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Abstract: The aim of this study is to investigate the silver recovery from aqueous solutions. There
are a variety of recovery methods, such as hydrometallurgical, bio-metallurgical, cementation,
reduction, electrocoagulation, electrodialysis, ion exchange, etc. Adsorption represents a convenient,
environment friendly procedure, that can be used to recover silver from aqueous solutions. In this
paper we highlight the silver adsorption mechanism on chitosan chemically modified with active
groups, through kinetic, thermodynamic, and equilibrium studies. A maximum adsorption capacity
of 103.6 mg Ag(I)/g of adsorbent for an initial concentration of 700 mg/L was noticed by using
modified chitosan. Lower adsorption capacity has been noticed in unmodified chitosan—a maximum
of 75.43 mg Ag(I)/g. Optimum contact time was 120 min and the process had a maximum efficiency
when conducted at pH higher than 6. At the same time, a way is presented to obtain metallic silver
from the adsorbent materials used for the recovery of the silver from aqueous solutions.

Keywords: silver recovery; adsorption; chitosan; functionalization

1. Introduction

In recent years, many applications have been developed in which silver nanoparticles are used,
as a result of its antimicrobial properties. A consequence of these applications are the significant
quantities of aqueous solutions with residual silver ions that are formed [1].

Around 79 part per billion [2] of earthly bark is made of silver, a precious metal. The value
of silver has been known for over 6000 years, having a significant role in different moments of
human life [3–5]. The demand for silver has progressively increased, with the development of the
electrical and electronic industry, but also because it is cheaper than gold or platinum [6]. In the last
years, the natural resources for silver have decreased, which is why the cost of silver production has
increased rapidly, despite its market price, which is declining; some of the known applications of
silver are: photographic industry, radiology, electronics, batteries, jewelry, dental materials, biomedical
materials, medicines, water disinfection or wastewater treatment [4,7–9]. A variety of methods for
silver recovery from aqueous solutions have been developed, but adsorption is the most efficient
method with low energy consumption [10]. Adsorption is a process that takes place on the surface
of the material, when ions, molecules, or atoms adhere to the surface of the substrate through
physical, physical–chemical, or chemical interactions [11]. Also, a large number of materials with
adsorbent properties have been developed, but a special attention is paid to biomaterials such as
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agricultural waste [12]. Chitosan is a biomaterial with good adsorbent properties [13]. Chitosan
(poly-β-(1→4)-2-amino-2-deoxy-D-glucose) is a nitrogenous (amino-based) polysaccharide, with a
macromolecular structure, non-toxic, biocompatible, biodegradable, and inexpensive [14]. Chitosan
is a material that presents some adsorbent properties [15–27] and that can be easily characterized
using physical–chemical methods [28]. In order to improve the adsorbent properties of chitosan, it
can be functionalized with pendant groups. In the present paper, the recovery mechanism of metallic
silver from aqueous solutions was studied and the adsorbent properties of chitosan were compared to
functionalized chitosan with phosphonium groups. The adsorption mechanism has been highlighted
by kinetic, thermodynamic, and equilibrium studies.

2. Experimental Part

2.1. Materials Synthesies

In order to obtain the adsorbent material, the following were used: Chitosan (Ch) (Figure 1a) as
solid support, and dodecyl-triphenyl-phosphonium bromide (DDTPPBr) as extractant, known by the
pendant groups (P) presented in structure, which can be seen in Figure 1b.
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Figure 1. The structure of: (a) chitosan (Ch), and (b) dodecyl-triphenyl-phosphonium bromide
(DDTPPBr).

The method used for the chemical modification of chitosan, by impregnation, was the SIR (solvent
impregnated resin) method [29]; the extractant, dodecyl-triphenyl-phosphonium bromide (DDTPPBr)
was dissolved in water, and then added to the solid support (chitosan), with a mass ratio solid
support:extractant = 10:1.

For functionalization by impregnation, the solid support and the extractant were left in contact
for 24 h. After the contact time elapsed, the samples were filtered, washed with distilled water, and
dried at 50 ◦C for 24 h.

2.2. Material Characterization

Obtained material was characterized by scanning electron microscopy (SEM) and X-ray energy
dispersion (EDX, FEI, Hillsboro, Oregon, SUA) using a FEI Quanta FEG 250i scanning electron
microscope (FEI, Hillsboro, Oregon, SUA), and Fourier-transform infrared spectroscopy (FTIR, Bruker,
Billerica, Massachusetts, SUA), using a spectrometer Platinum ATR-QL Diamond, in the range
4000–400 cm−1.
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2.3. Batch Adsorption Experiments

To highlight the need for functionalization via impregnation of chitosan, the silver recovery studies
were performed comparatively on both the obtained Ch-DDTPPBr and on the unfunctionalized chitosan.

The adsorption studies were carried out in a water bath Julabo SW23 (Julabo, Seelbach,
Baden-Württemberg, Germany), with a thermostat and shaking speed of 200 rpm.

In order to determine the mechanism of the adsorption process, the adsorption capacity of the
material q (mg/g) was determined using the following equation:

q =
(C0 −Cf)V

m
, (1)

where:

Co—the initial concentration of silver (I) in solution, (mg/L)
Cf—the residual concentration of silver (I) in solution, (mg/L)
V—the volume of solution, (L)
m—mass of the adsorbent material, (g)

The influence of pH, contact time, temperature, and the initial concentration have been studied,
by determining the influence over the adsorption capacity of the material.

Thus, in order to evaluate the influence of pH onto the adsorption capacity, samples of ~0.1 g
of adsorbent material were weighed, over which 25 mL of AgNO3 solution containing 10 mg Ag/L
with pH values in the range of 1–12 was added. The pH of the solution was adjusted with buffer
solutions and measured using an METTLER TOLEDO Seven Compact S210 pH meter (Mettler Toledo,
Columbus, Ohio, SUA). The samples were kept in contact for 120 min, then filtered and the residual
concentration of Ag (I) in the solutions was determined by atomic absorption spectrometry, using a
Varian SpectrAAS 280 FS atomic absorption spectrophotometer (Varian, Palo Alto, California, SUA).
To determine the influence of the contact time and the temperature onto the adsorption process, the
contact time was varied between 30 and 240 min, at three temperatures (298 K, 308 K, and 318 K).
Studies were carried out with an initial solution of Ag (I) of 10 mg/L at pH ~2. The amount of material
used was ~0.1 g and the residual concentration of Ag (I) in the solutions was determined by atomic
absorption spectrometry. To determine the equilibrium concentration and the effect of the initial
concentration of Ag (I) on the adsorption capacity of the material, solutions of Ag (I) with different
concentrations were prepared (10, 50, 75, 100, 150, 200, 300, 400, 500, and 600 mg/L) for chitosan and
for the Ch-DDTPPBr (10, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, and 900 mg/L). These were
obtained by dilution from a stock solution of 1000 mg/L AgNO3. Adsorption was performed at a pH
~2 for 1 h and at 298 K.

Two kinetic models were used for the kinetic studies: the pseudo-first-order, proposed by
Lagergren [30] and the pseudo-second-order kinetic model, proposed by Ho and McKay [31].

The thermodynamic parameters: Gibbs free energy (∆G◦), enthalpy (∆H◦), and the entropy (∆S◦).
At the same time, the activation energy was determined, Ea were established [32].

To determine the maximum adsorption capacity of the Ch-DDTPPBr material comparatively
with Ch, the experimental data was modeled using the Langmuir [33], Freundlich [34], and Sips
isotherm [35].

2.4. Silver Recovery

After the adsorbent is exhausted, it will contain a considerable amount of Ag (I). For the recovery
of Ag (I), the exhausted material was decomposed at 600 ◦C, for 240 minutes, with a heating speed of
5 ◦C /min, using a controlled atmosphere furnace (Nabertherm LHT407GN Furnaces, Nabertherm,
Lilienthal, Germany). The sample obtained after the decomposition was analyzed through scanning
electron microscopy (SEM, FEI, Hillsboro, Oregon, SUA) and X-ray energy dispersion (EDX) using a
FEI Quanta FEG 250 scanning electron microscope (FEI, Hillsboro, Oregon, SUA).
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3. Results and Discussions

3.1. Characterization of the Synthesized Materials

3.1.1. Scanning Electron Microscopy (SEM) and X-Ray Energy Dispersion Spectroscopy (EDX).

To highlight that the adsorbent (Ch) was functionalized through impregnation with the DDTPPBr
extractant, obtained material was characterized by scanning electron microscopy, SEM (Figure 2a),
and X-ray energy dispersion spectroscopy, EDX (Figure 2b). From the EDX analysis we can observe
characteristic peaks of the specific elements of the support, C, N, and O and also peaks characteristic to
the extractant (DDTPPBr (P)).
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3.1.2. Fourier-Transform Infrared Spectroscopy, FT-IR

The main objective of the FT-IR spectroscopy is to determine the functional groups of the two
materials, but in particular it highlights the specific extractant DDTPPBr specific groups, used to
functionalize by impregnation the support, Ch.

From the FT-IR spectra of the two materials, we can observe similarities, such as: around the
wavelength of 3440 cm−1 was observed a band that is specific to the stretching vibration of the O–H
group, followed by the vibrations specific to the aliphatic group –C–H which occurs at 2900 cm−1.
Around the wavelength of 1600 cm−1 the peak specific to the vibrations of the C=O group was observed
and at the wavelength of 1500 cm−1 appears a specific peak of the N–H bond. All of these vibrations
are specific for the solid support, Ch [36].

From the Ch-DDTPPBr FT-IR spectrum presented in Figure 3b, two peaks can be seen around
the wavelength of 1249 cm−1 and 1317 cm−1 which are specific to the P=O group noticed in the
extractant (dodecyl-triphenyl-phosphonium bromide) that functionalized the chitosan. Also, the peaks
corresponding to the wavelengths of 1053 cm−1, 1107 cm−1, 1161 cm−1, and 1174 cm−1 are specific to
the vibration of the P–O–C bond present in aryl phosphate compounds [37].
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3.2. Adsorption Studies

3.2.1. Influence of the pH on the Adsorption Process

It is known that the pH is one of the most important factor that influences the adsorptive processes.
This is due to the influence of the H+ concentration in the solution, which can influence the chemistry
of the Ag (I) solution, as well as the protonation of the present functional groups, such as phenyl, or
phosphonium. Figure 4 shows the influence of the pH of the aqueous solution with Ag (I) ions on the
adsorption capacity of the materials.
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It can be seen from Figure 4 that the adsorption of Ag (I) is influenced throughout the studied
pH range, 2–12, but it can be observed that at pH > 5 the active groups have been protonated and are
available to be easily complexed by Ag (I) ions [38,39].
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3.2.2. The Influence of the Time of Contact and Temperature on the Adsorption Process

In adsorption processes, contact time, and temperature are the two important parameters. Thus,
the influence of the contact time and the temperature on the adsorption capacity of the studied materials
is presented in Figure 5.Materials 2018, 11, x FOR PEER REVIEW  6 of 15 
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From the experimental data it is observed that along with increase of the contact time, the
adsorption capacity of the two materials also increases, until it reaches a certain time of contact (~120
min), after which the adsorption capacity remains approximately constant. Also, it is noted that the
material Ch-DDTPPBr has a higher adsorption capacity than that of Ch, ~2.4 mg/g compared to ~2
mg/g. It is also noticed that with the increase of temperature, the adsorption capacity of the materials
also increases, but it is insignificant, economically speaking.

3.3. Kinetic Studies

For the kinetic studies, two kinetic models were used: pseudo first-order proposed by
Lagergren [30] and the pseudo second-order kinetic model, proposed by Ho and McKay [31]. The
pseudo first-order equation can be expressed as follows:

dqt

dt
= k1

(
qe − qt

)
, (2)

where: qe and qt are the adsorbed amounts of silver per unit mass of Ch-DDTPPBr at equilibrium and
time t respectively, and k1 is the adsorption rate constant for pseudo first-order adsorption.

The qt at different times t can be determined by the following pseudo first-order kinetic equation
after integrating:

ln (qe − qt) = ln qe − k1t. (3)

The pseudo second-order kinetic model can be presented with the following equation:

dqt

dt
= k2

(
qe − qt

)2
, (4)

where k2 is the rate constant for the pseudo second-order adsorption.
By linearizing this equation, we obtain:

t
qt

=
1

k2q2
e
+

t
qe

. (5)

The linear variants of the two models are used for the modeling of the experimental data.
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The velocity constant for the pseudo first-order kinetic model is determined from the linear
representation of ln(qe − qt) versus time (Figures 6a and 7a), and the velocity constant for the pseudo
second-order is estimated from the linear representation of t/qt versus time (Figure 7a,b). Depending
on the values of the constants and the regression coefficients (R2) obtained (Table 1), the kinetic model
that best describes the adsorption process can be established.Materials 2018, 11, x FOR PEER REVIEW  7 of 15 
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Table 1. Kinetic parameters for adsorption of Ag (I) on the adsorbent materials.

Parameter qe,exp,
mg/g

Pseudo-first Order Pseudo-second Order

Temp., K qe,calc,
mg/g

k1,
min−1 R2 qe,calc,

mg/g
k2,

min−1(mg/g)−1 R2

Chitosan (Ch)

298 1.98 1.46 0.0078 0.7691 2.04 0.2937 0.9739
308 2.17 1.70 0.0120 0.9415 2.30 0.3734 0.9909
318 2.26 1.72 0.0019 0.9030 2.32 0.5124 0.9905

Ch-DDTPPBr

298 2.29 1.28 0.0049 0.8663 2.43 0.6877 0.9981
308 2.43 1.44 0.0067 0.9019 2.53 1.0604 0.9996
318 2.46 1.25 0.0079 0.9187 2.63 1.4135 0.9997
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Analyzing the kinetic parameters associated with the pseudo first-order kinetic model, presented
in Table 1, and more precisely the regression coefficient, which presents values far from 1, being
between 0.76 and 0.90 for Ch, and between 0.86 and 0.91 for Ch-DDTPPBr, it can be stated that this
model does not accurately describe the adsorption process of Ag (I) on the two studied materials.
Simultaneously, based on the pseudo first-order kinetic model the adsorption capacities were also
evaluated (qe, qcalc), whose values differ greatly from the experimentally obtained results (qe, qexp).

Subsequently, the experimentally obtained data were modeled using the pseudo second-order
kinetic model, in order to establish if this model better describes the adsorption process. The linearized
forms of the pseudo second-order kinetic model graphically represented in Figure 7a,b are obtained by
graphically representing the dependence t/qt versus time for the two studied materials at three different
temperatures. Analyzing the kinetic parameters presented in the previous table and more precisely
the regression coefficient R2, which is very close to a unit value (1), it can be stated that the pseudo
second-order kinetic model describes very well the adsorption process of Ag (I). Also, in support of this
affirmation comes the fact that, the values obtained from the calculation of the adsorption capacity (qe,
qcalc), are very close to the experimentally obtained values (qe, qexp). This is based on the hypothesis
that in the process of Ag (I) recovery on both of the materials, the determining step is a physical process
and takes place through the formation of physical links between the substrate and Ag (I) ions [31,40].

3.4. Thermodynamic Studies

The effect of the temperature on the adsorption process of Ag (I) on Ch and Ch – DDTPPBr was
also studied. As the temperature increases, the adsorption capacity of the material increases, so we can
say that the process is endotherm. Specific thermodynamic parameters: Gibbs free energy (∆G0), free
enthalpy (∆H0), and the free entropy (∆S0) were calculated with the following relations:

∆G0 = −RTlnKd, (6)

where,

Kd =
CAe

Ce
, (7)

log Kd =
∆S0

2.3 R
−

∆H0

2.303 RT
. (8)

where:

R is the gas constant,
Kd is the equilibrium constant,
T is the temperature (K),
CAe is the equilibrium concentration Ag(I) on adsorbent (mg/L), and
Ce is the equilibrium concentration of Ag(I)in the solution (mg/L).

The thermodynamic parameters for the studied adsorption process are evaluated from the slope
and intercept of linear dependence of lnKd vs. 1/T, plot shown in Figure 8. Values of thermodynamic
parameters obtained for Ag(I) adsorption on the studied materials are presented in Table 2.
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Table 2. Thermodynamic parameters for adsorption of Ag(I) on the adsorbent materials.

Materials
∆H◦,

kJ/(mol)
∆S◦,

kJ/(mol·K)
∆G◦, kJ/mol

R2

298 K 303 K 308 K

Ch 31.4 0.106 −0.36 −1.42 −2.24 0.9993
Ch-DDTPPBr 81.8 0.284 −2.84 −5.68 −8.52 0.9974

The negative values of the Gibbs free energy suggest that the adsorption of Ag(I) on the studied
materials occurs spontaneously. Also, the decrease of the Gibbs free energy with temperature decrease
shows that the adsorption process of Ag (I) is favored by higher temperatures. The positive values of
the standard enthalpy variation confirm that the process is endothermic; this fact is also supported
by the slight increase of the adsorption capacity at equilibrium and the pseudo second-order velocity
constant (k2) with the increase of the temperature. According to the data from the literature, if ∆H◦ is >

20 kJ/mol, the process can be considered of a physical–chemical nature, for Ch and of chemical nature
for Ch-DDTPPBr, having ∆H◦ > 40 KJ/mol [39]. The standard entropy variation has positive values
which suggests that the adsorption causes a higher disorder at the liquid/solid interface. However, the
values of the standard entropy variation are small, indicating that no major changes occur.

3.5. Activation Energy

Activation energy Ea was calculated using the Arrhenius equation and the velocity constant of
the pseudo second-order kinetic model (k2), constant which is specific to the adsorption process of the
metal ions on the obtained materials by chemically modifying the support through functionalization
with pendant groups.

lnk2 = lnA − Ea RT, (9)

where:

k2—velocity constant (g/min·mg)
A—Arrhenius’s constant (g·min/mg)
Ea—activation energy (kJ/mol)
T—absolute temperature (K)
R—ideal gas constant (8.314 J/mol·K)

The activation energy of the adsorption of different metals on the functionalized support is
calculated from the equation of the graphical representation of ln k2 versus 1/T (Figure 9).
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For the studied adsorption processes, the activation energy has a value of 21.8 kJ/mol for the
adsorption of Ag (I) on Ch, with a correlation coefficient of 0.9904, and 28.4 kJ/mol for the adsorption of
Ag (I) on the Ch-DDTPPBr with a correlation coefficient of 0.9925. Based on the value of the activation
energy it can be concluded that the adsorption Ag (I) on the studied materials is a physical adsorption
because the value of the activation energy is bigger than 8 kJ/mol [41,42].

3.6. Equilibrium Studies—Adsorption Isotherms

The adsorption isotherms are very important for the analysis of the adsorption process. In order
to describe the adsorption mechanism of Ag (I) on the Ch and Ch-DDTPPBr materials, Freundlich,
Langmuir, and Sips models were used.

Langmuir isotherm is applied for adsorption on homogeneous surfaces [43–45]. The nonlinear
expression of Langmuir’s equation isotherm [33] can be expressed as follows:

qe =
qmaxKLC f

1 + KLC f
, (10)

where:

qe—the maximum absorption capacity (mg/g)
Cf—the equilibrium concentration or final concentration of Ag(I) in solution (mg/L)
qmax—Langmuir maximum adsorption capacity (mg/g)
KL—Langmuir constant.

The Freundlich isotherm can be applied to heterogeneous adsorption surface [44,46]. The nonlinear
form of the Freundlich isotherm equation [34] is:

qe = KFC
1

n f

f , (11)

where:

qe—the maximum absorption capacity (mg/g)
Cf—the equilibrium concentration or final concentration of Ag (I) in solution (mg/g)
KF and nf—the characteristic constants that can be related to the relative adsorption capacity of the
adsorbent and the intensity of adsorption.
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The Sips isotherm is a combined form of the two models previously presented. The nonlinear
expression of the Sips isotherm [35] is:

qe =
qsKsC

1
ns
e

1 + KSC
1

ns
e

, (12)

where:

qS—the maximum absorption capacity (mg/g)
KS—constant related to the adsorption capacity of the adsorbent
nS—the heterogeneity factor.

Figure 10 presents the three equilibrium isotherms, and Table 3 presents the parameters of the
equilibrium isotherms for the adsorption of Ag (I) on the two adsorbent materials.
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Figure 10. Isotherm model for adsorption of Ag (I) on the adsorbent materials (a) Ch; (b) Ch-DDTPPBr.

Table 3. Parameters of isotherm model for adsorption of Ag(I) on the adsorbent materials.

Materials
qm,exp,
mg/g

Freundlich Isotherm Langmuir Isotherm Sips Isotherm

KF,
mg/g 1/nf χ2 KL,

L/mg
qL,

mg/g χ2 Ks
qs,

mg/g 1/ns χ2

Ch 75.34 4.59 0.51 1.51 0.011 100.8 0.02 0.0026 85.40 3.9 0.13
Ch-DDTPPBr 103.6 6.81 0.46 1.69 0.009 135.8 0.01 0.0061 113.7 2.1 0.08

It can be noted that, along with the increase of the initial concentration of the Ag (I) solution,
the maximum adsorption capacity of studied adsorbent material increases. So, for Ch material it
is qm,exp = 75.34 mg/g for an initial Ag (I) concentration of 400 mg/L, and for Ch-DDTPPBr qm,exp

= 103.6 mg/g for an initial Ag (I) concentration of 700 mg/L. From the obtained data it is observed
that the highest adsorption capacities were obtained with the Ch-DDTPPBr material, which confirms
that the functionalized chitosan with pendant groups considerably raises on the qualities of the
adsorbent material.

The values of the heterogeneity factor 1/nf are between 0.4 and 0.51 and their deviation from the
value of 1 indicates that the surface of the obtained adsorbent material is heterogeneous. The data
from Table 3 indicates that for the adsorption of Ag (I), regardless of the nature of the used adsorbent
material, the Freundlich isotherm has the lowest regression coefficient (R2), suggesting that this model
is not accurately describing the adsorption process of Ag onto studied chitosan materials. The Sips
model has higher values for the regression coefficient (R2). This fact indicates that this isotherm best
correlates with the experimental data.
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Table 4 presents a comparison between the maximum adsorption capacities obtained for silver
recovery when different materials were used as adsorbents. Based on the data presented in Table 4 it
can be noticed that the new produced material (Ch-DDTPPBr) represents a useful adsorbent for silver
recovery from diluted solutions.

Table 4. Comparison of maximum adsorption capacities obtained for different adsorbents.

Absorbents Maximum Adsorption
Capacities References

CMC/CMCTS and SSS powder hydrogel 0.451 mg Ag(I)/g [38]
Grapefruit peels, GP 10.92 mg Ag(I)/g [47]

Grapefruit peels modified with urea, GPU 66.83 mg Ag(I)/g [47]
Grapefruit peels modified with melamine, GPM 28.05 mg Ag(I)/g [47]

Biosolids biochar 43.9 mg Ag(I)/g [1]
Stillage residue biochar 23.0 mg Ag(I)/g [48]

Coconut shell activated carbon 55.0 mg Ag(I)/g [49]
Chitosan, Ch 75.34 mg Ag(I)/g This paper

Chitosan functionalized with
dodecyl-triphenyl-phosphonium bromide,

Ch-DDTPPBr
103.6 mg Ag(I)/g This paper

3.7. Silver Recovery

After adsorption process, the used adsorbent material with silver content was the subject of a
thermal decomposition carried out in controlled atmosphere at 600 ◦C for 240 min. Such thermal
treatment has been carried out in order to recover metallic silver from exhausted material. The sample
obtained after the decomposition of the exhausted Ch-DDTPPBr was characterized by scanning electron
microscopy (SEM) (Figure 11a) and X-ray energy dispersion (EDX) (Figure 11b).
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Figure 11. Scanning electron microscopy and X-ray energy dispersion in order to highlight the obtaining
of metallic silver (a) SEM; (b) EDX.

The images obtained by SEM provide information regarding the particle morphology and the
distribution of the silver particles in the ash. From analysis of recorded SEM pictures it has been
observed that the silver particles obtained after the thermal decomposition present a relative uniform
distribution in the ash. The EDX analysis highlights the presence of silver in the resulted ash, after the
decomposition of the exhausted material. The other elements in the composition of the ash along with
silver are ash-specific elements. Metallic silver was further recovered from ash by leaching in order to
remove all other components.
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From the presented data it can be concluded that the silver can be recovered from the
exhausted material.

4. Conclusions

The experimental results, at a laboratory scale, obtained in this study showed that
the new obtained material through functionalization of chitosan with the active groups of
dodecyl-triphenyl-phosphonium bromide, DDTPPBr, shows an increased efficiency for the removal of
Ag (I) from aqueous solutions, compared to the unfunctionalized chitosan. The maximum adsorption
capacity of the material was 103.6 mg Ag (I)/g, for a maximum concentration of Ag (I) of 700 mg/L,
compared to unfunctionalized chitosan, which has a maximum adsorption capacity of 75.34 mg Ag (I)/g.
The contact time required for the adsorption process was 120 min. The process runs with maximum
efficiency at a pH > 6. The adsorption mechanism is also supported by the kinetic, thermodynamic,
and equilibrium studies. Thus, the adsorption process is subjected to pseudo second-order kinetics,
and the isotherm that best describes the adsorption is the Sips isotherm. Adsorptive process is
spontaneous, and the adsorption is carried out by physical interactions between the metal ion and the
active centers of the material, in the case of Ch-DDTPPBr and physical–chemical interactions for the
unfunctionalized Ch.

The proposal for the recovering process of the metallic silver from the exhausted material is
another target of this study. Metallic silver can be recovered through incinerating the exhausted
material at 600 ◦C, which then can be used in different industrial fields such as: electronics, medicine,
dentistry, jewelry, chemical industry or to obtain materials with anti-corrosive properties, etc.
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