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Abstract: The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-
positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites,
including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial
infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces.
This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification
of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks.
Therefore, different approaches that enable the “detection” of an antibiotic and the characterization
of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools
facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings—in which
cells are exposed to actinomycete-derived compounds—are a common strategy applied at the very
early stage in antibiotic drug development. More recently, target-based approaches have been
established. In this case, the drug candidates were tested for interactions with usually validated
targets. This review focuses on the bioactivity-based screening methods and provides the readers with
an overview on the most relevant assays for the identification of antibiotic activity and investigation
of mechanisms of action. Moreover, the article includes examples of the successful application of
these methods and suggestions for improvement.
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1. Introduction

The rapid spread of multidrug-resistant pathogens is alarming [1]. Consequently,
antimicrobial resistance (AMR) was put on the top ten list of global public health threats
facing humanity. As the ordinary treatments with the available antibiotics are ineffective,
finding and developing new agents to combat infections caused by bacterial pathogens has
become an urgent necessity. Many of the antibiotics which are currently applied in human
and veterinary medicine were originally isolated from actinomycetes (bacterial strains of
the order Actinomycetales) [2]. Thus, actinomycetes are an excellent source of antibiotics and
other bioactive secondary metabolites. In most cases, the genes encoding the proteins for the
production, resistance, transport, etc. of the secondary metabolites, including antibiotics,
cluster in the genome (biosynthetic gene clusters (BGCs)). Based on the knowledge obtained
from the validated BGCs and the corresponding sequences of protein family domains
(Pfams), databases—and subsequently, bioinformatics tools—were established for the
mining of the microbial genomes. Such tools make the in silico identification of BGCs
possible. A single actinomycete-genome contains more than twenty BGCs. As the output of
a cluster analysis usually provides the users with an overview on the hits and their similarity
to characterized BGCs, it allows the exclusion of known BGCs, prioritization and/or the
selection of potential new BGCs that might deliver a novel compound. In addition to the
genome miming tools, traditional methods including strain cultivation, the direct screening
of culture supernatants or extracts for biological activity, and finally, compound isolation,
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which is required for any of the downstream steps of the drug development, are applied in
the field. While diverse genome mining tools were described in other reviews [3–8], in this
article, we emphasize the bioactivity-based screening methods.

In the first part, we present assays that rely on the diffusion principle and growth inhibi-
tion of indicator strains (test strains). The most popular are relatively simple agar diffusion
assays and thin-layer chromatography (TLC)–bioautographies. Agar diffusion assays play
an important role in diagnostics where they are applied for antimicrobial susceptibility
testing with pure substances to identify the appropriate antibiotics for a more targeted
treatment. In the drug discovery field, they are particularly useful for the primary screen-
ings of materials from natural producers such as actinomycetes (e.g., culture supernatants,
extracts). The primary screenings are usually followed by secondary, more specific screen-
ings that enable the further characterization of the compound. An important part of it is
the elucidation of the mode of action. Therefore, diverse target-based assays are utilized,
which we describe in the second part of this review. As complex, non-purified samples
contain a mixture of metabolites which might interfere with the applied system and lead
to unreliable results (e.g., off-target effects), the isolation or at least an enrichment of the
active compounds is necessary. The available technologies nowadays make the purification
easier [9–13]. In many cases, it is possible to obtain the required quantities and quality for
studying the mechanism of action (MOA) and other features of the compound.

In the following sections, we introduce the reader into both diffusion- and target-based
screening methods. We describe the advantages and disadvantages of the presented assays
and give advice for the optimization of some of the procedures.

2. Primary Screening: Diffusion-Based Assays

The traditional antibiotic discovery workflow starts with the isolation of the produc-
ers (e.g., actinomycetes) from different ecosystems. Mainly soil samples are extracted
and serial dilutions are streaked on selective solid media for the semi-selection of the
microorganisms. After the morphological evaluation of the plates, the promising candi-
dates (e.g., actinomycetes-like colonies) are picked and propagated, typically using series
of different media to explore the biosynthetic potential of the isolates. For actinomycetes,
agar with the mycelium, culture supernatants as well as extracts are tested in agar diffusion assays.

2.1. Agar Diffusion Methods

The first agar diffusion test for the detection of antibiotic activity was developed by
Alexander Fleming (1929) after he noticed that around a mould colony (later assigned
to Penicillium notatum), there was no growth of Staphylococcus that was streaked on the
same agar plate. Based on this observation, he partially removed a strip of agar from
a Petri dish, resulting in a ditch, and filled it with a test solution (medium containing
penicillin). He used the other part of the agar plate for the streaking lanes of diverse
strains across the ditch (similar to the cross-streak method, where instead of penicillin,
potential producers of antibiotics are streaked on the plate). The more susceptible the strain
was, the less growth was visible in the proximity of the ditch with penicillin [14–16]. Almost
one century later, the same basic principle was applied in diagnostics (the determination of
the susceptibility of bacterial isolates) and drug discovery (screening of biological material
(e.g., extracts) and purified antibiotic candidates). However, several modifications of the
agar diffusion test (also referred to as disk diffusion test, Kirby–Bauer test, disc-diffusion
antibiotic susceptibility test, disc-diffusion antibiotic sensitivity test) have emerged over
the years. These include, for example, the “direct” agar diffusion assay, the agar plug-based
diffusion assay, the agar hole-based diffusion assay (well diffusion), the agar disc diffusion
assay and bioautographies (Table 1). In the following section, we introduce the basics of
each of the methods and compare them with each other.



Pharmaceuticals 2022, 15, 1302 3 of 24

Table 1. Examples of diffusion- and bioautography-based assays for the detection of antimicrobial activity.

Method Specificity Robustness Difficulty Estimated Time
(Experiment-Result) Costs Comments References

Agar Diffusion Assays

“Direct” agar
diffusion assay + * + (+) Easy

5–15 days (depends on
the producer and
indicator strain)

(+)

- Basic equipment is
sufficient.

- Media must be
compatible with the
producer and
indicator strain.

[17–19]

Agar plug
diffusion assay + * ++ (+) Easy

5–15 days (depends on
the producer and
indicator strain)

(+)

- Basic equipment is
sufficient.

- Does not require
media compatibility
for the producer and
indicator strain
(flexible).

[20–24]

Agar well
diffusion assay + * ++ (+) Easy

12–24 h (excluding the
preparation of the

material (e.g., extract)
for testing; depends on

the indicator strain)

(+)

- Basic equipment is
sufficient.

- Suitable for the
screening of culture
supernatants, extracts,
purified compounds, etc.

[19,25–28]

Agar disc
diffusion assay + * ++ (+) Easy

12–24 h (excluding the
preparation of the

material (e.g., extract)
for testing; depends on

the indicator strain)

(+)

- Basic equipment is
sufficient.

- Suitable for the
screening of culture
supernatants, extracts,
purified compounds, etc.

- Standardized assays
enable a
semi-quantification in
case of known
antibiotics.

[29–32]

Bioautography assays

Thin-layer chro-
matography
(TLC)–bioauto
graphy

+(+) ** ++ +

12–24 h (excluding the
preparation of the

material (e.g., extract)
for testing; depends on

the indicator strain)

+

- Basic equipment is
sufficient.

- TLC plates are
commercially
available.

- Suitable for the
screening of extracts,
fractions from
purification and
purified compounds.

[33–37]
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Table 1. Cont.

Method Specificity Robustness Difficulty Estimated Time
(Experiment-Result) Costs Comments References

Combined
methods (e.g.,
TLC–bioauto
graphy and
HPLC/LC-
MS ***)

++ ++ +

12–24 h (excluding the
preparation of the

material (e.g., extract)
for testing; depends on

the indicator strain)

+++

- HPLC, LC-MS
instruments are
required.

- Reference compounds
and libraries enable
quantitative and
qualitative
measurements.

- Better outcomes
(assignment of the
bioactivity to a peak
(compound) is
possible).

[38–42]

* Differentiation between activity against Gram-positive and Gram-negative bacteria. ** Bioactivity can be assigned to
spots (compounds) on the TLC. *** HPLC: High-performance liquid chromatography, LC-MS: liquid chromatogra-
phy mass spectrometry.

The “direct” agar diffusion assay is primary used to screen potential antibiotic produc-
ers such as actinomycetes [18,19] by their direct exposure to an indicator strain (also called
test strain) on solid medium. First, the producer is spotted and incubated at optimal condi-
tions (for actinomycetes, 28–37 ◦C, 5–14 days). Thereafter, the agar plate is overlaid with a
suspension of the indicator strain (the optical density of the suspension strongly depends
on the protocols found in the literature) [17–19]. For some actinomycetes, overlaying the
agar plates might lead to difficulties as the suspension washes away the mycelium, and due
to the mixture, the producer is distributed over the agar plate. This often occurs when the
producer is a fast-growing or sporulating strain. A careful platting of the indicator strain
solution instead of overlaying the whole plate might solve this problem. Furthermore,
an overlay with soft agar containing the indicator strain would simplify the procedure for
producers that are stuck in the agar (e.g., Streptomyces strains) and are not washed away.
For conducting the “direct” agar diffusion assay, suitable solid media should be applied.
It is important that both strains (producer and test strain) can grow on the agar and the
antibiotic production is ensured. The International Streptomyces Project-2 agar (ISP-2;
was developed by Difco Laboratories for the International Streptomyces Project [43]) is
often the first choice as it is a rich and clear medium. This increases the chances of antibi-
otic production and facilitates the visualization as well as the evaluation of the growth
inhibition zones.

The ISP2 agar was also utilized for the modified variant of the “direct” agar diffusion
assay with the purpose of adaptive laboratory evolution of actinomycetes [17]. According to
the concept of this method, the potential antibiotic-producing strain is activated due to the
competition against a target pathogen (trigger) in the serial transfer of the producer and
exposure to the pathogen. It is expected that the competition increases the mutation rate.
Those mutations which activate the biosynthesis of antibiotics or cause an increase in the
production compared to the precursors strain are easily identified by the appearance of a
halo and a larger zone of inhibition, respectively. With this system, a Streptomyces clavuligerus
strain was evolved against the methicillin-resistant Staphylococcus aureus N315 [17]. In contrast
to the unevolved Streptomyces clavuligerus, the evolved strain produced the compound
holomycin, which inhibited the pathogen.

In the agar plug-based diffusion assay, the producers (actinomycetes) are grown on
a suitable solid medium and plugs are punched out of the agar using an agar punch
device (often a sterile cork borer or a tip are used). The plugs are placed onto fresh plates
containing the indicator strain. The plug-based diffusion assay has the advantage that the
producer can be cultivated independently on different media. Thus, the testing of various
antibiotic production conditions is feasible [21–24,27,44]. Recently, a 96-well microplate-
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based system, suitable for the screening of actinomycete strain collections in agar-plug
assays, was established [20]. In this assay, agar plugs were generated by distributing agar
in a modified microplate with a removable bottom and inoculating the solid medium
with actinomycete spore suspensions. After incubation, the bottom was removed, and the
agar plugs with the well-grown strains were pushed out of the wells using a special tool.
This method allowed for the placing of actinomycete agar plugs onto test Petri dishes
(plates containing the indicator strain) for agar-plug bioactivity assays. Even though
“custom-made” equipment is required for conducting this assay, the procedure remains
quite simple and enables the researchers to perform a medium-throughput screening.
As the producer strains are cultivated independently of the indicator strain on separate
agar plates, the users are more flexible and do not need to consider the compatibility of the
medium for both strains, which is the case for the “direct” agar diffusion assay.

The agar well diffusion method (agar “hole-based” diffusion assay) is similar to the
agar plug-based diffusion assays.. While for the first method, the agar punch device is ap-
plied to obtain plugs with the producer, in the second approach, it is required for punching
holes (diameter of 6 to 8 mm) in test agar plates [18,19,25–28,45,46]. These holes are filled
with an antimicrobial solution (culture supernatant, extracts or purified antibiotic solution,
volume of 20–100 mL) and the plates are incubated under suitable conditions depending
upon the indicator strain. In contrast to the above-mentioned assays (“direct” and agar
plug-based diffusion assay), the agar well diffusion method requires the preparation of a
culture supernatant or the extract of the potential producer. On the one hand, this is un-
favourable for compounds that cannot be extracted or are instable at the applied condition
as the bioactivity might be missed or lost. On the other hand, these issues (loss of bioactivity,
instability) could be defined as exclusion criteria to eliminate very challenging cases to
save time and resources. In addition, this method is particularly convenient for the activity
testing of fractions obtained during the chromatographic purification (e.g., preparative
HPLC fractions) of a compound.

Another option for the screening of culture supernatants [47], extracts [48], HPLC
fractions [49] and purified antibiotics in solutions [49,50] is the agar disc diffusion. The pro-
cedure involves the preparation of test plates that are inoculated with an indicator strain and
filter paper discs with the solution for an examination of the antibiotic activity. Typically,
10–100 µL are transferred onto a filter paper disc. For higher volumes, it is recommended
to load the filter paper discs several times with a lower volume (e.g., 50 µL) and dry them
in between to avoid overloading the disc and losing antibiotic solutions. In contrast to
the “direct” agar diffusion and agar plug diffusion assay, the well- and agar disc diffusion
method allows for a concentration-dependent examination of the material [51] and a rough
determination of the minimal inhibitory concentration (MIC) [52] of pure compounds with
a known concentration. Furthermore, based on the size of the inhibition zones for defined
concentrations of a purified antibiotic substance, a standard calibration curve using the
linear equation can be generated and applied to determine the concentration of such an
agent in an unknown sample (semi-quantification) [53,54]. This concept is also utilized in
liquid setups [55,56]. For example, microtiter plates are filled with medium containing the
indicator strain and an antibiotic solution of a different concentration is added. Based on
the measurements of the absorbance or optical density and the resulting calibration curve,
the antibiotic concentration in undefined samples can be semi-quantified. Recently, such a
system was established for Streptomyces fradiae to screen for tylosin “superproducers” [57].

Taken together, agar diffusion techniques are simple, fast and inexpensive methods
for testing the antimicrobial activities of different material obtained and/or purified com-
pounds. In case of non-purified material (e.g., culture supernatants, extracts), differentiating
which compound is causing the inhibition of the indicator strain in an agar diffusion assay
is not possible as some actinomycetes produce a mixture of several compounds that might
result in a synergistic effect [7]. The quantification with agar diffusion assays is rather
limited to purified agents or materials that are confirmed to contain only one compound
that is active against the chosen indicator strain. Nevertheless, these assays are extremely
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useful for primary screenings, especially in cases where the compound is not characterized,
and analytic methods do not yet exist. The accuracy and reproducibility of the agar diffu-
sion methods is affected by factors such as agar nutrient content, thickness (volume) of the
agar layer, uniformity of the agar, temperature, the interpretive criteria for the inhibition
zones and breakpoints, and others [58]. Therefore, assays that are compared with each other
or used for diagnostics must be conducted at defined conditions. Such standards for testing
against bacteria and yeasts and their updates are, for example, published by the Clinical
and Laboratory Standards Institute (CLSI) [59,60]. Finally, controls should be included to
validate the procedure. Negative controls (solvent) eliminate the risk of misinterpretation
when the antimicrobial activity is caused by the solvent (e.g., methanol, ethanol) that was,
for example, used for resolving the concentrated extract after evaporation. As positive
controls, known and confirmed antibiotics such as tobramycin [61,62] for Gram-negative
indicator strains or erythromycin [63,64] for Gram-positive indicator strains can be applied.
An inhibition zone for the positive control demonstrates that the assay is working and
excludes potential technical issues.

2.2. Thin-Layer Chromatography (TLC)–Bioautography

Thin-layer chromatography (TLC)–bioautography combines the separation and anal-
ysis technology of TLC with the detection of biological activity. The pioneers of the
TLC–bioautography were Martin and co-workers [65] and Goodall, together with Levi [66].
In their experiments, paper chromatography (PC) was coupled with contact bioautog-
raphy for the analysis of amino acids and penicillin, respectively. The term TLC was
officially introduced by Fischer and Lautner [67]. Thereafter, TLC–bioautography was fur-
ther developed and several types emerged [68] (e.g., agar diffusion (contact bioautography),
direct bioautography and agar-overlay assay (immersion bioautography), high-performance
thin-layer chromatography bioautography and D-TLC bioautography) which were recently
described in another review [68]. Briefly, TLC involves the separation of components in a
sample using a stationary (TLC plate) and mobile phase (organic solvent). The stationary
phase is a thin adsorbent material layer (e.g., silica gel or aluminium oxide), coated onto
an inert plate surface (usually glass, plastic or aluminium). Samples are spotted onto
the TLC plate (the starting position is often marked on the plate) with a capillary spotter
(e.g., five dips on every TLC plate with a 5µL microcap). It is recommended to spot the
sample solution at one position of the TLC plate by transferring small amounts (spots)
and drying the plate in between. This is an advantage for diluted samples as with this
procedure, they become concentrated. At the same time, spotting too much material of very
concentrated samples should be avoided because this reduces the quality of the separation.
In addition, there should be enough space between the spots of different samples and the
edges of the plate. After drying, the plate is placed vertically into a closed chamber with an
organic solvent. The mobile phase migrates from the starting position towards the lid of
the chamber (capillary forces). The mobile phase transfers the components into the same
direction, however, since they have a differential affinity for the stationary and mobile
phase, the components stop the migration at different positions on the TLC plate which
results in various distances for each of the substances (spot on the TLC plate). As very
similar substances have the same or almost the same chemical properties and affinity in
this system, their spots often overlay and cannot be separated (mixture of compounds).
The migration is monitored, and shortly before the solvent reaches the top of the plate,
the plate is removed from the developing chamber. The solvent front is marked for the
calculation of the retardation (retention factor (Rf)) value and subsequently, the plate is
dried. The plate should be evaluated under normal light, and in cases where the silica gel
is impregnated with a fluorescent dye, it should also be evaluated under ultraviolet (UV)
light (for green fluorescence: excitation at λ = 254 nm; for blue fluorescence excitation at
λ = 365 nm). Depending on the chemical properties of the compound, different, commer-
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cially available visualization reagents can be applied [69–71]. The Rf value is the ratio of
distance travelled by the compound (spot on the plate) to that of the solvent front:

Rf =
Za

(migration distance of the compound)

Zb (migration distance of solvent front)

For linear development, Za is the distance migrated by the compound from its origin
(starting position of the separation) to the position of the spot on the plate, while Zb is the
distance migrated by the mobile phase (from the starting position to the solvent front).

The second step of TLC–bioautography is the in situ biological activity detection.
This can be achieved by the transfer of the compound to an agar test plate that is inoculated
with an indicator strain (agar diffusion also called contact bioautography). Therefore, the TLC
with the side containing the compounds separated in the thin adsorbent material layer is
laid on the test agar plate, and after the few minutes or hours removed, the single spots are
scraped off the layer (powder is transferred onto the test agar plate). If the tested compound
is active against the indicator strain, an inhibition zone will be visible after the required
incubation time [33–35].

Furthermore, another and faster detection of the activity is direct bioautography.
Here, the TLC plate with potential bioactive agents is dipped into or sprayed with a
suspension containing the indicator strain and incubated at conditions allowing the growth
of the indicator strain [72]. For the evaluation of antimicrobial activity, tetrazolium salts
are sprayed onto the TLC plate. As living cells produce dehydrogenases, which convert
the tetrazolium salts to their intensely coloured formazan products, the areas where the
strain is growing change colour. In contrast, parts of the TLC that contain an antibacterial
compound remain clear and can be easily distinguished from the background [36,37].

The agar overlay bioassay is a combination of the agar diffusion and direct bioautogra-
phy. After separation on the TLC plate, the plate is overlaid with inoculated agar medium.
It is important to cool down the agar (approximately 55 ◦C) to avoid killing the indicator
strain. During the incubation at suitable conditions (depending on the indicator strain),
the compounds diffuse, and their activity is manifested by the appearance of the inhibition
zone. Similar to direct bioautography, the indicator strain is stained with a tetrazolium
dye enabling the evaluation of its growth and identification of inhibition zones caused by
active compounds.

TLC–bioautography has been mainly used for the detection of antibacterial and anti-
fungal activity [38,39,73,74]. For example, Grzelak et al. [35] applied all three technics (agar
diffusion (contact bioautography), direct bioautography and agar-overlay assay (immersion
bioautography) to test several actinomycete-derived compounds, showing a wide range of
polarities for antitubercular (anti-TB) activity [35].

In addition to agar diffusion methods, TLC–bioautography is a fast, simple, sensitive,
and reliable approach which does not require complicated equipment for screening an-
tibiotics and other compounds. The separation on the TLC plate facilitates the analysis
of the single spots (compounds). However, similar substances might result in a spot
containing a mixture. Thus, for further characterization or dereplication purposes, it is
useful to combine the TLC with a high-performance liquid chromatography (HPLC),
liquid chromatography mass spectrometry (LC-MS) and/or other methods. This can be
carried out independently [39] (samples are analysed in parallel using TLC–bioautography
and HPLC/MS methods) or the spots (compounds) obtained from the TLC are further
characterized (e.g., spots are scraped from the plate, extracted and the extracts are analysed
by HPLC/MS or other methods) [38,40–42]. Details on chromatographic methods can be
found in comprehensive reviews [75–79].

3. Secondary Screening: Target-Based Assays

Target identification is one of the most crucial steps in drug development. In the past,
various strategies for the characterization of drug targets were developed [80–83]. These in-
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clude genomic approaches, phenotypic profiling/screening and biochemical strategies.
Computational approaches involve genome analysis and the identification of potential
resistance genes. Therefore, natural antibiotic producers as well as other naturally resistant
strains (e.g., resistant pathogens) and drug-resistant clones—that were obtained after the
exposure of the originally susceptible strain to the antimicrobial agent—are used. As the
genomes might encode new; so far, unexplored; or multiple resistance factors, this method
is often not sufficient for the unambiguous identification of the antibiotic target and eluci-
dation of its MOA. Typically, the in silico analysis is followed by more specific whole cell
assays that apply recombinant indicator strains (e.g., reporter systems, an overexpression
mutant library for essential genes such as the ASKA library [84,85]), diverse biochemical
screenings (e.g., affinity methods (pull-down assays [86]) and in vitro assays with potential
targets). The screenings often use cell wall compartments, DNA, RNA, ribosomes and
enzymes of metabolic pathways as macromolecular targets (Figure 1). The second part
of this review will lead the reader through such in vivo whole cell screenings and in vitro
target-based assays (Table 2). Some of them were established to high throughput methods,
and others will follow.
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Table 2. Examples of target-based assays for the detection of antimicrobial activity.

Method Description Specificity Robustness Difficulty Estimated Time
(Experiment-Result)

Costs (Con-
sidering
Equipment)

References

In Vivo (Whole-Cell) Assays

Cell viabil-
ity/cytotoxicity
assays

- Detection of living
or dead cells by
measuring the
absorbance (or
using
colorimetry).

- Suitable for killing
curves (testing of
antibiotic effects)
and MIC *
determination.

- HTS ** is possible.

++ +++ +

6–24 h (excluding the
preparation of the
material (e.g., extract,
purified compound;
depends on the test
strain)).

++ [57,87–93]

Whole-cell
assays
using
isotope-labelling
and radioactivity

- Introduction (e.g.,
feeding) of
isotope-labelled
substrates and
detection of
radioactivity.

- Suitable for the
identification of
antibiotic targets
(e.g.,
peptidoglycan,
histidine kinases).

- HTS ** is possible
but unsustainable.

+++ ++ +++

12–42 h (excluding
the preparation of the
material (e.g., extract,
purified compound;
depends on the test
strain).

+++ [94–96]

Whole-cell
assays
using reporter
systems and
bioluminescence
or fluorescence

- Introduction of
reporter systems
(e.g., lux, egfp) or
organic
fluorescent probes
and detection of
bioluminescence
or fluorescence.

- Often requires the
genetic
manipulation of
the test strain.

- Suitable for the
identification of
antibiotic targets
(e.g., gyrase,
ribosome,
riboswitches).

- HTS ** is possible.

++(+)(e.g.,
autofluo-
rescence
(back-
ground)
might
influence
the
measure-
ments).

+++ ++(+)

12–42 h (excluding
the generation of
mutants and
preparation of the
material (e.g., extract,
purified compound;
depends on the test
strain).

++ [97–101]
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Table 2. Cont.

Method Description Specificity Robustness Difficulty Estimated Time
(Experiment-Result)

Costs (Con-
sidering
Equipment)

References

In vitro assays

In vitro transcrip-
tion/translation
assays

- Use of transcrip-
tion/translation
components (e.g.,
cell-free extracts
or purified
enzymes) in an
in vitro reaction.

- Often reporter
systems (e.g., egfp
encoding
plasmids) are
applied, which
facilitate the
detection of the
protein (e.g., egfp).

- Suitable for the
identification of
antibiotic targets
(e.g., ribosome,
translation and
transcription
factors).

- HTS ** is possible.

+++ ++(+) ++(+)

2–6 h (excluding the
preparation of the
cell-free extract and
the material (e.g.,
extract, purified
compound).

++(+) [102,103]

Enzymatic assays
(using purified
enzymes)

- Use of purified
enzymes in an
in vitro reaction.

- Often, labelled
substrates are
used (detection of
bioluminescence,
fluorescence etc.).

- Suitable for the
identification of
antibiotic targets
(e.g., histidine
kinases,
ribonuclease P,
cell wall
synthesizing
enzymes,
metabolic
enzymes etc.).

- HTS ** is possible.

+++

++(+)(Strongly
depends
on the
stability
of the
enzyme
and sub-
strates).

+++

2–24 h (excluding the
protein purification
and preparation the
material (e.g., extract,
purified compound).

++(+) [87,95,104–110]

Vesicle-based
methods

- Use of
phospholipid
vesicles
(membrane
model).

- Suitable for drug
delivery and the
investigation of
antibiotic–
membrane
interactions

- Often
nanotechnology is
involved.

+++ +(+) +++ Strongly depends on
the used system. ++(+) [111–115]
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3.1. Assays for Targeting Cell Wall

The cell envelope is a complex multi-layered structure that protects the cell, shapes the
cell, provides stability and rigidity and plays a central role in the communication with the
environment (e.g., sensing and transport of nutrients) [116–119]. In addition, the cell wall
components are essential for many other processes in the cell (e.g., growth, cell division,
cell wall recycling) [120–123]. Consequently, finding antibiotics that target the cell wall
of pathogens is one of the major goals in the antibiotic discovery field [124–126]. As the
cell wall of Gram-positive and Gram-negative bacteria differs in its composition [96,127,128]
(e.g., in contrast to Gram-positive bacteria, Gram-negative strains possess an outer mem-
brane (OM)), it is possible to differentiate in the inhibition by using antibiotics that specif-
ically target only one of the two groups of bacteria. Indeed, the cell wall became a very
popular target, and thus, several assays for the screening of compounds that act as cell wall
inhibitors have been developed to combat bacterial infection.

One example is a whole-cell assay to test agents, which interferes with peptidogly-
can (PG) biosynthesis, including the inhibition of cell wall recycling [95]. In this assay,
14C-labeled UDP-N-acetylglucosamine (UDP-GlcNAc) was fed to pre-treated E. coli ATCC
47076 cells (subjected to freezing and thawing). The utilization of 14C-labeled UDP-GlcNAc
facilitated the direct detection of cross-linked PG which indicated a PG recycling and
regeneration of the cell. When inhibitors (antibiotics) of these processes were added
to the samples, the optical density (OD600) was affected, and lower radioactivity was
detected in comparison to the negative compound (without addition of the antibiotic).
The functionality of the assay was confirmed using known PG inhibitors (e.g., fosfomycin,
bacitracin, flavomycin) which inhibited the formation of radiolabelled PG and compounds
that do not target the enzymes of the PG pathway as a negative control (no effect was
observed for kanamycin/streptomycin, norfloxacin). Applying the whole-cell approach
for peptidoglycan biosynthesis inhibitors in combination with an enzymatic assay with
purified enzymes resulted in the identification of two new compounds (Cpd1 and Cpd2),
which specifically block enzymes of PG synthesis (e.g., MurA) [95]. At the concentration of
50 µM Cpd1 and Cpd2, the agents inhibited the assay by 25 and 50%, respectively.

The advantage of this assay is the relatively easy implementation. However, it usually
requires expensive radioactively labelled substrates, the respective facility and trained staff
to work with radioactivity. This might limit the high-throughput screening (HTS).

An impressive method for the visual and spectroscopic detection of bacteria (in partic-
ular, bacterial contaminations) was developed by Silbert, et al. [115]. The principle involves
an interaction of membrane-active compounds secreted by bacteria with agar-embedded
nanoparticles. The nanoparticles comprise phospholipids and the chromatic polymer
polydiacetylene (PDA) to simulate a membrane. It has been demonstrated that molecules
which are produced by bacteria affect the PAD, leading to blue-to-red transformations
with an intense fluorescence emission [115]. This can be measured by conventional HTS
instruments. The spectroscopic detection method was implemented for the screening
of actinomycete-derived extracts after an activity was detected in a primary screening
using agar diffusion assays [129]. Therefore, the extracts which were resolved in DMSO
were incubated for 1 h with phospholipid/PDA (vesicle solution used as a model for a
membrane). In cases of extracts which contained molecules interacting with the artificial
membrane and/or disruption the vesicles, the colour was changed, and the fluorescence
emission was detected by a UV-Vis spectrophotometer. For two actinomycete-derived
extracts, the blue-to-red transformations were detected. This indicated that these samples
harbour compounds which target the bacterial membrane.

The assay is a very convenient method, as colorimetric responses can be measured,
thus, facilitating the quantification. Problems might arise if the extracts contain coloured
substances, as this might interfere with the detection method. In such a case, additional
steps (e.g., TLC–bioautography, preparative HPLC) are recommended to separate the
compounds and re-test them one-by-one.
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Recently, an interesting assay was developed whereby not the metabolites produced
by actinomycetes were screened, but the actinomycete itself was exploited for developing
a screening method [87]. Gosschalk and co-authors focused on finding the inhibitors of
sortase enzymes which are attractive drug targets. These enzymes attach virulence factors
to the surface of Staphylococcus aureus and other relevant bacterial pathogens. Blocking the
sortase enzymes would lead to the loss of the virulence factors. To develop an effective
screening assay, Actinomyces oris was applied. This strain exhibits sortase-dependent
growth in laboratory conditions and thus, it is particularly suitable as a “sensor” for
sortase-inhibitors. To eliminate small molecules that impaired A. oris growth via processes
unrelated to sortase, mutants of A. oris were generated and a secondary screening coupled
with a primary screening (the wild type of A. oris was used in the primary screening)
was introduced. Based on this phenotype, a HTS was established. This delivered two
candidates, whereby sortase-inhibitory activity was also confirmed in vitro [87].

Although a primary and secondary screening is required for the specific identification
of sortase inhibitors, this system is a simple and relatively inexpensive opportunity.

3.2. Assays for Inhibitors of DNA Synthesis

Every future generation of cells must be equipped in a newly synthesized chromosome.
Thus, the inhibition of DNA synthesis prevents cell propagation. The most prominent
target for the inhibition of these processes in bacteria is DNA gyrases (topoisomerases) as
they have multiple roles in DNA replication, recombination, and transcription [130–133].
It has been shown that many quinolone antibiotics originally isolated from actinomycetes
(such as nalidixic acid [134]) act as potent DNA gyrase inhibitors [132,135].
Assays for screening DNA synthesis inhibitors include cell-based high-throughput biolumi-
nescence screens [100,101]. For example, Moir, et al. [101] fused a luciferase operon to a pro-
moter that responds to DNA damage caused by reduced gyrase levels in Pseudomonas aeruginosa
(P. aeruginosa with chromosomal inserted luxCDABE luciferase genes). The promoter
(PA0614) was derived from the pyocin gene-encoding region. Pyocins are toxic bacteriocins,
produced by P. aerogionsa, that kill closely related Pseudomonas strains. PA0614 responded to
ciprofloxacin and decreased GyrA levels. Consequently, in case a compound that interacts
with the promoter is added to the assay, the gyrase expression is repressed. At the same
time, the expression of the lux genes is upregulated (luminescence that can be detected by a
luminometer). The generation of the recombinant strain resulted in coupling the transcrip-
tional regulatory response produced by the depletion of an antibacterial target (gyrase)
to a suitable reporter. This reporter assay was used for the screening of 2000 known com-
pounds. The screening revealed that 13 of them were confirmed gyrase inhibitors, 10 out
of the 13 inhibitors were quinolones, but the remaining 3 were non-quinolone structures
(mechlorethamine-, furazolidone-, and nitrofuran-like structures).

This whole-cell bioluminescent assay enables the researchers to specifically screen for
gyrase inhibitors in high throughput. The generation of the recombinant strain means that
additional cloning and genetic manipulation steps must be included unless the system can
be obtained from other labs.

In addition to the whole cell assays, enzymatic in vitro approaches can be applied for
screening compounds that target the enzymes involved in DNA synthesis. PCR-based en-
zymatic assays are particularly useful. Tholander et al. presented a PCR-based assay
for ribonucleotide reductase (RNR) activity measurements in a microplate format [104].
RNR catalyses the reduction in the four ribonucleotides necessary for DNA synthesis to
deoxyribonucleotides, and thus, is a rate-limiting enzyme of DNA synthesis [136–138].
Although the RNR is a frequent target for antibiotics, possible inhibitors are not well stud-
ied due to the laborious experimental procedures. PCR-based assays allow for the quan-
tification of the reduction in ribonucleoside-5-diphosphates (NDPs) to deoxynucleoside
diphosphates (dNDP) that are catalysed by RNR. Therefore, SYBR green dye (asymmetrical
cyanine dye used for staining nucleic acids) is added to the sample, and after binding to
the DNA, fluorescence can be detected. The higher the RNR activity, the more the product
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is generated in the PCR, and the stronger the fluorescence signal is. Using this assay,
1364 compounds were tested for the inhibition of class 1 RNR of P. aeruginosa. Within these
substances, 110 have shown a 50% inhibition of RNR activity" (enzyme activity) is correct,
and 27 of them revealed an inhibition of over 90%, with IC50 values ranging from 30 µM to
200 µM. These 27 compounds were further tested for dose-dependent responses and for
their impact on P. aeruginosa growth and proliferation. Four of them have shown effects on
P. aeruginosa that were comparable to those of tetracycline and carbenicillin. One of these
four potent inhibitors was streptonigrin (from Streptomyces flocculus) [104].

The two examples of assays presented in this section enable the screening for RNR
inhibitors. The first (cell-based high-throughput bioluminescence) has the advantage that
the inhibitors must pass the cell envelope to reach the target, and hence, the screen sorts out
all those candidates which cannot pass this barrier. The second is probably more specific,
but it requires the purification of the RNRs for testing. In this case, it would be interesting to
examine if a crude extract containing the protein could be applied to simplify the procedure
and reduce the costs for the purification of the enzyme.

3.3. Assays for the Inhibitors of Transcription and Translation

Transcription (RNA synthesis) and translation (protein synthesis) are indispensable
processes in every living cell. Therefore, the inhibition or complete abolishment of the
transcription or translation in pathogenic bacteria is a desired strategy to fight pathogens
causing severe infections. Furthermore, the molecular mechanisms of the transcription
and translation in prokaryotes and eukaryotes differ from each other (e.g., the subunits
of the DNA-dependent RNA polymerases of bacteria and eukaryotes are fundamentally
different). This increases the chances of a specific inhibition of the transcription/translation
in bacteria without disrupting these essential processes in eukaryotic cells, which is an
extremely important criterium for drug development.

To screen for new transcription/translation inhibitors, diverse assays were devel-
oped [139–145]. Those include biosensor assays (I) (real-time measurement of protein
inhibition using luciferase assays [146], stress response assays [147], antibiotic detection
assays [148–150], attenuation-based dual fluorescent reporter assays [151], panel of re-
porter strains that lack antibiotic resistance [97], transcriptional sensors based on pro-
moter libraries [152,153] etc.); in vitro methods (II) (in vitro protein synthesis inhibition
assays [103,154,155], toe-printing of antibiotic-stalled ribosomes [105], SPARK-sensitive
method for monitoring peptidyl transferase activity [156], antibiotic binding to a fluo-
rescently labelled ribosome [157] etc.); in vivo methods (III) (fluorescent microscopy and
bacterial cytological profiling [158], proteomics-based methods [159,160], resistance-based
assays to sensor the mechanism of action [105] etc.). A comprehensive overview on these
technics was provided by Osterman and co-authors [161]. Here, we focus on three exam-
ples of assays in which transcription/translation inhibitors, isolated from actinomycetes,
were tested or identified.

In vitro transcription/translation assays (also referred to as cell-free protein synthesis
systems) are powerful tools that are used in basic research for answering different scientific
questions, such as finding the target of a drug, as well as in drug discovery for screening.
To conduct the assay, all components for transcription and translation must be present in the
sample mixture. Cell extracts [162–165] (e.g., from E. coli) are often applied instead of puri-
fied enzymes. Further components, such as nucleotides and amino acids as substrates for
transcription and translation, fructose-1,6-bisphosphate for energy supplies and a reporter
system (e.g., pET28-egfp), are added to the sample to ensure the transcription/translation
of the reporter gene/protein. In samples which were supplemented with an inhibitor of the
transcription or translation, there is either no signal or a weaker signal (e.g., fluorescence)
compared to the control. As this correlates with the production of the reporter protein
(e.g., eGFP), the inhibition of transcription/translation can be detected by the respective
spectrometry method (e.g., using fluorometer). Such a transcription/translation assay
was applied, for example, to investigate the activity of kirromycin derivatives produced



Pharmaceuticals 2022, 15, 1302 14 of 24

by an engineered mutant of Streptomyces collinus Tü 365 [103]. The target of kirromycin
(elongation factor Tu (EF-Tu)) was previously identified [166,167]. In case the in vitro
transcription/translation assay is applied to compounds which lead to an inhibitory effect,
but where the target is not known, further characterization might be necessary. This can
be achieved by specific in vitro methods that “present” the respective component (target)
for interaction. An example thereof is an assay (the real-time fluorescence polarization
activity assay (FP/FA assay)) in which the bacterial ribonuclease P (RNase P) was used as a
target and was exposed to diverse inhibitors [168]. The RNase P (endonuclease) catalysed
the cleavage of the 5′ leader sequence from precursor tRNAs (pre-tRNAs), resulting in
the generation of the mature tRNA with a 5’ end. The method allows for the detection of
compounds that bind to the pre-tRNAs and those which inhibit the RNase P. The assay
was validated with antibiotics from actinomycetes, neomycin B and kanamycin B, and opti-
mized for HTS. A library harbouring 2880 compounds was screened. Iriginol hexaacetate
was identified as a new inhibitor of Bacillus subtilis RNase P [168].

Another interesting approach is the use of bacterial riboswitches for HTS methods
of antibacterial drug candidates [169–171]. Riboswitches are RNA elements which can
bind to metabolites and regulate gene expressions, mainly in bacteria [172]. Since the
discovery of the first riboswitches, which were described as RNA-based intracellular
sensors of vitamin derivatives [173,174], many new riboswitches have been identified,
characterized and assigned to 28 experimentally validated classes. As natural or synthetic
ligand analogues (small molecules) can bind the riboswitches and stop their regulatory
functions, they represent a promising target for antibiotics [175]. To screen for antibi-
otics that bind to bacterial riboswitches, assays that utilize reporter-based systems have
been developed [169,176,177]. For example, Lee et al., used the lacZ reporter system in
B. subtilis and demonstrated that roseoflavin (naturally produced by Streptomyces davawensis),
a chemical analog of flavin mononucleotide FMN and riboflavin [178–180], binds to the
FMN riboswitch and downregulates the expression of the FMN riboswitch-lacZ reporter
gene [177]. FMN riboswitch regulates the expression of genes which are involved in the
biosynthesis and transport of riboflavin (vitamin B2). Riboflavin is a precursor of the
essential FMN and flavin adenine dinucleotide (FAD). The binding of roseoflavin to the ri-
boswitch leads to the repression of the riboflavin biosynthesis and transport. Consequently,
bacteria that respond to roseoflavin (or other specific agents) are inhibited (antibiotic ef-
fect). A limitation for establishing these assays—which occurs not only in case of roseoflavin,
but has also been observed many times for antibiotics—is the emergence of resistance [181–185].
For example, mutations in the region coding for the FMN riboswitch, which confer the
resistance to roseoflavin, were found in Listeria monocytogenes [175,186]. Therefore, the iden-
tification of suitable riboswitches and the development of HTS methods that facilitate
the discovery of compounds which specifically interact with the riboswitches should be
considered in the field.

3.4. Assays for Identification of Essential Enzymes Inhibitors

In the development of specific assays for the identification of potential antibiotics or
their targets, enzymes catalysing essential processes in the bacterial cell are often used.
Ideally, these enzymes should be absent or fundamentally different in eukaryotic cells to
avoid toxicity. Usually, the activity and specificity for the bacterial target is tested first,
followed by toxicity screens with eukaryotic cell lines.

Many of the enzyme-based assays utilize classical targets such as enzymes that are
involved in the synthesis and/or recycling of cell wall compartments, especially pep-
tidoglycan (see section “Assays for targeting cell envelope”, MurA). Other examples
include the gyrase (essential for DNA replication), ribonucleotide reductase (RNR) (essen-
tial for DNA synthesis, see section “Assays for inhibitors of DNA synthesis”), bacterial
ribonuclease P (required for RNA synthesis) as well as various enzymes catalysing im-
portant steps of the vitamin-, amino acid- or coenzyme-biosynthesis [107,108,110,175].
Finally, proteins of the ribosomal subunits as well as assembled ribosomes are exposed to
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the tested compounds in such assays (see section “Assays for inhibitors of transcription and
translation”) [161]. Some of these methods involve a pulse and chase labelling procedure
to measure the kinetics of the ribosomal subunit formation or procedures facilitating the
examination of ribosome reformation after antibiotic removal for studying post-antibiotic
effects [187,188]. Indeed, a significant number of the antibiotics isolated from actinomycetes
target the bacterial ribosome, thus underlining the importance of methods enabling the
screening and identification [145,189–193] of the antimicrobial agents.

In addition, histidine kinases (HK) were included as a target in the search for an-
tibacterials [194–196]. HK are membrane receptors, which control a variety of cellular
responses (e.g., virulence, secretion systems and antibiotic resistance). They function in
two-component signal transduction pathways. Two-component systems (TCSs) consist
of a HK and a response regulator (RR). The inhibition of the TCS might kill the host or
reduce the resistance of bacteria to antibiotics by enhancing stress responses, such as the
cell wall stress response. For example, a methicillin-resistant Staphylococcus aureus strain
became susceptible after inhibition of the TCS [197]. Thus, the establishment of efficient
screening assays for inhibitors of the TCS, including HK, is promoted in the antibiotic
drug discovery. For instance, the recently published immuno-dot blot assay is a promising
technic for the detection of HK activity and their profiling [198]. In vitro kinase assays such
as autophosphorylation approaches with γ-32P-ATP [199,200] are often used where the
phosphorylated protein (histidine phosphorylation in the histidine kinase) is quantitated by
phosphorimaging. In screenings, active inhibitors reduce or prevent the phosphorylation
(either no signal or a weaker signal compared to the positive control). For details on further
approaches and recent advances in targeting histidine kinases, the reader is redirected to
other reviews and research papers [194,196,201–206].

4. Summary and Conclusions

The emergence of multi-to-pan drug-resistant pathogens and their global spread,
and the fact that big pharma has shut down antibiotic research and development because
of the lack of financial incentives, are the main reasons that unleashed the antibiotic crisis.
The World Health Organisation (WHO) estimated that antimicrobial resistance might lead
to 10 million deaths a year by 2050 [207]. Thus, finding and developing new antibiotics
to overcome or at least attenuate the consequences of the antibiotic crisis are of global
interest. However, research and development require the financial support of governments
and funding agencies as well as close collaborations between the industry and academia.
To accelerate progress regarding antibiotic discoveries, methods facilitating primary and
secondary screenings of crude extracts and/or purified compounds are indispensable.
These assays are often implemented for the screening of actinomycete products, as these
strains are a confirmed source of very potent antibiotics. Certainly, the screening methods
are applied and can be further optimized for the characterization of antimicrobial activ-
ities in material obtained from other producers or sources (e.g., chemically synthesized
compounds). Primary screening assays (e.g., agar diffusion assays, TLC-based meth-
ods, whole cell assays) offer simple, fast and inexpensive opportunities for checking the
antibiotic activity in a sample (e.g., culture supernatant, extract). This is particularly de-
manded when new potential producers such as actinomycetes are isolated and examined
for their bioactive products. Once the isolate’s product shows an inhibition of bacterial test
strains and the results of dereplication (e.g., using HPLC, HPLC-MS, high-performance
liquid chromatography–high resolution mass spectrometry (HPLC-HRMS) and chemical
databases) strongly indicate a new entity, the compound is subjected to further characteri-
zation. This often requires purification, as crude extracts are mixtures of compounds which
interfere with many downstream steps in structure elucidation and target identification.

In secondary screening, mostly target-based assays are applied—these allow for the
exploration the mode of action. In the past, traditional targets, such as cell wall compart-
ments, DNA, RNA, ribosomes, metabolic enzymes and other proteins, were utilized in
screening assays [208–211]. In contrast to the primary screening assays, the secondary
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screens usually involve additional molecular steps (e.g., cloning, generation of mutants,
protein purification) and the respective equipment for conducting the measurements.
Although the secondary screening seems to be technically more challenging, it often offers
opportunities for HTS. Moreover, the outcome delivers valuable knowledge for under-
standing the MOA of antibiotic drugs, which is difficult to obtain with unspecific primary
screening methods.

As there are still compounds with uncharacterized MOA [211] or antibiotics where
the direct physical interactions with the target (e.g., ribosome) are largely unexplored [145]
(e.g., AZ7), the optimization and development of new assays, including novel targets
that can be used as tools in antibiotic development and approval, are essential [212–214].
Furthermore, it is expected that new compounds with unknown MOA will be isolated from
natural sources in the future. Therefore, establishing platforms that enable primary and
secondary screenings as well as combining assays for testing different targets [100,152] at
once will speed up the characterization of the antibiotic activities.
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Abbreviations

AMR antimicrobial resistance
BGC biosynthetic gene clusters
dNDP deoxynucleoside diphosphates
EF-Tu elongation factor Tu
FMN flavin mononucleotide
FAD flavin adenine dinucleotide
FP/FA real-time fluorescence polarization activity assay
HK histidine kinases
HPLC high-performance liquid chromatography
HTS high-throughput screening
IC inhibitory concentration
LC-MS liquid chromatography mass spectrometry
MOA mechanism of action
NDP ribonucleoside-5-diphosphate
OD optical density
OM outer membrane
PG peptidoglycan
Pfams protein family domains
PDA polydiacetylene
Rf retention factor
RNR ribonucleotide reductase
RNase P ribonuclease P
TLC thin-layer chromatography
UV ultraviolet
UDP-N-acetylglucosamine uridine-diphosphate-N-acetylglucosamine
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