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Targeting JAK-STAT Signaling to Control
Cytokine Release Syndrome in COVID-19
Highlights
Recent advances in the pathophysio-
logic understanding of COVID-19 infec-
tion have suggested a critical role of
cytokine release syndrome (CRS) in se-
vere COVID-19 patients.

Several inflammatory cytokines that are
involved in CRS and correlate with ad-
verse clinical outcomes in COVID-19
employ a distinct intracellular signaling
pathway mediated by Janus kinases
(JAKs).

JAK-STAT signaling may be an excellent
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Recent advances in the pathophysiologic understanding of the severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) infection has indicated that pa-
tients with severe coronavirus disease 2019 (COVID-19) might experience
cytokine release syndrome (CRS), characterized by increased interleukin (IL)-6,
IL-2, IL-7, IL-10, etc. Therefore, the treatment of cytokine storm has been pro-
posed as a critical part of rescuing severe COVID-19. Several of the cytokines in-
volved in COVID-19 employ a distinct intracellular signaling pathway mediated
by Janus kinases (JAKs). JAK inhibition, therefore, presents an attractive thera-
peutic strategy for CRS, which is a common cause of adverse clinical outcomes
in COVID-19. Below, we review the possibilities and challenges of targeting the
pathway in COVID-19.
therapeutic target for the development of
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COVID-19 and Cytokine Release Storm
In December 2019, cases with a new type of viral pneumonia with unknown etiology occurred in
Wuhan, China. A novel coronavirus SARS-CoV-2was found to be a causal agent and the disease
was named COVID-19 [1]. With the number of confirmed cases and deaths rapidly expanding,
the COVID-19 pandemic is currently the focus of global attention.

Accumulating evidence indicate that patients with severe COVID-19 infection may present
with CRS [2] where, similar to the pathogenesis of severe acute respiratory syndrome (SARS)
and the Middle East respiratory syndrome (MERS), higher plasma levels of cytokines, including
IL-2, IL-6, IL-7, IL-10, granulocyte-colony stimulating factor (G-CSF), interferon-γ (IFNγ), macro-
phage inflammatory protein 1α (MIP1A), and tumor necrosis factor-α (TNF-α) were found in pa-
tients with severe COVID-19 [3,4]. Extensive changes in these cytokines are related to the
severity and prognosis of the disease [5]. Moreover, pathological findings from a patient who
died of severe SARS-CoV-2 infection revealed bilateral diffuse alveolar damage with cellular
fibromyxoid exudates, indicating acute respiratory distress syndrome (ARDS) [6]. These findings
suggested that CRS was involved in the progression of COVID-19.

COVID-19 induces a cytokine storm resembling the secondary hemophagocytic
lymphohistiocytosis (sHLH), which had previously been reported in patients with SARS [7].
sHLH is a potentially life-threatening complication of the hyperinflammatory syndrome, commonly
triggered by severe viral infections [8] and characterized by CRS, cytopenias, andmultiorgan dys-
function [9]. Apart from the elevated serum cytokines, aberrantly activated macrophages are also
a hallmark of sHLH and implicated as the source of the observed increased ferritin. Therefore,
sHLH is also known as macrophage activation syndrome (MAS) [10].

Zhou et al. retrospectively found that serum ferritin was also elevated in COVID-19 fatalities [11].
Giamarellos-Bourboulis et al. investigated the immune responses in COVID-19 patients with
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severe respiratory failure (SRF) and suggested that compared with typical bacterial community-
acquired pneumonia and sepsis, severe COVID-19 patients are admitted in a relatively good
clinical state but suffer from sudden deterioration of the clinical condition 7–8 days after the first
symptoms. The immune classification revealed that all patients with COVID-19-related SRF
have either immune dysregulation or MAS, both of which have overproduction of proinflammatory
cytokines [12]. They further revealed that increased absolute lymphocyte blood count was
observed in the six patients treatedwith the anti-IL-6R antibody, tocilizumab, which could partially
rescue the immune dysregulation state driven by SARS-CoV-2 [12]. These findings lead one to
opine that patients with COVID-19 who present with CRS- and sHLH-like serum cytokine
elevations may benefit from treatments that target IL-6/IL-6R signaling and other cytokine
signaling.

JAK-STAT Signaling Pathway in CRS
Cytokine and chemokine responses have been considered as a critical part of immunity and
immunopathology during pathogenic human coronaviruses infections [13]. Despite no direct ev-
idence indicating the involvement of proinflammatory cytokines and chemokines in the pathology
of COVID-19, the increased concentrations of the serum cytokines and chemokines were corre-
lated with the disease severity and adverse clinical outcome [3]. An elevated serum level of proin-
flammatory cytokines was reported in severe COVID-19 patients, including IL-2, IL-4, IL-6, IL-7,
IL-10, TNF-α, and IFNγ [3,11,14]. Among these, several cytokines employ one distinct intracellular
signaling pathway mediated by Janus kinases (JAKs) (Box 1) [15]. For example, IL-6, which has
been proven to act as a pivotal part in the CRS, activates the Janus kinase-Signal Transducer
and Activator of Transcription (JAK-STAT) signaling pathway to confer various biological functions,
including immune regulation, lymphocyte growth and differentiation, oxidative stress, and so on
(Figure 1, Key Figure) [16,17]. Elevated serum IL-6 has been commonly reported in patients
with severe COVID-19 and correlated significantly with nonsurvivors [11,18]. Consequently,
researchers have started clinical trials evaluating the therapeutic efficacy of IL-6 antagonists in pa-
tients with COVID-19 [19]. These findings further support the rationale of repurposing licensed JAK
inhibitors to improve the currently available clinical management strategies for COVID-19 and
address the global urgency of mitigating the disease.

Potential of JAK Inhibitors in COVID-19
Multiple small-molecule JAK inhibitors are in use for the treatment of many inflammation-driven
pathologies such as inflammatory bowel disease, rheumatoid arthritis (RA), and psoriasis [20].
There are several JAK inhibitors currently approved by the US FDA and European Medicine
Association. These include ruxolitinib [21], baricitinib [22], tofacitinib [23], fedratinib [24],
oclacitinib [25], and upadacitinib [26], with more candidate JAK inhibitors in clinical trials
(Figure 1) [27–29]. Ruxolitinib, an oral JAK1/2 inhibitor, was the first approved JAK inhibitor for
neoplastic diseases [30]. Preliminary studies have also supported the therapeutic implications
of ruxolitinib in the context of sHLH and other cytokine-driven inflammatory syndromes [31].
Given a cytokine profile resembling sHLH, severe COVID-19 cases with immune dysregulation
may benefit from ruxolitinib. Cao et al. recently reported the efficacy of ruxolitinib in patients
with severe COVID-19, where patients receiving ruxolitinib plus standard-of-care (SoC) had a
faster clinical improvement and a favorable safety compared with the control group [32]. Indeed,
there are several clinical trials currently underway evaluating ruxolitinib in patients with severe
COVID-19 (Table 1).

Studies have shown that SARS-CoV-2 shares the same cell entry receptor, angiotensin
converting enzyme II (ACE2), as SARS-CoV and it binds to the ACE2 receptors to infect host
cells mainly through endocytic pathways (Figure 2) [33]. By using artificial intelligence-derived
532 Trends in Pharmacological Sciences, August 2020, Vol. 41, No. 8



Box 1. The JAK-STAT Pathway

The Janus kinases (JAKs) are a family of receptor-associated tyrosine kinases. This small family consists of JAK1, JAK2,
JAK3, and tyrosine kinase 2 (TYK2), which can transmit extracellular signals from many proinflammatory cytokines to
activate signal transducers and activators of transcription (STATs) [40]. The canonical JAK-STAT pathway is initiated upon
high-affinity interaction between extracellular signaling cytokines and their cognate receptors (Figure I). This interaction
leads to the apposition of receptor-associated JAKs and STAT phosphorylation. The phosphorylated STATs form dimers,
are translocated into the nucleus and bind to DNA, and then transmit extracellular cytokine signals into a transcriptional
response (Figure I) [15]. The JAK-STAT signal pathway is also regulated by different mechanisms of negative regulators,
such as the suppressors of cytokine signaling (SOCS) proteins, which act as a classical negative feedback circuit that
could inactivate the JAKs and block the access of the STATs to receptor binding sites (Figure I) [74].
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Figure I. Schematic Showing the JAK-STAT Signaling Pathway. Abbreviations: JAK, Janus kinase; SOCS,
suppressors of cytokine signaling; STAT, signal transducers and activators of transcription.
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knowledge graph, Richardson et al. initially reported that baricitinib (JAK1/2 inhibitor) may affect
the cellular viral entry of SARS-CoV-2 because of potential inhibitory effects on the known regu-
lators of endocytosis, such as AP2-associated protein kinase 1 (AAK1) and cyclin G-associated
kinase (GAK) [34]. Moreover, the therapeutic dose of baricitinib at either 2 or 4 mg once daily is
sufficient to effectively inhibit AAK1 and GAK [34]. Stebbing et al. later confirmed the anticytokine
and antiviral activity of baricitinib in vitro experiments and reported that treatment with baricitinib
Trends in Pharmacological Sciences, August 2020, Vol. 41, No. 8 533
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Key Figure

Schematic Showing JAK-Dependent Cytokines That Are Involved in the Development of COVID-19
and the JAK-Associated Receptors Each Interacts With
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Figure 1. The types of cellular responses elicited by these interactions are shown. The FDA-approved (unbroken boxes) and candidate JAK inhibitors in clinical trials (in
broken boxes), along with their selectivity, are also shown. Abbreviations: ACE2, angiotensin converting enzyme II; IFN, interferon; IL, interleukin; JAK, Janus kinase; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; TYK2, tyrosine kinase 2.
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improved the clinical condition in four patients with COVID-19 [35]. As baricitinib has minimal in-
teraction with CYP enzymes (involved in drug metabolism in the body) and low plasma protein
binding, it may be a good candidate for combination therapy with other promising treatments,
such as remdesivir (an antiviral in clinical trials for COVID-19) [36].

Indeed, Spinelli et al. recently highlighted the potential role of baricitinib in the management of
COVID-19 patients [37]. Results from a pilot study by Cantini et al. evaluated the safety and effi-
cacy of baricitinib therapy in 12 patients with moderate COVID-19. Greater clinical improvements
were observed in patients receiving baricitinib with no observed infections and hematologic
adverse effects till 2 weeks post-treatment [38], leading clinicians to believe that short-term use
of baricitinib (1–2 weeks) is less likely to promote significant infection but may be able to reduce
viral replication and the aberrant host inflammatory response on therapeutic dosing. These
534 Trends in Pharmacological Sciences, August 2020, Vol. 41, No. 8
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Table 1. Ongoing Trials with JAK Inhibitors for COVID-19 (as of 11 June 2020)a

Name Mode
of action

Patient category Use Primary endpoint Estimated
enrollment

Clinical trial identifier

Ruxolitinib JAK1
and
JAK 2
inhibitor

COVID-19-associated
ARDS

Compassionate use: ruxolitinib To evaluate the 28-day mortality
rate of ruxolitinib 5 mg BID + SoC
therapy and ruxolitinib 15 mg
BID + SoC compared with
placebo + SoC therapy, in
participants with COVID-19-
associated ARDS who require
mechanical ventilation

500 NCT04377620ii

Patients with
COVID-19-associated
CRS

Phase III: ruxolitinib The proportion of patients who
die, develop respiratory failure
(require mechanical ventilation), or
require ICU care

402 NCT04362137

COVID-19 Phase II: ruxolitinib Patients achieving 25% reduction
in hyperinflammation score
compared with baseline at day 7

200 NCT04338958

ARDS due to
COVID-19

Phase II: ruxolitinib Evaluate the efficacy of ruxolitinib
in the treatment of COVID-19
ARDS

100 NCT04414098

COVID-19 Phase II: ruxolitinib plus
simvastatin

Percentage of patients who
develop severe respiratory failure

94 NCT04348695

COVID-19 Phase II/III: ruxolitinib Safety (Phase II) and efficacy
(Phase II and III) of ruxolitinib

80 NCT04348071

COVID-19 Phase II: colchicine, ruxolitinib,
secukinumab, and standard
care

Change from baseline in clinical
assessment score

70 NCT04403243

COVID-19 pneumonia Compassionate use: ruxolitinib Proportion of patients with
COVID-19 pneumonia who
become critically ill; all-cause
mortality rate; average duration of
hospital stay; number of
occurrences of secondary infections

64 NCT04331665

COVID-19 Phase II: intravenous anakinra
and ruxolitinib

IL-1 and IFNγ inhibition during
COVID-19 inflammation

50 NCT04366232

COVID-19 Phase I/II: ruxolitinib Recovery from pneumonia
characterized by ceasing of
respiratory symptoms

20 NCT04334044

COVID-19 positive
patients with PENN
grade 2, 3, 4 CRS

Pilot study: therapeutic
plasma exchange alone or in
combination with ruxolitinib

Greater than or equal to 33%
decrease in cytokine load in
one-third or more participants

20 NCT04374149

Severe COVID-19 Phase II: ruxolitinib Overall survival through 28 days
after registration into trial

15 NCT04359290

ARDS with COVID-19
infection

Compassionate use: ruxolitinib Number of patients who avoid
mechanically assisted ventilation
in ARDS in patients with
SARS-CoV-2

13 NCT04361903

CRS due to COVID-19 Compassionate use: ruxolitinib To provide ruxolitinib through an
expanded access program for the
treatment of cytokine storm due
to COVID-19 in the United States
to patients who are eligible but not
able to be hospitalized or who are
hospitalized with a clinical
diagnosis and/or positive test for
SARS-CoV-2 infection

NCT04355793

(continued on next page)
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Table 1. (continued)

Name Mode
of action

Patient category Use Primary endpoint Estimated
enrollment

Clinical trial identifier

Severe/very severe
COVID-19 illness

Compassionate use: ruxolitinib To allow access to ruxolitinib for
eligible patients diagnosed with
severe/very severe COVID-19
illness

NCT04337359

Severe COVID-19 Compassionate use: ruxolitinib
in combination with MSCs

Safety and efficacy of ruxolitinib;
improvement rates at 7 days and
1 month, the cure rates at 2 months

ChiCTR2000029580iv

Baricitinib JAK1 and
JAK2
inhibitor

COVID-19 Phase III: convalescent
plasma, sarilumab,
hydroxychloroquine,
baricitinib, intravenous and
subcutaneous placebo, or oral
placebo

All-cause mortality or need of
invasive mechanical ventilation

1500 NCT04345289

COVID-19 Phase IV: baricitinib and
ravulizumab

Time to incidence of the composite
endpoint of: death, mechanical
ventilation, ECMO, cardiovascular
organ support, or renal failure

1167 NCT04390464

COVID-19 Phase III: combination of
baricitinib and remdesivir
compared with remdesivir
alone

Time to recovery 1032 NCT04401579

COVID-19 Phase II: the study includes
four arms: (i) lopinavir/ritonavir;
(ii) hydroxychloroquine sulfate;
(iii) baricitinib; and (iv) sarilumab.

Clinical status of subject at day 15 1000 NCT04321993

COVID-19 Observational: baricitinib or
anakinra

Mortality for all causes 576 NCT04362943

COVID-19 Observational: specific
treatments, including but not
limited to baricitinib

Composite of death and
mechanical ventilation

400 NCT04365764

COVID-19 Phase III: baricitinib Percentage of patients requiring
transfer to ICU; percentage of
patients requiring transfer to ICU

200 NCT04320277

COVID-19 pneumonia Phase II: hydroxychloroquine
together with baricitinib, imatinib,
or early lopinavir/ritonavir

Time to clinical improvement 165 NCT04346147

COVID-19 Observational: specific
treatments, including but not
limited to baricitinib

Composite of death and
mechanical ventilation

143 NCT04366206

COVID-19 Phase II: baricitinib Need of invasive mechanical
ventilation

126 NCT04393051

COVID-19 Phase II/III: baricitinib Safety (Phase II) and efficacy
(Phase II and III) of baricitinib

80 NCT04340232

COVID-19 Phase II: baricitinib Proportion of patients requiring
invasive mechanical ventilation or
dying

59 NCT04373044

COVID-19 pneumonia Phase II: baricitinib Response to treatment: absence
of moderate to severe
oxygenation impairment

13 NCT04399798

COVID-19 pneumonia Phase II/III: baricitinib +
lopinavir/ritonavir

To assess the safety of baricitinib
combined with antiviral
(lopinavir-ritonavir) in terms of
incidence rate of serious or
nonserious adverse events

12 NCT04358614
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Table 1. (continued)

Name Mode
of action

Patient category Use Primary endpoint Estimated
enrollment

Clinical trial identifier

Tofacitinib JAK1,
JAK 2,
JAK3,
and TYK2
inhibitor

COVID-19 Phase II: tofacitinib Clinical status using ordinal scale 256 NCT04412252

COVID-19 Phase II: tofacitinib plus
hydroxychloroquine versus
hydroxychloroquine

Prevention of severe respiratory
failure requiring mechanical
ventilation

116 NCT04390061

COVID-19 Phase II: tofacitinib Disease severity 60 NCT04415151

SARS-CoV-2-related
interstitial pneumonia

Phase II: tofacitinib Rate of patients needing
mechanical ventilation, admission
to the ICU, death, and adverse
events

50 NCT04332042

aAbbreviations: ARDS, acute respiratory distress syndrome; BID, twice a day; CRS, cytokine release storm; ECMO, extracorporeal membrane oxygenation; MSCs,
mesenchymal stem cells; SoC, standard of care.
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data encourage the further evaluation of baricitinib in larger, randomized trials. As of June 11
2020, several clinical trials are evaluating the potential role of baracitinib in the treatment of
COVID-19 (Table 1); although it should be noted that the effect against viral endocytosis at
tolerated doses only applies to baricitinib. Whether other JAK inhibitors share the same effect
remain to be discovered.

Tofacitinib is an effective oral pan-JAK inhibitor that is approved for use in RA, an autoimmune
and inflammatory disease where cytokines play an important role in the disease pathogenesis
[39]. It is a specifically potent JAK3 and TYK2 inhibitor (EC50 less than 5 nM) [40] and thus can
effectively block IL-2, IL-4, IL-6, and IL-7 (Figure 1). Jacobs et al. recently reported a case of
SARS-CoV-2 infection in a woman with a 13-year history of ulcerative colitis, on tofacitinib.
Despite testing positive for SARS-CoV-2, the patient remained on the treatment of tofacitinib
because of improved clinical symptoms without holding therapy. Two weeks later, all symp-
toms have been resolved without the necessity of hospitalization [41]. Although this does
not prove that tofacitinib contributed to the recovery from COVID-19 in this case, it shows
that the treatment of tofacitinib can potentially be continued in patients infected with SARS-
CoV-2. While studies that directly show benefits of use of tofacitinib in COVID-19 are not yet
available, several clinical trials have been launched to investigate its potential benefits against
the disease (Table 1).

Results of studies in clinical studies have demonstrated an important role of T helper 17 (Th17)
cells and IL-17 in the pathogenesis of inflammation and autoimmunity [42]. Moreover, immature
T helper (Th0) cells can differentiate into Th17 mainly in the presence of IL-6, a cytokine involved
in CRS in COVID-19 that also employs JAK2 to activate downstream signal (Figure 1) [43]. Xu
et al. investigated the pathological characteristics of a patient that succumbed to severe
COVID-19 and found a remarkably high number of Th17 cells [6], indicating a Th17 type CRS in-
volved in the severe immune injury progression in COVID-19. Wu et al. initially reported that
fedratinib, a highly selective JAK2 inhibitor that has been approved for myelofibrosis [44], could
inhibit the expression of IL-17 in murine Th17 cells [45]. These findings suggest a possible role
for JAK2 inhibition and a potential use of JAK2 selective inhibitors, such as fedratinib, in blocking
Th17-associated cytokine activation in COVID-19 management.

Implications on Antibacterial and Antiviral Immunity
More than half of COVID-19 patients are currently treated with antibiotics [46]. In a retrospective
cohort study of inpatients with COVID-19 in Wuhan, Zhou et al. found that 15% of patients with
Trends in Pharmacological Sciences, August 2020, Vol. 41, No. 8 537
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Figure 2. Proposed Mechanism of Action of Baricitinib in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2)-Infected Cells. SARS-CoV-2
enters cells through receptor-mediated endocytosis via interactions with receptors that include angiotensin converting enzyme II (ACE2), a cell surface protein on cells in the
kidney, intestine, blood vessels, heart, and, importantly, alveolar epithelial type II cell. Baricitinib, a JAK inhibitor, can inhibit the process of receptor-mediated endocytosis and
thus can be a viable therapeutic agent against COVID-19.
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COVID-19 experienced secondary infection but the proportion among eventual nonsurvivors
increased to 50% [11], highlighting that patients with COVID-19 may be susceptible to bacterial
infection. Concerns regarding JAK inhibitors in treating COVID-19 have centered on the
increased risk of infection. The JAK-STAT signaling pathway is considered to be crucial in the sig-
nal transduction of Type I IFNs (Figure 1), which are produced in response to bacterial infections
[47] and are also major players in preventing viral replication at the early stage of infection [48,49].
The activation of Type II IFN (IFNγ) signaling, mediated by JAK1–JAK2 complexes, is known to
enhance antibacterial immunity [47] and upregulate the expression of several IFN-stimulated
genes that are major contributors to virus clearance [50]. These beneficial antibacterial and
antiviral processes mediated by Type I IFN and IFNγ may be affected by JAK inhibition.

Indeed, previous studies have reported increased incidence of infections in patients receiving JAK
inhibitors [51,52]. Bacterial infections, particularly urinary tract infections, were the most common
adverse effects reported in patients treated with ruxolitinib [53]. Data from the European
Medicines Agency suggested that upper respiratory tract infections were the most significant
side-effect (14.7%) in patients treated with baricitinibi. While the risk of infections associated
with JAK inhibition appears to be similar to that associated with biologic disease-modifying anti-
rheumatic drugs [51,54], patients treated with JAK inhibitors also have a different risk of viral in-
fections. The most commonly reported complication was infections from herpes virus
reactivation (e.g., herpes zoster, herpes simplex) [55]. Gaspari et al. reported two cases of
COVID-19 who developed hematologic toxicity during the ruxolitinib treatment. One patient
had a soft-tissue infection and the other developed herpes labialis. Ruxolitinib treatment was
suspended in both patients because of the severe drug reactions [56].

However, although the IFN response is imperative for antibacterial and antiviral immunity, its role
in human coronaviruses infections has not been fully understood. Previous results in animal
models of MERS-CoV infection have shown that Type I IFN administration was beneficial during
early but not late stages of infection. Instead, administration of exogenous Type I IFNs in later
stages increased the risk of lethality [57]. In line with these observations, Cameron et al. reported
that IFNα as well as Type II IFN (IFNγ) signaling was prominent in patients with SARS who
developed hypoxemia and died and low in the majority of SARS patients who recovered after a
relatively moderate illness [58].

Blanco-Melo et al. recently reported that SARS-CoV-2 induces a limited IFN-I and -III response
but a strong chemotactic and inflammatory response, marked by a significantly increased
level of IL-6, IL-1β, IL1RA, CCL2, and CCL8. They indicated that the low IFN expression in
COVID-19 patients may be an antagonistic mechanism of SARS-CoV-2, which eludes the
Type I IFN response to avoid immune cell activation and induction of IFN-stimulated genes
(ISG) [59]. Further, it is worth noting that ACE2, the putative receptor of SARS-CoV-2, is an
ISG expressed predominantly in human airway epithelial cells [60]. Whether the IFN-I treatment
would lead to the upregulation of ACE2 and potentially enhance infection in putative target cells
for SARS-CoV-2, or the use of JAK inhibitors targeting IFN signal transduction to reduce the
risk of SARS-CoV-2 infection, requires further investigation. While further work is necessary to
characterize the IFN responses in SARS-CoV-2 infection, these observations lead us to opine
that the strategy of JAK inhibition can still be used in the management of COVID-19, especially
in the stage of exuberant inflammatory cytokine production where patients failed to initiate a ro-
bust IFN response to SARS-CoV-2.

The point of concern can also be at least partially abrogated by use of selective JAK inhibitors.
As an example, fedratinib, a JAK2 specific inhibitor with little inhibitory effects on JAK1, JAK3,
Trends in Pharmacological Sciences, August 2020, Vol. 41, No. 8 539



Outstanding Questions
What is the precise role of JAK-STAT in
the dysregulated immune response in
severe COVID-19?

Can we target JAKs and the molecular
pathways they mediate in complex
immune dysregulation, including
COVID-19?

How can the efficacy and safety of
currently available JAK inhibition thera-
pies be improved?
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and TYK2 (Figure 1), would be beneficial over other pan-JAK inhibitors as fedratinib would
not compromise Type I IFN (IFNα and IFNβ)-mediated antiviral and antibacterial immunity.
Likewise, tofacitinib, the pan-JAK inhibitor that is a specifically potent JAK3 and TYK2 inhibitor
[40], could be more beneficial as it would not interact with the activation of Type II IFN
(IFNγ)-mediated antibacterial immunity.

The Need to Identify Patient Cohorts Who Might Benefit from JAK Inhibitors
There is a significant need to identify patients who stand to benefit most from treatments with JAK
inhibitors, as some groups of patients might benefit more than others. For example, previous
studies have suggested that patients with an absolute neutrophil count less than 1 × 109 cells/l
or an absolute lymphocyte count less than 0.5 × 109 cells/l should not be treated with baricitinib,
or should temporarily interrupt baricitinib treatment [61]. Epidemiological studies for COVID-19
has revealed a subgroup of patients with severe symptoms, who have lower absolute lymphocyte
count closer to the threshold levels [3,11,62]. These patients should not be treated with
baricitinib.

Another example displaying the need to identify the best patients to treat with JAK inhibitors
arises from the possible concern of thromboembolic risk associated with the use of JAK in-
hibitors. Increasing numbers of studies suggest that COVID-19 patients, especially those
who are severely and critically ill, can develop coagulation abnormalities. Patients at high
risk of venous thromboembolism also had an increased risk of bleeding and were associated
with a worse prognosis [63]. The direct attack of SARS-CoV-2 on endothelial cells and the
presence of the overwhelming CRS and antiphospholipid antibodies may potentially contrib-
ute to the coagulopathy in COVID-19 [64,65]. Cases of venous thromboembolism have been
reported in patients treated with JAK inhibitors [66]. Therefore, JAK inhibitors should be
administrated with caution in COVID-19 patients with factors for thrombotic risk, such as
old age, immobilization, mechanical ventilation, and central venous catheter use. Also,
proper evaluation of the risk of venous thromboembolism risk before the use of JAK inhibi-
tors has great importance in patients with COVID-19. Ultimately, these scenarios highlight
that stratification of patients would be required to understand which cohort of patients
might benefit from JAK inhibitors.

Concluding Remarks and Future Perspectives
The occurrence of CRS in COVID-19, which involves cytokines mediated by the JAK-STAT path-
way, suggests that inhibition of the pathway can be a therapeutic strategy for the management of
COVID-19. The potential role of JAK inhibitors in treating patients with COVID-19-associated
CRS is an area of active investigation with multiple ongoing clinical trials (Table 1). This strategy
can be more beneficial than inhibition of IL-6 only, a cytokine whose elevated levels have been
commonly reported in patients with severe COVID-19 [18]. Recent studies have shown that the
IL-6-JAK-STAT3 axis is closely involved in the development of severe COVID-19 [12,67]. Asmen-
tioned earlier, tocilizumab has been proposed as an effective drug in severe and critical COVID-19
patients and results from clinical trials of tocilizumab have been encouraging in improving the
respiratory and laboratory parameters of patients with severe COVID-19 [19,68,69]. JAK inhibi-
tors are also known to block the activity of IL-6 [15]. However, while IL-6 antagonists target
one cytokine, IL-6, JAK inhibitors can simultaneously target actions of multiple cytokines inside
the cells, including IL-2, IL-4, and IFNγ (Figure 1). Moreover, the theoretical benefit of JAK inhibi-
tion in the management of COVID-19-associated CRS would be applicable to currently available
FDA-approved JAK inhibitors and also extend to candidate JAK inhibitors currently in clinical trials
for other disease indications, that, while not yet approved by FDA, can in future be repurposed for
COVID-19.
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Some of these candidate JAK inhibitors also have potential in addressing the concern underlying
the use of JAK inhibitors on host antiviral and antibacterial immunity responses. For example,
BMS-986165 and PF-06826647, TYK2 selective inhibitors currently in Phase II clinical trials for
psoriasis [70] (Clinical Trial Numbersii: NCT03881059 and NCT03895372) (Figure 1), can be
tested in COVID-19. These inhibitors would potentially not interact with the Type II IFN response
(IFNγ) necessary in antibacterial immunity but still inhibit other cytokines in COVID-19. Similarly,
potential JAK3-specific inhibitors, such as decernotinib (VX-509), currently in a Phase II clinical
trial for RA [71] (Clinical Trial Number: NCT01590459) and ritlecitinib (PF-06651600iii) (Figure 1),
currently in a Phase III clinical trial for alopecia areata (Clinical Trial Number: NCT04006457) can
also be tested against COVID-19 either as monotherapy or in combination with IL-6/IL-6R
antagonists. These JAK inhibitors can be expected to not interact with both Type I and Type II
IFN-mediated antibacterial and antiviral responses, a concern when using pan-JAK inhibitors
currently in clinical trials for COVID-19.

Such immunosuppressive therapies may be limited by the side effects and contraindication to
some of these regimes, which emphasizes the need to identify the patients who stand to benefit
most from such treatments, as discussed earlier. Additionally, results from ongoing clinical trials
(Table 1) would also be needed to confirm the optimum time and dosing regimens to administer
JAK inhibitors in COVID-19. Finally, the identification of alternative targeted therapeutics with
greater isoform selectivity, while minimizing adverse reactions, is the need of the hour. In this re-
gard, the negative feedback loop that regulates JAK-STAT signaling via suppressor of cytokine
signaling (SOCS) (Box 1) may also provide novel mechanisms of action to generate new thera-
peutics, such as SOCS mimetics or stabilizers for management of COVID-19 (see Outstanding
Questions) [72,73]. In summary, JAK inhibition appears to be an attractive therapeutic option
for the development of much needed therapies in view of the global urgency of ameliorating the
COVID-19 pandemic. The full exploitation of these opportunities requires a better understanding
of the mechanisms involved in the disease.
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