and eMLF), the same taxa were identi-
fied in the C, N, and P samples, although with different relative abundances. In particular, She-
wanella (average relative abundance: 3.95% in C, 15.95% in N, and 5.54% in P),Halomonas
(9.59% in C, 38.13% in N, and 13.22% in P), and Oenococcus (81.02% in C, 38.33% in N, and
77.60% in P) were abundant at the hMLF time point, while at the eMLF time point, Oenococcus
was the predominant genus (95.83% in C, 97.53% in N, and 93.02% in P) followed byHalomo-
nas (1.81% in C, 1.51% in N, and 2.64% in P). At the species level, at the end of fermentation
(eMLF) only two taxa were detected in the samples: Oenococcus oeni, which was the most
abundant (96.08% in C, 97.69% in N, and 93.78% in P), and Halomonas phoecae (1.81% in C,
1.49% in N, and 2.66% in P). Thus, these two species showed different population dynamics
during the winemaking process; while the abundance of O. oeni increased during fermentation,
reaching the highest values at the end of the process (eMLF),H. phoecae decreased after the
start of spontaneous MLF. Regarding the bacterial genera identified during MLF, the obtained
data were partially consistent with those reported by Renouf et al. [51] and Ruiz et al. [48], who
both described Oenococcus as the predominant genus. In contrast, species belonging to the
genus Halomonas have never been reported in wines, although Halomonas species have been
isolated from diverse high-osmolarity habitats [52] and recently from traditional Korean fer-
mented food [53].

To investigate the relationships among the microbial community, fermentation step, and
grape variety, a multivariate statistical procedure, called principal coordinate analysis (PCoA),
was carried out. At the genus level, the PCoA plot showed a clear separation of the bacterial
populations between C, N, and P during the winemaking process (Fig 6). This result was partic-
ularly evident at the end of MLF (eMLF), where three separate groups were observed. Further-
more, the PCoA component values calculated for each sample supported clear reproducibility
of the composition of the microbial communities between biological replicates (1 and 2) and
sequencing runs (A and B). Different profiles were only observed between the biological repli-
cates of P samples, which were taxonomically distant. In particular, at eMLF replicate 2 was
taxonomically closer to the other two wine varieties, C and N, than to its biological replicate
(replicate 1). These data are probably related to the conditions unique to that particular row of
wine grapes. In fact, considering the data obtained from Tormaresca winery, at eMLF, the pH
and alcohol values (3.35 and 12.10°, respectively) recorded for replicate 1 of P were lower than
those obtained for replicate 2 (3.47 and 14.77°, respectively) and for the other varieties (3.45
and 13.3° for C_1, 3.55 and 13.62° for C_2, 3.48 and 13.55° for N_1, and 3.43 and 14.31° for
N_2, respectively).

The last aspect investigated was microbial “contamination” from the winery that, as previ-
ously described [43], seems to have a key role in the specific organoleptic features of the final
product. To examine this, healthy grape bunches belonging to the three tested wine grape vari-
eties were collected from the same supply chains as the gm samples, the DNA was extracted
from bunch washing water samples (bww) (see Materials and Methods), and the amplicon

Fig 5. Stacked box-plot of relative taxa abundances. Stacked box-plot displaying the relative abundances of the
taxa (�1%). In particular, a specific plot was produced for each wine variety (Cabernet, Negramaro, and Primitivo) to
describe the changes in genera abundance at the five time points (sAF, 24hAF, sMLF, hMLF, and eMLF). Taxa for
which the relative abundance was less than 1%were grouped and named “others” in the graph.

doi:10.1371/journal.pone.0157383.g005
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Fig 6. Principal coordinate analysis plots generated at the genus level for the five fermentation time points.
Principal coordinate analysis (PCoA) plots based on the taxonomical classification at the genus level are shown for
the five tested time points: sAF, 24hAF, sMLF, hMLF, and eMLF. Biological replicates (1 and 2) and sequencing
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libraries were sequenced together with the gm samples on the MiSeq. The PE reads from the
bww samples were processed by the BioMaS pipeline, and the results were compared to those
obtained from the gm samples at the five time points. For this analysis, the taxa that were absent
from the field (bww) samples but present during fermentation (from sAF to eMLF) were included.

Surprisingly, winery-specific microflora were detected in each variety. In particular, at the
genus level,Micrococcus was identified in the C samples,Haemophilus, Luteimonas, andWauter-
siella were observed in the N samples, and Actinomyces, Alistipes, Ameyamaea, Aurantimonas,
Caenimonas, Cellvibrio,Dietzia, Empedobacter, Leifsonia,Micrococcus, Nevskia, Pediococcus,
Ruminococcus, Tolumonas, Tsukamurella, andWautersiella were detected in the P samples. At
the species level, 3, 10, and 28 winery species were exclusively observed in the C, N, and P sam-
ples, respectively (S4 Table). Conversely, the number of species that originated in the field and
persisted throughout the fermentation process was 229 in C, 157 in N, and 244 in P (S5 Table).

In the present study, we described a large-scale exploration of the winemaking microbiome
using an amplicon sequencing approach optimized to drastically reduce the technical difficul-
ties associated with a very challenging matrix like must, aimed at characterizing and comparing
microbial diversity along the production chain and across different Apulian wine appellations.
A comprehensive assessment of the composition of the bacterial community was investigated
by sequencing the V5–V6 hypervariable region of 16S rRNA using the MiSeq (Illumina) plat-
form to determine if i) a common microbial core is shared between different wine varieties, ii)
a taxonomic signature could be assigned to each appellation, iii) contamination from winery
microflora remarkably affects microbial composition, iv) which of the vineyard autochthonous
species persist until the end of the winemaking chain, and v) if there are microorganisms that
have never been described in association with winemaking. In particular, the results were com-
pared both horizontally (at the different steps of winemaking) and vertically (between varieties)
using both test-hypothesis and multivariate statistical analyses to investigate the mutual rela-
tionships among the microbial community, fermentation step, and grape variety.

Conclusions
This study demonstrated the amazing potential of a metagenomic approach based on HTS
technologies to identify the large number of species involved in the production of wine, which
was clearly underestimated. Indeed, most of the species identified have never been reported,
and based on the obtained data, it can be assumed that the detectable biodiversity will further
increase. In fact, a considerable number of microorganisms, which can be observed but not
identified, may be soon classified thanks to the continuous enrichment of reference molecular
databases. Our survey might also have crucial implications in the context of purely practical
aspects, such as controls and improvement of the quality and safety of the final product [54],
its appreciation by the consumer, and its commercial value. Moreover, the developed experi-
mental pipeline provides intriguing prospects for many other research fields in which a com-
prehensive view of microbial complexity and dynamics is desirable.

Supporting Information
S1 Table. Analysis of sequencing data using BioMaS.Data related to each bioinformatics anal-
ysis step are provided for the analysed samples. In particular, (i) Sample Name = label assigned
to the analysed sample, (ii) Grape Variety; (iii) Time Point: step in the wine fermentation process;

runs (A and B) of the three analysed wines (Cabernet, Negramaro and Primitivo) are all shown in each plot as
different shapes.

doi:10.1371/journal.pone.0157383.g006
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(iv) Biological Replicate: Samples were collected twice, and the two biological replicates were
labelled 1 and 2; (v) Technical Replicate: Each sample was sequenced twice, and the sequencing
runs were labelled A and B; (vi) PE = number of produced paired-end (PE) reads; (vii) Merged =
number of merged pairs generated by Flash; (viii) %Merged = percentage of merged pairs, relative
to the number of produced PE reads; (ix) Unmerged = number of unmerged pairs; (x) %Unmerged =
percentage of unmerged pairs, relative to the number of produced PE reads; (vi) Removed = num-
ber of removed pairs; (xii) % Removed = percentage of removed pairs, relative to the number of
produced PE reads; (xiv)Vitis vinifera = number of sequences mapped to a collection of Vitis
viniferamitochondrial and plastidial 16S references and removed; (xv) % Vitis: percentage of
removed sequences, relative to the number of merged and unmerged PE reads; (xvi) Classified =
number of classified pairs, (xvii) % Classified = percentage of classified pairs, relative to the
sequences that passed the denoising and host mapping steps (Merged + Unmerged–Vitis vinifera).
(DOCX)

S2 Table. Pairwise comparisons between time points and grape varieties. Two-tailed t-tests
were used to compare the H-indices obtained for each sample. In particular, pairwise compari-
sons were made between each pair of time points for a given variety (a) and between pairs of
varieties at a given time point (b). Statistically significant differences are indicated with aster-
isks (�p< 0.1, ��p< 0.05, and ���p< 0.01).
(DOCX)

S3 Table. Taxonomic assignments determined by BioMaS. Data related to the obtained taxo-
nomic classification. In particular, (i) Sample Name = label assigned to the analysed sample, (ii)
Classified = number of classified paired-end (PE) reads, (iii) Kingdom: PE reads classified at the
kingdom level, (iv) % Kingdom: percentage of PE reads assigned at the kingdom level, relative to
the total number of assigned PE reads, (v) Class: PE reads classified at the class level, (vi) % Class:
percentage of PE reads assigned at the class level, relative to the total number of assigned PE
reads, (vii) Order: PE reads classified at the order level, (viii) % Order: percentage of PE reads
assigned at the order level, relative to the total number of assigned PE reads, (ix) Family: PE reads
classified at the family level, (x) % Family: percentage of PE reads assigned at the family level, rel-
ative to the total number of assigned PE reads, (xi) Genus: PE reads classified at the genus level,
(xii) % Genus: percentage of PE reads assigned at the genus level, relative to the total number of
assigned PE reads, (xiii) Species: PE reads classified at the species level, (xiv) % Species: percent-
age of PE reads assigned at the species level, relative to the total number of assigned PE reads.
(DOCX)

S4 Table. Winery microflora associated with the tested wine varieties. List of taxa at the
genus and species levels identified in the Cabernet, Negramaro, and Primitivo samples that
were not detected in the field (the bww samples) but were present during fermentation from
start (sAF) to finish (eMLF).
(DOCX)

S5 Table. Microflora associated with the tested wine varieties that originated in the field
and persisted throughout fermentation. List of the species that originated in the field and per-
sisted throughout the fermentation process, from start (sAF) to finish (eMLF).
(DOCX)
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