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Abstract

Currently, machine-learning algorithms have been considered the most promising

approach to reach a clinical diagnosis at the individual level. This study aimed to

investigate whether the whole-brain resting-state functional connectivity (RSFC)

metrics combined with machine-learning algorithms could be used to identify essen-

tial tremor (ET) patients from healthy controls (HCs) and further revealed ET-related

brain network pathogenesis to establish the potential diagnostic biomarkers. The

RSFC metrics obtained from 127 ET patients and 120 HCs were used as input fea-

tures, then the Mann–Whitney U test and the least absolute shrinkage and selection

operator (LASSO) methods were applied to reduce feature dimensionality. Four

machine-learning algorithms were adopted to identify ET from HCs. The accuracy,

sensitivity, specificity and the area under the curve (AUC) were used to evaluate the

classification performances. The support vector machine, gradient boosting decision

tree, random forest and Gaussian naïve Bayes algorithms could achieve good classifi-

cation performances with accuracy at 82.8%, 79.4%, 78.9% and 72.4%, respectively.

The most discriminative features were primarily located in the cerebello-thalamo-

motor and non-motor circuits. Correlation analysis showed that two RSFC features

were positively correlated with tremor frequency and four RSFC features were nega-

tively correlated with tremor severity. The present study demonstrated that combin-

ing the RSFC matrices with multiple machine-learning algorithms could not only

achieve high classification accuracy for discriminating ET patients from HCs but also

help us to reveal the potential brain network pathogenesis in ET.
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1 | INTRODUCTION

Essential tremor (ET) is one of the most prevalent movement disor-

ders and is clinically characterized by kinetic or postural tremor in

bilateral upper limbs (Reich, 2019). Although growing evidence

pointed out that abnormalities in the cerebello-thalamo-cortical path-

way were related to ET patients (Nicoletti et al., 2020), the etiology,

pathology and brain network pathogenesis mechanisms underlying ET

are still surprisingly enigmatic. Due to the lack of objective neurobio-

logical biomarkers, clinicians rely primarily on clinical symptoms to

diagnose ET and conventional magnetic resonance imaging (MRI) is

usually performed to rule out other tremor diseases, such as stroke

and head trauma causing the tremor.

Over the past decade, resting-state functional MRI (Rs-fMRI) with

blood oxygenation level-dependent (BOLD) signal has emerged as the

most promising method to study brain network pathogenesis mecha-

nisms in various neurologic diseases, including neurodegenerative dis-

eases and ET. Using seed-based functional connectivity (FC) (Fang

et al., 2016), local FC (Fang et al., 2013), global FC (Tsuboi et al., 2021)

and graph theory (Benito-Leon et al., 2019) analysis of Rs-fMRI, our

previous studies and those of other scholars have revealed that FC or

brain network topological properties changes in the cerelobello-tha-

lamo-cortical network were associated with ET patients. However, all

these above studies were traditionally mass univariate analyses at the

group level that could not be used to diagnose individual ET patients.

Fortunately, this shortage has been complemented by machine-

learning algorithms (Pereira et al., 2009). It can establish optimal

models for classification by learning and training from a large-scale

complex input dataset and the model is a tool to infer the label of a

new single subject (Norman et al., 2006). Using brain gray matter vol-

ume and cortical thickness as input features, machine-learning algo-

rithms could achieve good classification performance to identify

orthostatic tremor from ET with an accuracy of 100% (Benito-Le�on

et al., 2019). Another research employing cerebellar gray matter vol-

umes and cerebellar peduncles white matter volumes as input features

could discriminate ET from healthy controls (HCs) with a test accuracy

at 86.66% (Prasad et al., 2019). However, up till now, using the

resting-state FC (RSFC) matrices as input features for machine-learning

algorithms to discriminate ET from HCs has not been investigated.

In the present study, we combined RSFC matrices with multiple

machine-learning algorithms to explore whether whole-brain RSFC

values could serve as high-power discriminating features for identifying

ET from HCs. We hypothesized that these multiple machine-learning

algorithms could achieve good classification performances, and these

significant discriminative features would further help us understand

the underlying brain network pathogenesis mechanisms in ET patients.

2 | METHODS AND MATERIALS

2.1 | Participants and clinical evaluation

All ET patients included in this study were recruited at the movement

disorders outpatient clinic of the First Affiliated Hospital of

Chongqing Medical University. HCs were recruited from the local area

through an open advertisement, and evaluated by experienced neurol-

ogists. All participants underwent medical history collection, neuro-

psychiatric evaluation, and MRI scans. The inclusion criteria for

subjects were as follows: (1) ET patients were diagnosed by two

movement specialists (OM C, and Z X) in terms of the 2018 Consen-

sus Criteria of the Movement Disorder Society (Bhatia et al., 2018),

and all ET patients had annual follow-ups through the outpatient

department or by telephone; (2) the patients had an onset age

between 18 and 55 years old, and patients with earlier or later onset

were not included; (3) the patients were without any apparent cogni-

tive impairment (Mini-Mental State Examination [MMSE] scores >24)

and were right-handed; (4) the patients presented with moderate or

greater amplitude kinetic tremor (tremor rating ≥2 during at least

three tests); (5) patients were excluded in this study if they complied

with the diagnosis of Parkinson's disease (PD), secondary causes of

PD (such as Parkinsonism), dystonia, and tremor of other origins (such

as stroke, tumor and trauma); (6) HCs were excluded if they had any

neurologic illness or reported having a first-degree or second-degree

relatives with ET or PD; (7) all subjects with apparent brain vascular or

structural changes defected on T2- or T1-weighted images were dis-

carded; and (8) all subjects met the image quality and head motion

control criteria (see Supporting Information). Finally, a total of 127 ET

patients and 120 age- and sex-matched HCs were recruited.

Tremor severity was assessed with the Fahn-Tolosa-Marin

Tremor Rating Scale (FTM-TRS) (Fahn et al., 1993). This scale is com-

posed of three parts: TRS part A, B and C. The TRS parts A and B

were used primarily for the evaluation of tremor severity, location and

the drawing and writing function of hand. The TRS-C was assessed

via self-evaluation to evaluate the quality of life for ET patients. Con-

sidering a ceiling effect for severe tremor while tremor amplitude

>4 cm for the TRS scale, the Essential Tremor Rating Assessment

Scale (TETRAS) (Elble et al., 2012) was also adopted to assess tremor

severity in our study. We also recorded the tremor frequency index

from electromyography examination in ET patients. Mini-Mental State

Examination (MMSE), 17-item Hamilton Depression Rating Scale

(HDRS-17) and the Hamilton Anxiety Rating Scale (HARS-14) were

used to briefly assess the cognitive function and mood status of all

the participants, and exclude the subjects with dementia (MMSE <24),

depression (HDRS-17 > 7) and anxiety (HARS-14 > 7).

2.2 | Image data acquisition and data
preprocessing

All MR images were acquired using a GE Signa Hdxt 3-T scanner

(General Electric Medical Systems, Waukesha, WI) equipped with a

standard eight-channel head coil. Rubber earplugs were used to

reduce noise, and foam cushioning was used to reduce motion arti-

facts. During the scan time, the subjects were required to close their

eyes, but not to fall asleep, and to relax their minds and move as little

as possible. The resting-state functional images were collected using

an echo-planar imaging (EPI) pulse sequence with the following

parameters: 33 axial slices, slice thickness/gap = 4.0/0 mm,
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matrix = 64 � 64, TR = 2000 ms, TE = 40 ms, flip angle = 90�,

FOV = 240 � 240 mm, and a total of 240 volumes were obtained

(duration = 8 min). High-resolution 3D T1-weighted images

(TR = 8.3 ms, TE = 3.3 ms, flip angle = 15�, slice thickness/

gap = 1.0/0 mm, FOV = 240 � 240 mm, and matrix = 256 � 192)

and T2-weighted FLAIR images (TR = 8000 ms, TE = 126 ms,

TI = 1500 ms, slice thickness/gap = 5.0/1.5 mm,

FOV = 240 � 240 mm, and matrix = 256 � 192) were also acquired.

We did not use the T2-weighted FLAIR images for data processing,

but they were used for image evaluation and data quality assessment.

All functional imaging data preprocessing was performed using

the Statistical Parametric Mapping (SPM12; www.fil.ion.ucl.ac.uk/

spm) and Data Processing Assistant for Resting-State fMRI (DPARSF;

http://rfmri.org/DPARSF) programs operated on the Matlab platform.

Preprocessing of the Rs-fMRI data was performed as follows:

(1) removal of the first 10 time points. For scanner stabilization and

the acclimation of subjects to the MR scanning environment, the first

10 volumes were discarded, and the remaining 230 time points were

included in the subsequent data preprocessing; (2) slice timing correc-

tion. This was used to correct for a different acquisition time across

slices in a volume; (3) realignment. This was used to realign the subse-

quent functional images to the first volume to correct for within-run

head motions, resulting in Friston's 24 head motion parameters. These

parameters were employed to assess the head movement and ensure

the quality of Rs-fMRI data; (4) T1 segmentation and spatial normali-

zation. The T1 images were co-registered to the mean Rs-fMRI data

for each subject. Specifically, 3D T1-weighted images were seg-

mented into gray matter (GM), white matter (WM) and cerebrospinal

fluid (CSF) probability maps using SPM DARTEL segmentation. All the

GM, WM and CSF images were resampled to isotropic 1.5-mm voxels,

spatially normalized to the MNI space using both affine transforma-

tion and non-linear deformation, and later, resampled to isotropic

3-mm voxel resolution with Rs-fMRI, and the deformation field was

applied to the Rs-fMRI data; (5) regressing out Friston's 24 head

motion parameters (Yan et al., 2013) and the mean time series of

global, WM and CSF signals; (6) spatial smoothing with a Gaussian

kernel of 4 mm full width at half maximum, and (7) detrending and fil-

tering. These steps removed the extremely low-frequency drift and

the high-frequency physiological noises. For detrending, we used

first-order polynomial functions; and for filtering, we adopted band-

pass filtering (0.01 Hz � 0.08 Hz) to the time series for each voxel. FC

analysis was based on the pre-processed images.

2.3 | Regions of interest and connectivity matrices

Previous studies have demonstrated that the subregions of the thala-

mus are associated with tremor in ET patients. For this reason, an

automated anatomical labeling atlas 3 (AAL3) with thalamus parcella-

tion was used to define the regions of interest (ROI) in our study

(Rolls et al., 2020). However, some structures in the AAL3 atlas (reso-

lution: 1 � 1 � 1 mm) are so small (such as the right thalamic nucleus

reuniens and ventral tegmental area) that they could not be identified

in the Rs-fMRI images (resolution: 3 � 3 � 3 mm). Meantime, only

ROIs >95% of voxels contained BOLD signal in >95% participants

were included, and finally, 164 ROIs were defined. The mean time

courses of the 164 ROIs were extracted. Then, Pearson correlation

analysis was performed on the time series of each pair of ROIs, and a

Fisher transformation was performed. Finally, for each subject 164 �
(164–1)/2 = 13,366 FC values were obtained to act as input features.

2.4 | Feature selection

As the dimension of 13,366 features is so high, to avoid model over-

fitting and the curse of dimensionality, the feature dimension reduc-

tion was performed (Zhu et al., 2010). First, we randomly divided all

subjects into a training set (70%, 172 subjects) and a testing set (30%,

75 subjects). Then, we performed a Mann–Whitney U test to compare

each feature between ET patients and HCs, and features with p value

less than .01 were retained. Finally, we further applied a least absolute

shrinkage and selection operator (LASSO) regression model to choose

the most important features for classification (Tibshirani, 1996). The

LASSO performed both regularization and variable selection that com-

presses high-dimensional data by shrinking coefficients for weaker

predictors toward zero and dropping variables from the model when

their coefficients reach zero. A penalty term (jβij) is added to the linear

regression model in LASSO which can shrink coefficients toward zero

(L1 regularization). As the penalty term increases, the LASSO sets

more coefficients to zero. The loss function of LASSO is as follows:

L¼
Xn

i¼1

yi� ŷið Þ2þ λ
Xp

j¼1

jβjj ð1Þ

The penalization parameter λ was tuned under the criterion of mini-

mal mean squared error (MSE) to construct the optimal subset of fea-

tures via a fivefold cross-validated grid-search approach. Features

with non-zero coefficients in the LASSO regression model were

selected to train the classification model.

2.5 | Model fitting and validation

In this study, four classification algorithms namely support vector

machine (SVM), random forest (RF), gradient boosting decision tree

(GBDT) and Gaussian naïve Bayes (GNB) were employed to identify

ET from HCs. SVM is a representative supervised machine-learning

algorithm which has been commonly used to solve the classification

of neurodegenerative diseases (Cortes & Vapnik, 1995). In this study,

the optimal kernel function and two hyperparameters of the SVM (the

regularization parameter C and kernel width parameter γ) were tuned

by the grid search approach. We identified the optimal parameter

combination with the highest accuracy during 10-fold cross-validation

and applied this to the final model using the best parameter combina-

tion onto the testing set.

Two common types of tree-based models are gradient boosting

decision tree and random forest algorithms. The random forest classi-

fier is an ensemble method integrating all decorrelated trees to create
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a final classifier (Breiman, 2001). In a random forest, there is no asso-

ciation between multiple independent decision trees. When a new

input sample enters, it will be judged by each decision tree. At last,

the classification result of the random forest is determined by the

majority of prediction results voted on all decision trees. The gradient

boosting decision tree is an iterative decision tree algorithm that is

composed of multiple classification decision trees (Li et al., 2020). It

achieves the purpose of classification by adopting an additive model

and constantly reducing the residuals generated in multiple iterations.

The random forest improves the performance of classification model

by reducing its variance, while the gradient boosting decision tree

improves the performance of model by decreasing its bias. In imple-

menting the tree-based models, parameters were optimized for the

maximum iteration number and the minimum number of samples

required to split an internal node. We set the maximum number of

features default value of max_features = “auto,” meaning that all fea-

tures for a split could be used. Naive Bayes classifier is a supervised

learning method based on Bayes' theorem with a naïve assumption of

independence between each pair of features. Given a class variable

Y and a dependent feature vector X1 through Xn, we can get Equa-

tion 2 using Bayes' formula:

P YjX1, …, Xnð Þ¼P Yð ÞP X1, …, XnjYð Þ
P X1, …, Xnð Þ ð2Þ

Different naive Bayes classifiers make different assumptions regarding

the distribution of P(XijY). We used the Gaussian Naive Bayes in this

study, which assumed the features had a Gaussian distribution

(Equation 3):

P XijYð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2Y

q e
� Xi�μYð Þ2

2σ2
Y ð3Þ

When training the models, we conducted hyper-parameters tuning

using grid-search to discover the combination of parameters that per-

formed best on the training set. The machine-learning workflow of

model construction and validation is shown in Figure S1. These

models were fitted using the training set and then assessed by apply-

ing the model to the testing set. Model performance was assessed

through the following metrics: accuracy, sensitivity, specificity and

area under the curve (AUC). As the random splitting of the datasets

produced the variation and sampling bias, we employed a nested

cross-validation method by further conducting 100 rounds of leave-

group-out cross-validation (LGOCV). Briefly, data were randomly split

into training and testing sets, with 70% of subjects used to train the

model, and 30% used to test the models' predictive accuracy. For each

classifier, we averaged AUC, accuracy, sensitivity and specificity

values from the 100 times repeated LGOCV, which were presented as

the means and standard deviations (mean ± standard deviation [SD]).

To determine whether the obtained accuracy and AUC values were

significantly higher than chance, we applied permutation tests

repeated 1000 times to evaluate the statistical significance of classifi-

cation performance. Specifically, the p value is computed as the

fraction of predicted classification accuracies, upon permutation, that

exceed the actual accuracy. Moreover, the classifier could be demon-

strated to have reliable learning performance if the p value was less

than .05. The above feature selection process, classification model

building and optimization were implemented in Python 3.8 using the

scikit-learn machine-learning library (version 1.0.2) (Abraham

et al., 2014).

2.6 | Statistical analysis

The Kolmogorov–Smirnov test (K-S test) was conducted to test the

normal distribution of continuous variables. The demographic and clin-

ical data between ET and HC were compared using the two-sample t-

test or Mann–Whitney U test as appropriate. All statistics were per-

formed using SPSS with a two-tailed p < .05 considered significant.

For any given two classification models, a statistically significant

Delong test result (p < .05) indicates that they are significantly differ-

ent. In order to investigate whether the significant discriminative RSFC

features were related to the clinical tremor characteristics, a partial

Pearson's correlation analysis was also conducted in the ET group.

3 | RESULTS

3.1 | Demographic characteristics

Table 1 shows the demographic and clinical information for all partici-

pants in this study. No significant difference was observed in terms of

gender, age, education level and HDRS-17 score between ET patients

and HCs, while a significant difference was detected for HARS-14

(p = .0004) and MMSE (p = .0450) between the two groups.

3.2 | Classification algorithms for ET and HC

The RSFC features were ranked based on selection frequency across

100 runs of 10-fold cross-validation. To better illustrate the differ-

ences in these selected features, we listed the RSFC features with

selection frequency more than 70 times and the respective connected

brain regions in the AAL3 template (Figure 1) and calculated the mean

and SD of the selected features between the ET and HC group,

respectively (Table 2). Therefore, the increasing or decreasing trend of

selected RSFC features between the two groups could be viewed at

the corresponding values. In addition, the brain regions related to

RSFC features are shown in Figure 2.

Table 3 summarizes the detailed performances of the four classifi-

cation algorithms. As we can see from the table, the performance of

SVM classifier is best and achieved an accuracy of 82.8%, sensitivity

of 83.7%, specificity of 81.9% and AUC of 0.902. GBDT achieved an

accuracy of 79.4%, a sensitivity of 79.3%, a specificity of 79.5% and

an AUC of 0.880 and RF achieved an accuracy of 78.9%, a sensitivity

of 80.0%, a specificity of 77.6% and an AUC of 0.864. The naïve

Bayes classifier model was less accurate (AUC, 0.793). To further
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assess the robustness of the four methods, the receiver operating

characteristic (ROC) curves were shown in Figure 3.

3.3 | Correlation between selected RSFC values
and clinical characteristics

The partial Pearson's correlation analysis demonstrated that six RSFC

features were significantly correlated with clinical tremor

characteristics. Detailed results of the correlation analysis are pre-

sented in Figure 4. The RSFC values in Thal_VPL_R-Precentral_R

(r = .56, p < .001) and Thal_VPL_L-Precentral_L (r = .44, p < .001)

were positively correlated with tremor frequency in ET patients. The

RSFC values between Thal_VPL_R-Cerebellum_3_R (r = �.42,

p < .001), Cerebellum_3_R-Precentral_R (r = �.44, p < .001),

Thal_VPL_L-Cerebellum_3_L (r = �.44, p < .001) and Thal_VPL_L-Cer-

ebellum_8_L (r = �.55, p < .001) were negatively correlated with TRS

part A&B scores in ET patients.

TABLE 1 Demographic and clinical
features of ET and HCs

Measure ET HCs Statistics p value

Demographic

Sample size 127 120 NA NA

Age (years) 45.96 ± 14.35 45.61 ± 12.66 T = 0.20 .8380

Gender (M:F) 59:68 68:52 Z = �1.48 .1390

Education (years) 13.02 ± 4.53 12.13 ± 4.77 T = 1.52 .1300

Handedness (R/L) 127:0 120:0 Z = 0.00 1.0000

Cigarette smoker 33 27 Z = �0.64 .5240

Clinical of tremor

Tremor onset (years) 33.51 ± 10.72 NA NA NA

Tremor duration (years) 12.45 ± 9.35 NA NA NA

Positive family history NA NA NA

Positive 37 NA NA NA

Negative 90 NA NA NA

Alcohol sensitivity NA NA NA

Positive 54 NA NA NA

Negative 30 NA NA NA

NA 43 NA NA NA

Tremor medication NA NA NA

Propranolol 27 (40.83 ± 19.07 mg) NA NA NA

Tremor symmetry NA NA NA

R = L 93 NA NA NA

R < L 11 NA NA NA

R > L 23 NA NA NA

Tremor frequency (Hz) 6.96 ± 2.30 NA NA NA

TRS-parts A&B 23.60 ± 7.94 NA NA NA

TRS-part C 13.00 ± 6.94 NA NA NA

TETRAS 21.33 ± 7.18 NA NA NA

TETRAS-ADL 13.55 ± 7.11 NA NA NA

Clinical (psychology and cognitive)

HDRS-17 2.17 ± 1.22 2.13 ± 1.33 T = 0.20 .8440

HARS-14 2.91 ± 1.16 2.48 ± 1.76 T = 3.592 .0004

MMSE 28.71 ± 1.27 29.03 ± 1.26 T = �2.02 .0450

Head movement

FD_power (mm) 0.01 ± 0.06 0.01 ± 0.06 T = 0.74 .4620

Scrubbed volumes 15.08 ± 7.83 15.47 ± 9.36 T = �0.36 .7230

Abbreviations: ET, essential tremor; HARS-14, 14-item Hamilton Anxiety Rating Scale; HCs, healthy

controls; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination;

NA, not applicable; TETRAS, Essential Tremor Rating Assessment Scale; TETRAS-ADL, Essential Tremor

Rating Assessment Scale-Activities of Daily Living; TRS, Fahn-Tolosa-Marin Tremor Rating Scale.
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4 | DISCUSSION

To the best of our knowledge, we first combined RSFC matrices data

as input features with multiple machine-learning algorithms to identify

ET from HCs, and three main findings were gained: (1) All of the four

machine-learning algorithms achieved good classification perfor-

mance, and the SVM classifier gave the best classification perfor-

mance with overall accuracy, sensitivity, specificity and AUC value at

F IGURE 1 The 11 features with a selection frequency greater than 70 in 100 rounds of leave-group-out cross-validation

TABLE 2 Classification performance of different machine-learning algorithms on the testing set

Model ACC SEN SPE AUC

SVM 82.8 ± 3.8%a 83.7 ± 5.8% 81.9 ± 6.0% 0.902 ± 0.029a

RF 78.9 ± 4.9%a 80.0 ± 6.4% 77.6 ± 8.9% 0.864 ± 0.045a

GBDT 79.4 ± 4.7%a 79.3 ± 6.4% 79.5 ± 7.8% 0.880 ± 0.036a

GNB 72.4 ± 7.3%a 71.4 ± 9.9% 79.5 ± 7.8% 0.793 ± 0.074a

Abbreviations: ACC, accuracy; AUC, area under the receiver operator curve; GBDT, gradient boosting decision tree; GNB, Gaussian naïve Bayes; RF,

random forest; SEN, sensitivity; SPE, specificity; SVM, support vector machine.
ap < .05 under permutation test (1000 times).

F IGURE 2 The functional connectivity map of features with selection frequency greater than 70 in 100 rounds of leave-group-out cross-
validation. (a) The size of the node represents the number of connections that this brain area takes part in. The thickness of the lines between any
two nodes represents the feature selection frequency. (b) The labels on the circle denote the regions of interests in AAL3 atlas as nodes in
functional connectivity calculation. A red connecting line represents increased functional connectivity in essential tremor (ET), while a blue
connecting line represents decreased functional connectivity in ET compared with healthy controls
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82.8%, 83.7%, 81.9% and 0.902; (2) The high discriminative power

features were mainly located in the cerebello-thalamo-motor and

non-motor cortical pathway; and (3) Some of the main discriminative

features could be used to partially explain the clinical tremor

characteristics.

Although in the past few years, the mass-univariate RSFC analysis

has made substantial progress in revealing the brain network patho-

genesis in ET patients. The conventional univariate RSFC analysis

methods treat each brain region as an independent area. However,

these brain regions do not exist in isolation rather they are highly

interconnected to constitute brain state-specific functional networks

(Raichle & Mintun, 2006). Meantime, the RSFC images own a large

amount of quantitative information from thousands to millions of vox-

els. Due to the properties of high functional interconnectivity and high

dimension of the RSFC data, the univariate RSFC analysis results could

not be used to predict the individual ET patients, and it also was not

sensitive to reveal the spatial subtle distribution changes of these

RSFC metrics. Compared to mass-univariate analysis, machine-learning

algorithms have the merits of considering all potential interactions

without a predefined hypothesis and extracting new sets of data-

driven features from massive input quantitative information, which

overcomes the shortages of traditional univariate analysis (Pereira

et al., 2009). Consistent with these above machine-learning studies,

our results showed that the four machine-learning algorithms also

achieved good classification performance in identifying ET from HCs.

In our study, the high discriminative power RSFC features were

mainly located in the classical tremor network, including motor-related

cortices, motor-thalamus (ventral posterior lateral nucleus of the thal-

amus) as well as the cerebellum. However, it is still debated whether

the typical cerebello-thalamo-motor cortical pathway is associated

with tremor in ET patients (Lenka et al., 2017; Tsuboi et al., 2021).

Few studies supported that the FC changes did not only restrict to

the classical tremor network but also extended to other brain regions

(Tuleasca et al., 2020). Using visual feedback task fMRI (Archer

et al., 2018) analysis, studies showed that BOLD amplitude in visual

and parietal areas was associated with ET patients. Benito-Leon et al.

(Benito-Leon et al., 2019) pointed out that changes of the RS-fMRI

network organization in widespread brain regions including the

thalamo-visuo-motor, salience and other extra-motor networks were

related to ET patients. Our results seemed to be inconsistent with the

above studies, and we speculated that the following reasons may be

reasonable explanations. First, as an etiologically, clinically and patho-

logically heterogeneous disease, the heterogeneity of ET may yield

different conclusions from different researchers, especially for small

samples and absence of strict inclusion criteria. Second, the ventral

posterior lateral nucleus of thalamus cannot be identified in common

atlases such as the anatomical automatic labeling atlas (AAL), Harvard

Oxford atlas and Brainnetome atlas (BNA), and this leads to difficulty

in directly revealing the classical tremor network changes. Finally, all

the above studies also revealed BOLD signal or RS-fMRI network

organization changes in the typical tremor network. Therefore, our

results were in line with the previous studies indeed. Meantime, com-

pared with the previous studies, a large sample size (127 ET patients

and 120 HCs) and strict inclusion (the 2018 Consensus Criteria of the

Movement Disorder Society) were adopted in our studies. So, we

TABLE 3 The mean, standard
deviation (SD) and p value for selected
RSFC features (with greater than 70
times) in the ET group and HC groups
(ranked by the feature selection
frequency)

ID Features ET (mean ± SD) HC (mean ± SD) p value

1 Insula_L-Frontal_Mid_R 0.4541 ± 0.2136 0.3057 ± 0.2124 .0000

2 Lingual_L-Supp_Motor_Area_R 0.4212 ± 0.2145 0.3022 ± 0.2039 .0002

3 ACC_sub_R-Frontal_Sup_R 0.3865 ± 0.2544 0.2621 ± 0.1882 .0000

4 Thal_VPL_R-Precentral_R 0.3303 ± 0.4042 0.1373 ± 0.2478 .0003

5 Thal_VPL_L-Cerebellum_8_L 0.061 ± 0.2149 0.249 ± 0.2763 .0000

6 Cerebellum_3_L-Supp_Motor_Area_R 0.3774 ± 0.2118 0.4831 ± 0.2028 .0000

7 Thal_VPL_R-Cerebellum_3_R 0.1607 ± 0.2752 0.3791 ± 0.2801 .0001

8 ACC_sub_R-Frontal_Sup_L 0.4208 ± 0.2289 0.3054 ± 0.1694 .0033

9 Vermis_1_2-Precentral_L 0.3259 ± 0.2027 0.4307 ± 0.1992 .0000

10 Precentral_R-Precentral_L 0.7901 ± 0.1464 0.6729 ± 0.1695 .0001

11 Thal_VPL_L-Precentral_L 0.3536 ± 0.3745 0.1779 ± 0.2359 .0000

Abbreviations: ET, essential tremor; HC, healthy control; RSFC, resting-state functional connectivity.

F IGURE 3 The receiver operating characteristic (ROC) curves on
the testing set. AUC, area under the receiver operator curve; GBDT,
gradient boosting decision tree; GNB, Gaussian naïve Bayes; RF,
random forest; SVM, support vector machine; TPR, true positive rate;

FPR, false positive rate.
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suggest that the high discriminative power of RSFC features located

in the classical tremor network further reinforces the classical tremor

network pathogenesis theories in ET.

Furthermore, our results also presented that the high discrimina-

tive power RSFC features extended out the classical tremor network

including non-motor cortices, such as the anterior cingulate cortex

and frontal gyrus, etc. Growing evidence pointed out that the cerebel-

lum plays an important role in the pathophysiology of ET, and the

functional and neuroanatomical heterogeneity of the cerebellum

(Mavroudis et al., 2022; Rajput & Rajput, 2011; Schmahmann, 2010)

provide a reasonable explanation for the above results. In the pres-

ence of cerebellar dysfunction, it may not only present heterogeneous

clinical symptoms, including tremor and other motor and non-motor

disorders but also show the FC changes involved in cerebellar-motor

and non-motor circuits. Although we applied a rigorous inclusion and

obtained a highly homogeneous ET group by excluding ET patients

with severe cognitive impairment, anxiety and depression, it could not

fully eliminate the influence of the above non-motor symptoms in the

future, and even get rid of a compensatory state to prevent the devel-

opment of these non-motor symptoms.

Although our study had several strengths, we also acknowledged

some limitations. Firstly, all patients were collected from a single cen-

ter at the First Affiliated Hospital of Chongqing Medical University.

The classification models required further validation on larger multi-

center patient samples. Secondly, this study used only whole-brain

RSFC as input features to investigate whether a single indicator can

be used to identify ET from HCs. Additional studies incorporating mul-

tiple metrics of fMRI or structural MRI data may be needed to test out

the possibilities of multimodal machine learning in ET. Moreover,

because of the lack of clinical biomarkers, the diagnosis of ET is mainly

based on clinical symptoms. Therefore, to reduce the possibility of

misdiagnosis, all ET patients included in the study cohort were fol-

lowed up for more than 3 years and had electromyogram results for

auxiliary disease diagnosis.

F IGURE 4 Correlation of the RSFC values across the brain regions and clinical characteristics. Violin plots displaying the mean RSFC values in
the significant discriminative regions in the essential tremor (ET) and healthy control groups; scatter plots showing the correlation analysis in the
ET group. ***p < .001, **p < .01
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5 | CONCLUSION

In this study, we proposed a framework to uncover neuroimaging

markers of ET based on multiple supervised machine-learning algo-

rithms and achieved good classification performances for distinguish-

ing ET from HCs. Furthermore, the most discriminative power

features were not only confined to the typical motor networks but

also extended into non-motor networks, and these features would

help to understand the brain network pathogenesis mecha-

nisms in ET.
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