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Investigating scale-free (i.e., fractal) functional connectivity in the brain has recently
attracted increasing attention. Although numerous methods have been developed
to assess the fractal nature of functional coupling, these typically ignore that
neurophysiological signals are assemblies of broadband, arrhythmic activities as
well as oscillatory activities at characteristic frequencies such as the alpha waves.
While contribution of such rhythmic components may bias estimates of fractal
connectivity, they are also likely to represent neural activity and coupling emerging from
distinct mechanisms. Irregular-resampling auto-spectral analysis (IRASA) was recently
introduced as a tool to separate fractal and oscillatory components in the power
spectrum of neurophysiological signals by statistically summarizing the power spectra
obtained when resampling the original signal by several non-integer factors. Here
we introduce multiple-resampling cross-spectral analysis (MRCSA) as an extension
of IRASA from the univariate to the bivariate case, namely, to separate the fractal
component of the cross-spectrum between two simultaneously recorded neural signals
by applying the same principle. MRCSA does not only provide a theoretically unbiased
estimate of the fractal cross-spectrum (and thus its spectral exponent) but also
allows for computing the proportion of scale-free coupling between brain regions.
As a demonstration, we apply MRCSA to human electroencephalographic recordings
obtained in a word generation paradigm. We show that the cross-spectral exponent
as well as the proportion of fractal coupling increases almost uniformly over the
cortex during the rest-task transition, likely reflecting neural desynchronization. Our
results indicate that MRCSA can be a valuable tool for scale-free connectivity studies
in characterizing various cognitive states, while it also can be generalized to other
applications outside the field of neuroscience.

Keywords: fractal connectivity, scale-free, bivariate, multiple-resampling, spectral analysis,
electroencephalography, MRCSA
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INTRODUCTION

Many dynamical systems ranging from functional brain networks
(Achard et al., 2008; Ciuciu et al., 2014) through geophysical
systems (Campillo and Paul, 2003; Marinho et al., 2013), natural
phenomena (Mandelbrot, 1983) or meteorological data (Vassoler
and Zebende, 2012) to financial markets (Podobnik and Stanley,
2008; He and Chen, 2011) have been shown to express scale-
free (or fractal) correlations both in the univariate dynamics
of their individual constituents, as well as in their interactions.
In the former case the autocorrelation function of the process
exhibits a slow decay, while in the latter case the same holds
for the cross-correlation function of the two processes at hand.
However, a key characteristic of both scenarios is that a power-
law relationship can be established between the correlation and
the scale of observation (Podobnik et al., 2008). Equivalently,
the same phenomenon can also be assessed in the frequency
domain, where the long-range coupling manifests as the power-
law dependency of auto- or cross-spectral power (or density) on
the frequency (Kristoufek, 2014). The power-law relationship is
commonly characterized in the obtained fractal scaling exponent,
which is referred to as the Hurst exponent (H) or the spectral
slope (β) in the time and frequency domains, respectively, with an
explicit equivalence between the two (Eke et al., 2000; Kristoufek,
2014). Given that identifying such long-term couplings between
various brain regions can reveal novel implications on the
functional organization of the brain – that cannot be identified
otherwise via single-scale or scale dependent analyses –, fractal
connectivity studies gained growing interest recently (Achard
et al., 2008; Ciuciu et al., 2014; Stylianou et al., 2020, 2021; La
Rocca et al., 2021).

There is a plethora of available methods for assessing coupling
between dynamic systems, such as random matrix theory (Plerou
et al., 1999), cross sample entropy (Richman and Moorman,
2000), or various techniques of non-linear time series analysis
(Schreiber, 1999, 2000; Kantz and Schreiber, 2004). Accordingly,
in line with the fact that identifying fractal coupling might be
of interest for many disciplines besides neuroscience, numerous
methods have been developed to assess such interactions both in
the frequency and time domains (Kristoufek, 2017). Nevertheless,
most of these methods disregard the fact that the empirical
data under consideration might not only be composed of
broadband fractal, but narrow-band oscillatory components as
well. To assess the extent of the latter, if present, is not only
important for a characterization of the bias it introduces in the
estimation of fractal measures, but more importantly the two
(i.e., fractal and oscillatory) signal components are also likely
to reflect distinct underlying processes. This notion becomes
exceedingly relevant in case of neurophysiological fluctuations,
which are well known to appear as a composite of broad-
and narrow-band activities in electrophysiological recordings
(Gonzalez et al., 1999; He et al., 2010; He, 2014) and are
often hypothesized to be products of vastly different generating
mechanisms (Buzsaki and Draguhn, 2004; Buzsaki et al., 2012).
The same notion also applies for functional connectivity of the
brain, where, e.g., synchronized alpha activity might appear as a
peak superimposed on the otherwise broadband cross coherence

spectrum (Murias et al., 2007b). Consequently, if one is to assess
the fractal properties of neural activity, either in the univariate
or multivariate case, separation of the fractal component of the
signal from the rest seems essential.

In case of univariate fractal analysis of electrocorticography
(ECoG) recordings, He et al. (2010) utilized coarse-graining
spectral analysis (CGSA) – a method first introduced and then
improved upon by Yamamoto and Hughson (1991, 1993) – to
trim the power spectra of the recorded signals from oscillatory
peaks and thus render the estimation of spectral slopes unbiased.
Briefly, CGSA exploits the self-affine property of fractal processes,
namely that the statistical distribution of the data remains
unaffected when the process is resampled at a different time scale
(Mandelbrot and Van Ness, 1968). Practically, a fractal process
will have the same power spectrum adjusted by the resampling
factor after resampling, while in a harmonic signal the oscillatory
peak gets relocated. In other words, for a given frequency this
means that following resampling, power will remain non-zero
if the process is fractal, while reduce to practically zero if the
signal is simply periodic with the given frequency. Therefore, one
can reconstruct the fractal power spectrum by computing the
cross-spectrum of the original signal and its resampled version
(Yamamoto and Hughson, 1991, 1993). Recently, an improved
algorithm termed irregular resampling auto-spectral analysis
(IRASA) was proposed by Wen and Liu (2016) for separating
the fractal and oscillatory components of neurophysiological
signals. IRASA builds on the same principle as CGSA, however,
it eliminates many of its shortcomings – such as its inability
to handle multiple oscillatory components that are interrelated
via the scaling factor – by utilizing not only two but a set of
non-integer rescaling factors. Specifically, while in CGSA time
series are resampled with h = 2 and h = 1/2, IRASA uses a
set of positive non-integer numbers between 1 and 2 and their
reciprocals (e.g., h = 1.1 and h = 1/1.1 = 0.9091), hence the
term ‘irregular-resampling’; even though the resampled time
series – similarly to the original – are evenly (regularly) sampled.

Nevertheless, both CGSA and IRASA can only be utilized
in the analysis of univariate signals (i.e., individual recordings).
On the other hand, one can expect to face similar problems
when investigating functional connectivity in the frequency
domain: the broadband cross-coherency spectrum indicating
fractal connectivity might well be interspersed with oscillatory
peaks reflecting, e.g., the effect of large-scale cortical alpha
synchronization even in the resting state (Murias et al., 2007b)
or during cognitive stimulation (Murias et al., 2007a). For a
better assessment and understanding of fractal connectivity,
therefore, methods are called for that can eliminate the effects
of such scale-dependent interactions and separate the scale-free
component of statistical interdependence. This is the primary
focus of this paper; here, we propose an extension of IRASA
to the bivariate case, which we title multiple-resampling cross-
spectral analysis (MRCSA) for isolating the fractal component
of the cross-spectral density of a pair of neurophysiological
signals. We show that MRCSA can yield a theoretically unbiased
estimate of the fractal cross-spectrum and thus the cross-
spectral slope, and although it is unable to purely separate
oscillatory components due to the potential presence of complex
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interactions between the fractal and oscillatory components, it
can provide useful information on the contribution of fractal
connectivity via assessing the proportion of fractal to total cross-
spectral power. We utilize simulations to present the robustness
of MRCSA against the presence of a high number of synchronized
oscillatory components. Finally, we demonstrate the real-world
applicability of MRCSA on experimental electroencephalography
(EEG) recordings by analyzing fractal connectivity in two
different conditions, resting state and word generation.

MATERIALS AND METHODS

First, we introduce the self-affine property of fractal processes in
contrast to oscillatory signals. Then, we briefly summarize the
CGSA and IRASA methods to show how the fractal component
of the power spectrum can be separated in the univariate case.
Finally, we show that the IRASA pipeline can be extended to
the bivariate case, where it provides an unbiased estimate on
the fractal component of the cross-spectrum. In what follows
we describe the method used for simulating time series with
known cross-spectral slope and oscillatory peaks and use the
simulated time series to demonstrate the efficacy of MRCSA
in removing oscillatory peaks from the cross-spectrum. The
robustness and precision of MRCSA is assessed by varying
both the number and amplitude of oscillatory components,
while the effect of noise on the performance of MRCSA is
also explored. Finally, we describe the real-world datasets used
for demonstration.

The Self-Affine Property of Fractal
Processes
Let’s consider a fractal process f (t) and its resampled version
fh (t) = f (t/h), where h > 0 is the resampling factor. When h > 1
the process is ‘up-sampled’ and it is ‘down-sampled’ in case of
0 < h < 1. Illustratively, when h = 2 then fh (t) equals to f (t)
sampled at twice its original sampling rate, while with h = 1/2 it
is equal to taking only every second sample from f (t). Note that
in this latter scenario fh (t) is referred to as the ‘coarse-grained’
version of f (t) by Yamamoto and Hughson (1993), see below.
Then, the self-affine property of f (t) can be formalized as

fh (t) , hH f (t) , (1)

meaning that if f (t) is resampled by factor h, then the resampled
time series fh (t) will have the same distribution as the original,
only rescaled by factor hH with H termed the Hurst exponent
(Mandelbrot and Van Ness, 1968; Yamamoto and Hughson,
1993; Eke et al., 2002). Importantly, when applying the Fourier
transformation to f (t) and fh(t) this self-affine property can be
readily established as the frequency scaling property

Fh (ω) , hHF (ω) , (2)

where F(ω) and Fh(ω) denotes the amplitudes of f (t) and
fh(t) at angular frequency ω, respectively (the angular frequency
ω relates to the sampling rate rs as ω = 2πrs). Relatedly,

fractal processes are characterized by a continuous, broadband
frequency distribution, where the spectral power (i.e., the squared
amplitude) is inversely proportional to the frequency, and the
relationship is established via a power-law function with scaling
exponent β (Eke et al., 2002). When formalized as

|F(ω)|2 ∝ c× ω−β, (3)

where c is a constant, it follows that the spectral power
of a fractal signal is (theoretically) non-zero throughout the
entire spectrum, as well as the spectrum follows a ‘straight
line’ with slope −β when visualized on a log-log scale. It is
important to highlight, that both H and capture the same
scaling property of the process and thus they are equivalent
and inherently related (Mandelbrot and Van Ness, 1968; Eke
et al., 2000). In conclusion, the power (or amplitude) spectrum
of a fractal process remains the same following resampling,
only scaled by factor hH . This property is in sharp contrast
with that of a periodic signal x(t) composed of a discrete
set of sinusoidal components with characteristic frequencies
ωi. In such a narrow-band signal the power spectrum is
only non-zero at the specific frequencies corresponding to the
constituting sinusoids, and zero (or close to zero) elsewhere.
Importantly, in the power-spectrum of the resampled time series
xh(t) these non-zero ‘peaks’ get relocated according to the
resampling factor h, however, the spectral power remains zero
elsewhere, including characteristic frequencies of the original
signal (except for those cases where components ωi and ωj
are related as ωi = h× ωj). Exploiting this phenomenon offers
means to decompose the power spectrum of a signal that
is a mixture of fractal and oscillatory/periodic components,
as detailed below.

Extracting the Fractal Component of the
Power Spectrum
Coarse Graining Spectral Analysis
The first method to separate the fractal component of a
broadband spectrum was introduced by Yamamoto and Hughson
(1991) for studying heart rate variability (HRV) time series.
Interestingly, the aim of this approach was to prune the spectrum
from the broadband fractal component and thus allowing for a
better assessment of oscillatory peaks, which were in the center
of interest regarding HRV studies (Yamamoto and Hughson,
1991). In this first approach the authors computed the cross-
power spectrum of the original signal X with its coarse grained
(i.e., resampled with h = 2−1) and rescaled (by dividing it by
h−H) version Xh to obtain the fractal component denoted as
SXXh , which was then subtracted from the auto-power spectrum
of the original signal, SXX (Yamamoto and Hughson, 1991).
This approach built on the aforementioned notions regarding
Eq. (2), namely that (i) the amplitude spectra of a fractal
process and its resampled and rescaled version should be the
equivalent and thus their cross spectrum will be non-zero for
all frequencies, while on the other hand (ii) the cross-spectrum
of a harmonic signal with its resampled version will tend
to zero for all frequencies due to the relocation of non-zero
amplitudes in the spectra.
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The method, though highly intuitive, suffers from multiple
limitations, one of them being the fact that one had to first
estimate H separately, which in this case was achieved by using
rescaled range analysis (Mandelbrot and Wallis, 1969). This was
later resolved by resampling the original process by factors of
both h and its reciprocal 1/h (Yamamoto and Hughson, 1993).
This way, one of the resampled versions is rescaled by hH , while
the other by 1/hH

= h−H and thus if one takes the geometric
mean of the two cross-spectra SXXh and SXX1/h as

SXXh =

√∣∣∣∣SXXh

∣∣∣∣ · ∣∣∣∣∣∣SXX1/h

∣∣∣∣∣∣, (4)

where SXXh denotes the corrected fractal power spectrum, the
computation no longer requires a separate estimation of H.
Also note that this procedure is independent of the rescaling
factor h > 0. A more severe limitation of the CGSA procedure,
however, is the fact that the cross-spectrum of the original and the
resampled version of a signal composed of fractal and oscillatory
constituents will have non-negligible interactions between the
two components that prevents the complete elimination of
oscillatory peaks (Wen and Liu, 2016). Finally, CGSA can also
break down in presence of multiple oscillatory components, when
the characteristic frequencies of the oscillatory components are
related as ωi = h× ωj or ωi = 1/h× ωj.

Irregular-Resampling Auto-Spectral Analysis
IRASA was introduced recently by Wen and Liu (2016) to
overcome these limitations. In contrast to CGSA, this approach
explicitly assumes a simple additive model in which the
investigated process y(t) is composed of a fractal f (t) and an
oscillatory x (t) component without additive noise:

y (t) = f (t)+ x (t) . (5)

According to the linearity property, applying the Fourier
transform to y(t) yields

Y (ω) = F (ω) e−jα(ω)
+ X (ω) e−jβ(ω), (6)

where F(ω) and α(ω) indicate the amplitude and phase of the
fractal component at frequency ω, whlie X(ω) and β(ω) are the
same terms regarding the oscillatory component. Then, let yh (t)
and y1/h(t) denote the resampled versions of y(t) by factors h and
1/h, respectively (with h > 0). Using an analogous notation as
introduced in Eq. (6), the auto-spectral power at frequency ω can
be then defined as

Syhyh (ω) =
[

Fh (ω) e−jαh(ω)
+ Xh (ω) e−jβh(ω)

]
[

Fh (ω) ejαh(ω)
+ Xh (ω) ejβh(ω)

]
(7)

for yh (t) and equivalently as

Sy1/hy1/h (ω) =
[

F1/h (ω) e−jα1/h(ω)
+ X1/h (ω) e−jβ1/h(ω)

]
[

F1/h (ω) ejα1/h(ω)
+ X1/h (ω) ejβ1/h(ω)

]
(8)

for y1/h(t). Then, by utilizing the notion Eq. (2) one can arrive on
the forms

Syhyh (ω) = h2HF2 (ω)

∣∣∣∣∣∣∣∣1+ Xh (ω)

Fh (ω)
ejαh(ω)−jβh(ω)

∣∣∣∣∣∣∣∣2 (9)

and

Sy1/hy1/h (ω) = h−2HF2 (ω)

∣∣∣∣∣∣∣∣1 X1/h (ω)

F1/h (ω)
ejα1/h(ω)−jβ1/h(ω)

∣∣∣∣∣∣∣∣2. (10)

Then, one can simply take the geometric mean of the two auto-
spectra equivalently to Eq. (4) to obtain an initial estimate of the
fractal power spectrum, denoted as Sh (ω), independent of h and
H as

Sh (ω) =
√

Syhyh (ω) Sy1/hy1/h (ω) =

= F2 (ω)

∣∣∣∣∣∣∣∣1+ Xh (ω)

Fh (ω)
ejαh(ω)−jβh(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣1+ X1/h (ω)

F1/h (ω)
ejα1/h(ω)−jβ1/h(ω)

∣∣∣∣∣∣∣∣ . (11)

Let’s assume the oscillatory component x(t) consists of a single
sinusoid at harmonic frequency ω0. From Eq. (11) it then follows,
that Sh (ω) F2 (ω) in only two cases:

(a) Sh (ω) = F2 (ω)

∣∣∣∣∣∣∣∣1+ Xh (ω)

Fh (ω)
ejαh(ω)−jβh(ω)

∣∣∣∣∣∣∣∣ ifω = hω0 and

(b) Sh (ω)= F2 (ω)

∣∣∣∣∣∣∣∣1+ X1/h (ω)

F1/h (ω)
ejα1/h(ω)−jβ1/h(ω)

∣∣∣∣∣∣∣∣ if ω = ω0/h

(12)

Note, however, that these instances where Sh (ω) does not
yield an unbiased estimate of the fractal spectrum always depend
on h; with using multiple distinct resampling factors, the non-
zero oscillatory power at ω0 gets recolated to a different frequency
with each value. Consequently, carrying out the estimation
procedure using not only one but instead a set of non-integer
resampling factors (and their respective reciprocals) yields a
population of fractal spectral estimates for all frequencies that
mostly center around the true F2 (ω), except if one of the
scenarios in Eq. (12) holds, as in that case there will be typically
one outlier at estimate for the corresponding h-value. Therefore,
taking the median among these estimates at each individual
frequency will yield an unbiased estimate of F2 (ω) for all ω

as long as the number of outliers does not surpass the number
of estimates (Wen and Liu, 2016). Notably, using a sufficiently
large number (e.g., >15) of different h values also renders IRASA
robust against the presence of multiple oscillatory components by
reducing the probability of too many of them being interrelated
as ωi = h× ωj or ωi = 1/h× ωj.
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Additionally, the power spectrum of the composite signal of
Eq. (5) is defined as

Y2 (ω) = Y (ω) Y (ω) = F2 (ω)

+X2 (ω)+ 2F (ω) X (ω) cos (α (ω)− β (ω)). (13)

where Y(ω) denotes the complex conjugate of Y(ω). Eq. (13)
shows that the mixed power spectrum is composed not only of the
spectral densities of the fractal and oscillatory components but
also a confounding term whose magnitude depends on the phase
difference between fractal and oscillatory components. However,
by assuming no coupling between the two components the
expectation of the second term is zero and thus the confounding
term can be eliminated by computing the power spectrum from
multiple data segments and then taking the average over the
obtained spectra. Note that this also assumes that segments were
obtained from a period during which the process is stationary.
Finally, one can obtain a theoretically unbiased estimate of the
oscillatory power spectrum by subtracting the fractal from the
mixed spectrum (Wen and Liu, 2016).

Multiple-Resampling Cross-Spectral
Analysis
Podobnik and Stanley (2008) introduced the first method to
assess long-range fractal coupling between two (non-stationary)
processes, termed detrended cross-correlation analysis (DCCA).
DCCA was quickly generalized to the multifractal domain (Zhou,
2008), while also complemented by other time-domain methods
such as the detrended moving-average cross-correlation analysis
(Arianos and Carbone, 2009) or the height cross-correlation
analysis (Kristoufek, 2011). Similarly to the univariate case,
bivariate fractal scaling of processes x and y is captured in the
bivariate Hurst exponent Hxy (Kristoufek, 2011). Moreover, this
property can be equivalently captured in the frequency domain
as well (Kristoufek, 2014). Precisely, in case of long-term fractal
coupling between two processes x and y, cross-spectral power
SSxy (ω) is proportional to the frequency ω via a power-law
function with cross-spectral exponent βxy as∣∣SSxy

∣∣ (ω) ∝ c× ω−βxy . (14)

This case is analogous with that defined for the univariate case
in Eq. (3), as well as there is an exact correspondence between
Hxy and βxy (Kristoufek, 2014, 2017). Similarly, the frequency
scaling property also holds; let’s define bivariate fractal processes
k(t) and l(t) with bivariate Hurst exponent Hkl. Then, following
the resampling both processes by factor h, their cross-spectrum
SSkhlh(ω) will be equivalent to the cross-spectrum SSkl(ω) of the
original processes rescaled by hHkl :∣∣SSkhlh (ω)

∣∣ , hHkl |SSkl (ω)| . (15)

This can be shown when applying the formula from Eq. (13)
to obtain the cross-spectrum:

SSkhlh (ω) = Fkh (ω) Flh (ω) = hHk Fk (ω) hHl Fl (ω)

= hHk+Hl Fk (ω) Fl (ω) = h2Hkl SSkl (ω) . (16)

From Eqs. (15) and (16) it also follows automatically that
Hxy =

Hx+Hy
2 , as observed in many previous studies from both

theoretical and simulation standpoints (Podobnik and Stanley,
2008; Podobnik et al., 2011; Kristoufek, 2013a,b). Note, however,
that processes with Hxy <

Hx+Hy
2 have also been proposed

(Sela and Hurvich, 2012; Kristoufek, 2013a), as their existence
are theoretically plausible, unlike those with Hxy >

Hx+Hy
2

(Kristoufek, 2015). Therefore, along the same lines of thinking as
with Eqs. (7)–(12), one can exploit this property and construct a
method to separate the fractal component of the cross-spectrum.

The key steps of MRCSA are illustrated on Figure 1. More
formally, let’s assume two processes, x (t) = fx (t)+ hx(t) and
y (t) = fy (t)+ hy(t), both composed as a mixture of fractal and
oscillatory (harmonic) components and with Hurst exponents Hx
and Hy. Generally, the cross-power spectrum of x(t) and y(t),
denoted as

∣∣SSxy(ω)
∣∣ can be obtained as

∣∣SSxy(ω)
∣∣ = ∣∣∣Fx(ω)Fy(ω)

∣∣∣ , (17)

where Fx(ω) and Fy(ω) mark the Fourier transforms of x(t)
and y(t), respectively. After resampling with factor h and
1/h we obtain the resampled time series xh(t), yh(t), x1/h(t)
and y1/h(t). Let FXh(ω)e−jαh(ω) and FYh(ω)e−jγh(ω) denote
the Fourier transforms of the fractal, while HXh(ω)e−jβh(ω)

and HYh(ω)e−jδh(ω) the Fourier transforms of the oscillatory
(harmonic) components of series xh(t) and yh(t), respectively
[terms for x1/h(t) and y1/h(t) are defined analogously]. Then, the
cross-power spectra of xh(t) and yh(t) can be obtained as

SSxhyh (ω) =
[

FXh (ω) e−jαh(ω)
+HXh (ω) e−jβh(ω)

]
[

FYh (ω) ejγh(ω)
+HYh (ω) ejδh(ω)

]
=

= hHx+Hy FX (ω) FY (ω) e−j(αh(ω)−γh(ω)) (18)(
1+

HXh(ω)

FXh (ω)
e−j(αh(ω)−βh(ω))

)(
1+

HYh(ω)

FYh (ω)
ej(γh(ω)−δh(ω))

)
and similarly, for x1/h(t) and y1/h(t) as

SSx1/hy1/h (ω) =
[

FX1/h (ω) e−jα1/h(ω)
+HX1/h (ω) e−jβ1/h(ω)

]
[

FY1/h (ω) ejγ1/h(ω)
+HY1/h (ω) ejδ1/h(ω)

]
=

= h−(Hx+Hy)FX (ω) FY (ω) e−j(α1/h(ω)−γ1/h(ω)) (19)(
1+

HX1/h(ω)

FX1/h (ω)
e−j(α1/h(ω)−β1/h(ω))

)
(

1+
HY1/h(ω)

FY1/h (ω)
ej(γ1/h(ω)−δ1/h(ω))

)
.

One can then obtain an estimate of the fractal cross-
power spectrum, denoted SSh(ω), by computing the geometric
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FIGURE 1 | Key steps of the MRCSA procedure. (A) The cross-power spectrum is shown on the left, obtained from a pair of long-range cross-correlated time series
with a strongly correlated oscillatory component at 10% of the Nyquist frequency. The middle panels show the cross-power spectra obtained after upsampling
(upper) and downsampling (lower) the pair of signals by factors h and 1/h, respectively. It is clearly observable, that resampling relocates the oscillatory peak from its
‘original position’ in both cases. The right panel shows the geometric mean of the up- and downsampled cross-spectra. (B) On the left, the raw cross-power
spectrum is illustrated. Geometric means of the up- and downsampled cross-spectra are obtained after resampling with various values of h (middle). Finally, by
taking the median one can obtain the fractal cross-power spectrum, with no oscillatory peak.

mean of
∣∣∣∣Sxhyh (ω)

∣∣∣∣ and Sx1/hy1/h :

SSh (ω) =

√∣∣∣∣Sxhyh

∣∣∣∣ ∣∣∣∣∣∣(ω) Sx1/hy1/h (ω)
∣∣∣∣∣∣

= |FX (ω) FY (ω)|√
||1+ Ah (ω)|| ||1+ Bh (ω)||

∣∣∣∣1+ C1/h (ω)
∣∣∣∣ ∣∣∣∣1+ D1/h (ω)

∣∣∣∣,
(20)

where

• Ah (ω) =
HXh(ω)
FXh(ω) e−j(αh(ω)−βh(ω)),

• Bh (ω) =
HYh(ω)
FYh(ω) ej(γh(ω)−δh(ω)),

• C1/h (ω) =
HX1/h(ω)

FX1/h(ω) e−j(α1/h(ω)−β1/h(ω)) and

• D1/h (ω) =
HY1/h(ω)

FY1/h(ω) ej(γ1/h(ω)−δ1/h(ω)).

Note that the above terms A (ω) to D (ω) capture the
relationships between the fractal and oscillatory components
of the processes in terms of the ratio of magnitudes and
the difference in phases. Considering Eq. (20), one can draw
similar conclusions as in case of IRASA (Wen and Liu, 2016),
namely that

(i) If x(t) and y(t) only consist of fractal components, then
SSh (ω) is always equal to the fractal cross-power spectrum
and thus unbiased, as all the confounding terms are equal
to zero at all ω .

(ii) If x(t) contains harmonic component with characteristic
frequency ωHX , then the term Ah (ω) will be non-zero
if ω1 = hωHX and the term C1/h (ω) will be non-zero if
ω2 = h/ωHX and thus SSh (ω) will be biased at ω1 and ω 2.

(iii) If y(t) contains harmonic component with characteristic
frequency ωHY , then the term Bh (ω) will be non-zero if
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ω3 = hωHY and the term D1/h (ω) will be non-zero if ω4 =

h/ωHX and thus SSh (ω) will be biased at ω3 and ω 4.

The above described procedure indicates that SSh (ω) is an
unbiased estimate of the fractal cross-power spectrum except
for cases (ii) and (iii), which are all dependent on the rescaling
factor h. Consequently, if one computes SSh (ω) using different
values of h, the frequencies where the estimation errors occur
will also be different. Therefore, if one obtains a population of
SSh (ω) estimates, each calculated with different h value, then by
taking the median over these for every frequency ω will yield an
unbiased estimate of the fractal cross-power spectrum as long as
the number of outliers (i.e., the occurring estimation errors) at
the given frequency is less than 50% (Bassett, 1991; Wen and Liu,
2016). Therefore, we finally arrive at the formula for the unbiased
fractal cross-power spectrum SFXY (ω):

SFXY (ω) = medianh
{

SSh (ω)
}
, (21)

for each ω.
Finally, one might desire to obtain an unbiased separate

estimate of the oscillatory cross-spectrum, SHXY (ω) as well.
However, if one computes |SSXY(ω)|2 analogously to Eq. (13),
it can be shown that the cross-spectral power is related not
only to SFXY (ω), SHXY (ω) and confounding terms depending
on the relative phase difference between the fractal and
oscillatory components of each process (separately), but also on
interaction terms between the fractal component of x(t) and
the oscillatory component of y(t), and vice versa (for details,
see Supplementary Material). Assuming no coupling between
fx(t) and hx(t) [and similarly for fy(t) and hy(t)] – and thus
an even random distribution of relative phase differences – the
former confounding terms can be eliminated by taking multiple
data segments and averaging the obtained cross-power spectra.
However, those terms capturing the interaction between fx(t)
and hy(t) [and similarly, between fy(t) and hx(t)] do not depend
on the relative phase difference and thus cannot be eliminated
by averaging. Therefore, MRCSA by itself cannot provide an
unbiased estimate on the oscillatory cross-power spectrum, only
on the fractal cross-power spectrum. Nevertheless, an upper
bound to the contribution of oscillatory components in the cross-
spectrum can be obtained by computing the percentage of fractal
cross-spectral power to the full (mixed) cross-spectral power as

%Fractal =
∑

ω SFXY (ω)∑
ω SSXY(ω)

× 100, (22)

where the sum runs over all frequencies ω .
There are two important notions to mention. First, from

Eqs. (17)–(21) it can be seen that by making y(t) equal to x(t),
the MRCSA method reduces to simple IRASA. Secondly, if one
computes not only the fractal cross-spectral power between x(t)
and y(t) but also their fractal and oscillatory spectra separately
with IRASA, the remaining confounding interaction terms from
|SSXY(ùù)|2 can also be eliminated and thus a theoretically
unbiased estimate of oscillatory cross-spectral power can also
be obtained (see Supplementary Material). Nevertheless, the
primary focus of this paper is to provide an unbiased estimate

of the fractal cross-spectral power, and thus this issue is not
discussed here further.

The Multiple-Resampling Cross-Spectral Analysis
Algorithm
In order to manage consistency among the uni- and the bivariate
cases, the MRCSA algorithm follows the approach presented for
IRASA by Wen and Liu (2016).

(i) From the given pair of signals to be analyzed fifteen
partially overlapping segments are selected (with equal
time stamps), each with 90% length of the entire original
datasets. The data segments are evenly distributed, i.e., the
difference between their starting time indices is constant.

(ii) For the first data segment as defined above the native
(mixed) cross-power spectrum SSxy(ω) is estimated
according to Eq. (17), where the Fourier transforms
are obtained using fast Fourier transform and Hanning
windowing. Frequency resolution is set to be twice as the
smallest power of two that exceeds the number of data
points in the time segments (achieved by zero padding of
the time series, when necessary). This is to ensure that in
case of h < 2 the number of frequencies are greater than
the number of data points both in the original signal and
its resampled versions (see below).

(iii) The data segments are then resampled by h and 1/h using
cubic spline interpolation. In case of downsampling the
data segments are low-pass filtered with a fast Fourier
transform-based filter to avoid aliasing (with the cutoff
frequency defined as the sampling rate divided by twice
the smallest integer larger than the largest h-value).
Similarly to IRASA, we set h by default to range from
1.1 to 1.9 with 0.05 increments, resulting in 17 different
resampling factor pairs.

(iv) Cross-power spectra for the up- and downsampled signal
segment pairs are obtained using the similar procedure as
described in step (ii). Importantly, the frequency resolution
is kept the same as for the native cross-power spectrum
for both the up- and downsampled signal segments (with
appropriate zero-padding).

(v) The geometric mean of the cross-power spectra is obtained
for all

{
h
∣∣ 1/h

}
pairs. Then for every frequency the median

of the cross-power spectra over all h is taken to yield
the unbiased estimate of the fractal cross-power spectrum,
SFXY (ω ).
(vi) Steps (ii)–(v) are repeated for all data segments
obtained from step (i), and then the average of both
SSxy (ω) and SFxy(ω) are computed by taking the
arithmetic mean over the cross-spectra obtained from the
15 data segments.

After the MRCSA pipeline is completed, one can proceed
to obtain the cross-spectral slope, βxy and the percentage of
fractal cross-spectral power. The spectral slope can be acquired
by fitting a linear function on the log-log transformed fractal
cross-power spectrum. However, this procedure in itself would
result in an increasing over-representation of higher frequency
components due to the log transformation (Wen and Liu, 2016).
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Therefore, frequency components are first resampled following
the log transform to yield an even frequency resolution. Then,
a linear function is fitted on the resampled fractal cross-power
spectrum by ordinary least squares estimation, and the βxy is
obtained as the first coefficient (slope) of the function. Note
that in general fractal spectral slope is negative (i.e., the cross-
spectral power follows a 1/ωβxy distribution), however, according
to convention we report βxy values with reversed signs similarly to
univariate spectral exponents (Eke et al., 2002), so that a steeper
cross-spectrum is characterized with a larger positive βxy value.
The percentage of fractal cross-spectral power is obtained simply
by applying Eq. (22) in the selected frequency range of interest.
Note that similarly to IRASA, MRCSA can also be utilized in a
sliding-window manner (Wen and Liu, 2016) to provide a time-
frequency representation of fractal cross-spectral power between
a longer period of two coupled processes.

A Matlab implementation of the MRCSA algorithm will
be made available soon at the repository at http://github.com/
samuelracz/MRCSA. All simulations and data analyses described
below were carried out using Matlab (The Mathworks, Natick,
MA, United States).

In silico Experiments and Evaluation
Multiple-resampling cross-spectral analysis was first tested
on simulated time series with known cross-spectral slope.
For the simulation purpose we adopted the framework of
mixed-correlated ARFIMA(0, d, 0) (autoregressive fractionally
integrated moving average) processes introduced by Kristoufek
(2013a) [in the following we will omit the

(
0, d, 0

)
specification

for the sake of simplicity]. With appropriate parametrization a
mixed-correlated ARFIMA process – which consists of a pair of
long-range correlated time series – has known bivariate Hurst
exponent, that is not necessarily the average of the univariate
Hurst exponents of the constituting time series. Generally, an
ARFIMA process pt can be defined as

pt =

+∞∑
n=0

an
(
d
)
εt−n (23)

where d ∈ [0, 0.5) is the scaling parameter n is the time scale,
εt denotes independent and identically distributed Gaussian
random variables with zero mean and unit variance, and weights
an
(
d
)

are defined as an
(
d
)
=

dΓ(n+d)
Γ(d)Γ(n+1)

where Γ denotes the
Gamma function (Podobnik et al., 2008). An ARFIMA process
has fractal scaling with its Hurst exponent H = 0.5+ d (note
that in case of d = 0 the process reduces to white noise).
A mixed-correlated ARFIMA process (Kristoufek, 2013a) is in
fact a bivariate time series, where each of its constituents is a
combination of two ARFIMA processes so that

ut = w1

+∞∑
n=0

an
(
d1
)
ε1,t−n + w2

+∞∑
n=1

an
(
d2
)
ε2,t−n

vt = w3

+∞∑
n =0

an
(
d3
)
ε3,t−n + w4

+∞∑
n =0

an
(
d4
)
ε4,t−n (24)

where 〈
εi,t
〉
= 0 for i = 1, 2, 3, 4〈

ε2
i,t
〉
= σ2

εi
for i = 1, 2, 3, 4〈

εi,tεj,t−n
〉
= 0 for n 6= 0 and i, j = 1, 2, 3, 4〈

εi,tεj,t
〉
= ρij for i, j = 1, 2, 3, 4 rmand i 6= j.

In words, the each of the two processes is itself a linear
combinations of two separate ARFIMA processes with weights
wi, i = 1, 2, 3, 4, Hurst exponents Hi, i = 1, 2, 3, 4 (defined by
parameters di, i = 1, 2, 3, 4 as Hi = di + 0.5), and innovations
(εi,t) that are may or may not be correlated. It can be shown that
with appropriate parametrization ut and vt are long-long range
cross-correlated (i.e., they have a fractal cross-power spectrum)
with bivariate Hurst exponent Huv =

H2+H3
2 (Kristoufek, 2013a).

Given that
∣∣SSxy (ω)

∣∣ αω1−2Hxy (Kristoufek, 2014), one can
conclude that the cross-spectral power of ut and vt scales
as βuv = H2 +H31−

(
0.5+ d2

)
+
(
0.5+ d3

)
− 1 = d2d3. The

true presence of long-range cross-correlations can be ensured
by setting ρ2,3 > 0 with leaving ρij = 0 for the rest of the cases.
Finally, correlated oscillatory components can be introduced to
the model by simply adding the same sinusoidal signal to both
ut and vt .

For testing the precision and robustness of MRCSA against
the presence of correlated oscillatory components varying in
their number and amplitude, we simulated n = 100 time series
pairs for each case of parameter combinations. Time series were
simulated at 500 Hz sampling rate and with length 10,000 data
points. Sinusoids were introduced in the following manner.
First, the generated mixed-correlated ARFIMA time series pairs
were standardized to have zero mean and unit variance. Then,
sinusoidal signals of equal length and desired frequency ωi (with
i ranging from 1 to the number of oscillatory components)
were generated and standardized to unit variance. Their variance
was then set to a desired proportion (ranging from 0.16 to
5.12) and scaled down by a factor of ω

βuv
i so to adjust to

the cross-spectral fractal power at the same frequency. The
number of sinusoidal components were varied from 1 to 7,
while their amplitudes (variances) were varied from 16 to 512%
of that of the ARFIMA signal in dyadic increments. Following
recommendations of Kristoufek (2013a), the mixed-correlated
ARFIMA time series were generated with parameter settings
w1 = w4 = 0.1, w2 = w3 = 1, d1 = 0.4, d2 = 0.3, d3 = 0.2, d4 =

0.3, σ2
εi
= 1 for i = 1, 2, 3, 4 and ρ2,3 = 0.9 (with ρi,j = 0 in

all other cases) to highlight the cross persistence between the
two time series. From the parameter settings it follows that
the generated time series had a theoretical βuv = 0.5. The
phases of the added sinusoidals were drawn from a uniform
random distribution.

We evaluated the efficacy of MRCSA by computing the
difference of cross-spectral exponents and percentage of fractal
cross-power obtained from the mixed and the separated
fractal cross-spectra (from here on denoted as mixed and
fractal, respectively). Kristoufek (2014) showed that spectrum-
based estimators of the bivariate Hurst exponent (including
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the cross-periodogram estimator, which is highly similar
to MRCSA) are biased to varying extent when tested in
a mixed-correlated ARFIMA framework. Therefore, instead
of comparing the obtained cross-spectral slopes to their
corresponding expected theoretical value, we computed the
difference of mixed and fractal to the spectral exponent derived
via MRCSA from the raw mixed-correlated ARFIMA time series
pairs, i.e., before the addition of the sinusoidal components
(denoted as raw).

We also assessed the effect of white noise on the performance
of MRCSA. We simulated mixed-correlated ARFIMA processes
with the same parameter settings as defined above (i.e., uv = 0.5)
and introduced a single oscillatory component at 10 Hz. Then,
we added random, uncorrelated noise components to both time
series with signal to noise ratio (SNR) of 0, 1, 10, and 100%.
Following Wen and Liu (2016), SNR was defined as the ratio
of the total variance of the signal and the total variance of the
additive noise, converted to percentage.

Experimental Data
We also demonstrate the applicability of MRCSA on real-
world neurophysiological data. For this purpose, we used EEG
recordings of an openly available database (Shin et al., 2018)
obtained in baseline (resting-state) and cognitive stimulation
(word generation) conditions. For the sake of simplicity here we
only provide a brief description of the data, for further details the
reader is referred to the original publication of Shin et al. (2018).

Subjects, Experimental Paradigm and Data
Acquisition
Data were obtained from 26 young, healthy volunteers (17
females, aged 26.1 ± 3.5 years, all right-handed). None of the
participants had any history of neuropsychological pathology.
The experiment was carried out in line with the Declaration
of Helsinki, all volunteers provided written informed consent
before the recording, and the original study was approved by the
regional ethical committee at the Berlin Institute of Technology
(approval number: SH_01_20150330). Further details on the
participants are found in the Supplementary Information of Shin
et al. (2018).

Participants were seated in a comfortable armchair in front of
an LCD monitor. The total experimental paradigm consisted of
three different cognitive tasks, however, for this demonstration
we only used data from Dataset C, the word generation (WG)
paradigm. In this paradigm, participants were presented an
initial letter at every test trial, and their task was to think of as
many different words as they can starting with the given letter.
Contrary, in the baseline trials they were only presented a fixation
cross, and they were instructed to relax. Both the presentation
and baseline (BL) trials were of duration 10 s, interspersed with
relaxation periods varying in length (∼20 s in total for each
trial). Each participant completed three separate sessions, and
each session consisted of 10–10 BL and WG trials in randomized
order. Thus, every participant completed 30 BL and 30 WG trials
in total (each lasting for 10 s). A more detailed description of the
cognitive paradigm is illustrated on Figure 1 of Shin et al. (2018)
and the related text.

The EEG data was recorded using a BrainAmp EEG amplifier
(Brain Products GmbH, Gilching, Germany) from 28 cortical
regions (Fp1, Fp2, AFF5h, AFF6h, AFz, F1, F2, FC1, FC2, FC5,
FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4,
P7, P8, POz, O1, and O2) according to the international 10–5
system (Oostenveld and Praamstra, 2001). Reference and ground
electrodes were located at TP9 and TP10, respectively. Sampling
rate was set to 1,000 Hz, however, the data was downsampled to
200 Hz before made publicly available.

Data Pre-processing and Analysis
Electroencephalography preprocessing was carried out using
the EEGLAB toolbox (Delorme and Makeig, 2004) along
with custom functions and scripts. First, the 10-s BL and
WG periods were isolated for each subject. For preprocessing
purposes (see below), 5 s preceding and 15 s following the
10-s periods (both relaxation periods) were also included
in these initial data segments. Data was then band-pass
filtered between 0.5 and 80 Hz with a 4th order zero-phase
Butterworth filter. Additional line noise removal was performed
at 50Hz with the cleanline algorithm as implemented in
EEGLAB. Automated artifact identification was carried out
using independent component analysis (ICA) combined with
multiple artifact rejection algorithm (MARA) (Winkler et al.,
2011, 2014). Data was then re-referenced to the common average
reference and baseline corrected using the average of the 5 s
data preceding the BL/WG trial periods. Finally, the 10-s BL
and WG periods were isolated for further analysis (30 + 30
segments per subject).

The MRCSA was used to compute the fractal cross-
power spectrum between all channel pairs for all data
segments. MRCSA was also used to recover the fractal
auto-power spectrum of all individual channels by feeding
the same time series as both inputs. Auto- and cross-
spectral exponents were obtained from the separated
fractal spectra as described previously and organized into
a three-dimensional matrices of size 28 channels × 28
channels × 30 trials for BL and WG, for each subject.
Percentage of fractal power was estimated and sorted
similarly. Finally, matrices obtained from different trials
under the same conditions were averaged so to provide a robust
estimate of the characteristic activity pattern of the condition
for each subject.

We compared the obtained measures between BL and WG
states in four different manners: (i) we compared auto-spectral
exponents at every channel, (ii) the sum of cross-spectral
exponents for each channel – which can be considered as the
‘node degree’ of the given location in graph theoretical terms
(Rubinov and Sporns, 2010) –, (iii) the cross-spectral exponents
individual connections separately, and (iv) the percentage of
fractal cross-spectral power of all individual connections. Normal
distribution of data was assessed with Lilliefors tests. Values from
the two conditions were compared using paired t-tests in case
of normality, while using paired Wilcoxon signed rank tests
otherwise. Initial level of significance was defined at p < 0.05,
which was then adjusted for multiple comarisons in each case
(i)–(iv) with the Bonferroni method.
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RESULTS

In silico Experiments
Demonstration
First, we illustrate the ability of MRCSA to remove oscillatory
components from the cross-power spectrum (Figure 2). We
simulated three different mixed-correlated ARMIFA processes
with theoretical βxy values of 0.3, 0.5, and 0.7 and introduced
a correlated sinusoidal component into each of them at 10 Hz,
as well as another bivariate process with theoretical βxy = 0.5
which was mixed with two harmonic signals at 10 and 20 Hz. It
is clearly visible that MRCSA succeeds in eliminating the peak in
cross-spectral density at 10 Hz, as well as its performance remains
steady with two instead of one oscillatory peak.

Effect of Oscillation Number and Amplitude
Performance of MRCSA under varying conditions is illustrated
on Figure 3. The left panel clearly shows that MRCSA yielded
estimates almost equal to those obtained from pure mixed-
correlated ARFIMA processes without oscillatory components.
There is a very weak increase in squared difference with

increasing both the number and amplitude of oscillatory
components. In contrast, the squared errors became larger by
a magnitude under similar conditions when computing the
cross-spectral slope from the mixed cross-coherence spectrum
(middle panel). These results imply that under realistic
conditions relevant to neurophysiological signals (small number
of oscillations, e.g., alpha peak and line noise) the cross-spectral
slope can be obtained almost with equivalent precision from the
mixed (raw) cross-power spectrum. The relevance of MRCSA,
however, is well demonstrated in estimating the percentage of
fractal cross-spectral power under these conditions (right panel).
It is evident that the presence of even one oscillation can
drastically reduce the proportion of fractal cross-spectral power –
the highest value is around 80%, while in pure mixed-correlated
ARFIMA the obtained value is close to the theoretical 100%. It
can be concluded therefore that MRCSA is robust against the
presence of multiple oscillatory peaks, as well as it is largely
unaffected by the amplitude of oscillatory components.

Effect of Noise
The effect of additive Gaussian noise is illustrated on Figure 4. All
processes were simulated at a true cross-spectral slope of 0.8, with

FIGURE 2 | Illustrating the efficiency of MRCSA at different theoretical values of βxy . It can be seen that MRCSA efficiently eliminated the oscillatory peak in all cases
(Upper,Lower left), as well as it was unaffected by the presence of multiple oscillatory peaks (Lower right).
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FIGURE 3 | Precision of MRCSA in the presence of oscillatory components of varying number and amplitude. The (Left) shows squared differences between βxy

when obtained from the fractal cross-spectrum and the cross-spectrum of raw mixed-correlated ARFIMA processes (without oscillatory components). The (Middle)
shows the same difference, only βxy was estimated from the raw cross-spectrum (and not the separated fractal cross-spectrum). The (Right) shows the percentage
of fractal cross-spectral power.

FIGURE 4 | Effect of additive noise on the performance of MRCSA. The effect of noise is illustrated at four different levels of signal to noise ratio. 1 refers to the
squared difference between βxy estimated from the fractal cross-spectrum before and after adding Gaussian noise.
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one oscillatory component added at 10 Hz. It appears that white
noise introduced a bias to an extent below 5% as long as SNR
is high enough (i.e., 10). On the other hand, at low SNR (lower
right panel) although MRCSA still readily removed the oscillatory
peak, the estimate of the cross-spectral slope became increasingly
biased. Nevertheless, MRCSA appeared to be quite robust against
the moderate presence of additive noise.

Real-World Experiment
Demonstration
First, we show that MRCSA works effectively not only on
simulated time series but on real-world experimental data as well.
Figure 5 shows the mixed (black) and fractal (red) cross-power
spectra in two separate cases. Data came from a representative
subject (#4) in WG condition. The prominent alpha peak around
10 Hz can be clearly observed in the mixed cross-power spectrum
between regions O1 and FC1, which is efficiently eliminated by
MRCSA (left panel). On the other hand, there is much less alpha
synchronization observable between regions FC5 and FC6 (right
panel). This difference is also captured in the percentage of fractal
cross-spectral power, which was obtained as 72.19 and 82.70% for
the former and the latter case, respectively.

Group-Level Analysis
Group-averaged spectral exponents are shown on Figure 6,
where the left and middle panels show auto- and cross-spectral
exponents from BL and WG, respectively, while the right
panel marks those locations in white where the values were
significantly different (p < 0.05 after Bonferroni adjustment) in
the two conditions. Auto-spectral exponents are found in the
main diagonals, while indices of the rest of the cells denote the
corresponding channel-pairs for the cross-spectral exponents. It
is clearly observable that both auto- and cross-spectral slopes
increased due to word generation when compared to resting

condition. A strong lateralization can also be observed, as
functional connections among left hemispherical regions tend
to have not only higher exponents in both conditions, but also
more connections where the spectral slope increased. In total,
143 of 378 connections were found significantly different in the
two conditions. Node degrees were also computed to reduce
dimensionality of the data. Indeed, we found that all cortical
regions expressed significantly higher node degree in WG than in
BL condition (p < 0.05 in all cases after Bonferroni adjustment).

Fractal spectral power showed similar trends (Figure 7).
The proportion of fractal spectral power showed an increasing
trend when transitioning from BL to WG, indirectly indicating
a reduction in oscillatory auto- and cross-spectral power.
Nevertheless, this difference remained tendential, as the
increase in fractal cross-spectral power was significant in only
one connection (FC1-CP6, p = 0.0329 following Bonferroni
adjustment), while over two locations (FC6 and C4, p = 0.0478
and p = 0.0134, respectively, Bonferroni-adjusted) for auto-
spectral power. Node degree analysis indicated that connections
of regions C4, CP6, and P4 had higher proportion of fractal
cross-spectral power in WG when compared to BL (p = 0.0235,
p = 0.0122, and p = 0.0478, respectively, Bonferroni-adjusted).

DISCUSSION

In this work we presented the MRCSA method to separate the
fractal component of the cross-power spectrum of two long-
range coupled signals. MRCSA is the bivariate extension of
IRASA (Wen and Liu, 2016), and thus it builds on the same
principles as its univariate counterpart. From this it inherently
follows, that MRCSA will be subject to the same considerations
and limitations. A comprehensive, in-depth discussion of these
aspects are presented in the original paper of Wen and Liu (2016),

FIGURE 5 | Application of MRCSA on empirical data. MRCSA is effective even when the oscillatory peak spreads to a narrow frequency range (Left). It is also
observable that the cross-power spectra of occipito-frontal (Left) and (Right) fronto-frontal connections can express characteristic differences, such as the
apparent lack of increased alpha synchronization in the latter.
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FIGURE 6 | Cross-spectral exponents of functional connections. It can be seen that compared to the baseline condition (Left), during word generation
cross-spectral slope increased in most connections (Middle). Those cases where this difference was identified as significant (following Bonferroni adjustment) are
marked in white on the (Right). BL, baseline; WG, word generation.

FIGURE 7 | Proportion of fractal power of functional connections. The percentage of fractal cross-spectral power appears generally smaller in baseline (Left) when
compared to word generation (Middle) conditions. The (Right) panel marks those channels in white where this increase was significant. Only the connection
between regions FC1 and CP6 showed significant difference after Bonferroni adjustment, as well as the percentage of fractal auto-spectral power was higher at
regions FC6 and C4, as indicated by the two white cells in the main diagonal.

and thus here we briefly summarize them along the same lines,
before turning to discussing the potential utilities and future
perspectives of MRCSA itself.

Considerations Regarding the
Multiple-Resampling Cross-Spectral
Analysis Method
The Multiple-Resampling Scheme
For the sake of consistency, here we utilized the originally
proposed set of rescaling factors, namely h was ranging between
1.1 and 1.9 in 0.05 increments. Just like in case of IRASA, when
utilizing MRCSA one can select an arbitrary set of reasonable
rescaling factors (as long as h > 0), as in theory the technique is
independent from the actual values of h. Nevertheless, one must
pay attention to practical considerations: the accessible frequency
range is half of the sampling rate of the investigated processes
(as according to the Nyquist sampling theorem) and resampling
with a factor of 2 further decreases this to one quarter. Therefore,

selecting a wider range of resampling factors might provide a
better reconstruction of the fractal (cross-)spectrum at the cost
of reducing the accessible range of frequencies (Wen and Liu,
2016). This is true in the opposite direction as well: reducing
the range of h might allow for a broader reconstruction of the
fractal spectrum. However, in this case one has to pay attention
to another phenomenon when applying IRASA/MRCSA. In
case of neurophysiological signals, it is common that oscillatory
components do not only appear at a single frequency but instead
rather appear as a ‘bump’ spreading across a narrow frequency
range, such as the alpha peak that is typically localized in the
9–12 Hz (Buzsaki et al., 2012). In this case using a too small
range of h values (such as hε[1.05; 1.5] in 0.05 increments) would
only ‘smear’ the peak into two smaller bumps below and over
the central frequency of the narrow-band component (Racz et al.,
2021). This is a direct result of the central principle behind IRASA
and MRCSA: although the alpha peak gets relocated with each
down- and upsampling, since the resampling factors are not large
enough the outside parts of the relocated peaks overlap and thus
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result in remnant oscillatory peaks (Racz et al., 2021). Note that
in case of overlap at the largest h value this effect cannot be
compensated by increasing the number of rescaling factors within
the given range if the overlap, as the number of outliers at the
affected frequencies will never drop below 50%. Therefore, one
always has to consider the sampling frequency and the desired
frequency range of interest when setting the values of h. Given
that in most cases EEG data is being sampled at∼500 Hz (or over)
and the frequency range of interest is below 100 Hz, the initial
settings of hε[1.1; 1.9] appeared as a reasonable and pragmatic
choice. Similar considerations were made when analyzing the
EEG data in this study: since we preferred the elimination of
narrow-band peaks in the cross-spectrum (as seen in Figure 5),
we decided to use this range of h values and in turn focus only on
the frequency range below 30 Hz.

Multiple Scaling Ranges
Irregular-resampling auto-spectral analysis was also evaluated
by Wen and Liu (2016) in scenarios where the auto-power
spectrum of the signal had more than one scaling ranges with
different spectral slopes. This phenomenon is indeed relevant as
multimodality of the auto-power spectrum is often observed in
a variety of physiological processes (Eke et al., 2006; He et al.,
2010; Nagy et al., 2017; Mukli et al., 2018; Racz et al., 2021).
Although in this work we did not consider such scenarios, given
that IRASA and MRCSA work along the same principles, similar
considerations can be made for plausible future extensions in
this direction. Even though multiple-resampling by non-integer
factors does not affect the location of the breakpoint in the
fractal spectrum, it does have a ‘blurring’ effect (Wen and
Liu, 2016). Notably, this blurring effect also depends on the
range of resampling factors: a wider range of h might provide
a better elimination of narrow-band peaks, however, it will
also result in more substantial smoothing of sharp breakpoints
(Racz et al., 2021).

Advantage of Multiple-Resampling Cross-Spectral
Analysis Over Native Cross-Spectral Analysis
From our results presented on Figure 3 it is also apparent, that
in cases when the contribution of the oscillatory components is
not substantial, MRCSA yields only marginally better estimates
of the cross-spectral slope than analyzing the raw (mixed) cross-
spectrum itself. This result is not necessarily surprising, as
similar observations were made when the CGSA method was
introduced (Yamamoto and Hughson, 1993). On the other hand,
the percentage of fractal cross-spectral power was substantially
affected (∼20% drop) even with one oscillatory component
with small amplitude present; an effect which could only be
captured by applying MRCSA. This gives MRCSA another
utility apart from obtaining the cross-spectral slope from an
unbiased estimate of the cross-power spectrum, which might
carry relevance in physiological time series analysis. In light of
this the results obtained from real-world EEG data are somewhat
disappointing, as the percentage of fractal cross-spectral power
showed a tendency of increasing broadly over the cortex,
although this difference was only identified as significant in case
of a single connection (see Figure 7) after applying Bonferroni

correction. Given that the use of Bonferroni correction is often
questioned in natural sciences (Perneger, 1998) we re-evaluated
the obtained results for exploratory reasons with using a less
conservative technique for multiple comparisons adjustment, the
false discovery rate (FDR) method of Benjamini and Hochberg
(1995) with a level of significance p < 0.05. This analysis reflected
more closely the patterns observed on Figure 7, showing that the
proportion of fractal cross-spectral power was indeed higher in
the WG condition in 143 of the 378 connections when compared
to BL (see Supplementary Figure 1). Note that applying this
correction procedure (instead of Bonferroni adjustment) to the
obtained cross-spectral exponents indicated a significantly larger
slope in WG for all connections.

Simulation Environment
Here we utilized the framework of mixed-correlated ARFIMA
processes (Kristoufek, 2013a) for generating time series pairs
with known bivariate Hurst exponents/cross-spectral slopes.
The mixed-correlated ARFIMA method provides probably the
most sophisticated and versatile framework yet for simulating
bivariate long-range cross-correlated processes, however, some
considerations have to be made at its application. Notably,
ARFIMA processes are integrated from n = 0 to ∞ in the
past [see Eqs. (23) and (24)]. In case of simulated data
this leads to unavoidable finite size effects, as well as the
weights an

(
d
)

can only be reliably computed with relatively
small n (e.g., n < 100) before numerical instabilities become
intolerable. Therefore, it can be anticipated that the univariate
and bivariate Hurst-exponents could only be estimated from
simulated mixed-correlated ARFIMA time series with some
unavoidable error. Indeed, it was found in multiple simulation
settings that irrespective of the estimator – let it be in the
time or in the frequency domain –, Hurst exponents obtained
from simulated time series deviated from their expected true
values; a bias that was also dependent on the parametrization of
the mixed-correlated ARFIMA model as well as the estimators
themselves (Kristoufek, 2014, 2017). Given that our goal here
was to demonstrate the ability of MRCSA to remove oscillatory
peaks from the cross-power spectrum, we decided to (i) focus
only on the bivariate spectral slopes βxy, and (ii) compare the
obtained βxy values not to the expected theoretical values but
rather to those estimated from the naive simulated mixed-
correlated ARFIMA time series (i.e., before adding sinusoidal
components and/or Gaussian noise). This testing procedure
better reflected the true effect of MRCSA itself without possible
bias that might be introduced by the procedure used for
generating simulated data.

Although in the in silico testing time series are generated
with known fractal characteristics satisfying the power-law
relationship, in case of empirical data the presence of the power-
law relationship first needs to be validated by an appropriate
statistical framework (Clauset et al., 2009) as a precondition
to render the subsequent fractal analysis meaningful. Here
we proposed a frequency domain method for providing an
unbiased estimate for scale-free component based on cross-
spectral power densities. Given that by extending the Weiner–
Khintchine theorem the cross-power spectrum appears as the
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Fourier transform of the cross-correlation function (Prichard
and Theiler, 1994), our proposed MRCSA algorithm captures
linear characteristics of the data. However, it is of further
interest whether the identified scale-free component of the cross-
spectrum can truly be attributed to the long-term memory of
the bivariate processes or it should be regarded as statistical
noise due to heavy-tailed distribution of the data (Kantelhardt
et al., 2002; Wu et al., 2018). Generally, such cases can
(and should) be distinguished by refinement of shuffling tests
introduced earlier for fractal time series analysis (Racz et al.,
2019, 2020; Stylianou et al., 2020). Nevertheless, given that the
main purpose of analyzing empirical data in this work was to
demonstrate the efficacy of MRCSA, for the sake of simplicity this
step was omitted.

Bivariate Fractal and Scale-Free
Dynamics
It is also important to make a distinction between ‘fractal’ and
‘scale-free’ characteristic, even though the two terms are often
used synonymously. An arbitrary process (such as linearly filtered
noise) might produce a power spectrum that obeys a F(ω)αωβ

relationship without carrying any practical relevance, while it has
been shown that one of the characteristics of fractal processes
is a random phase distribution in the complete range of [0; π]

(Yamamoto and Hughson, 1993). The cross-spectrum on the
other hand does not depend on the phases of the individual
time series, but instead on the differences of the phase angles
(Prichard and Theiler, 1994). Given that MRCSA extracts the
fractal component of the cross-power spectrum it does not
contain phase information. One implication of this is that –
similarly to IRASA – the extracted components may or may
not reflect actual physiological significance and thus one always
has to apply caution when interpreting such results. Secondly,
MRCSA by itself characterizes only linear coupling between
processes (Prichard and Theiler, 1994), while for assessing non-
linear interdependence one has to turn to different methods
such as chaotic time series analysis (Bezruchko et al., 2008), or
approaches based on information theory (Besserve et al., 2010).

Further surrogate testing might also allow for elucidating
the origin of the observed bivariate fractality. As previously
mentioned in relation to Eq. (16), many previous studies
confirmed both theoretically and numerically that the bivariate
Hurst exponent (and equivalently the cross-spectral slope)
derives as the average of the individual univariate Hurst
exponents of the involved processes (Podobnik and Stanley,
2008; Podobnik et al., 2011). Nevertheless, analysis of empirical
data often indicates that this is not always true by default;
indeed, it can be derived analytically that the bivariate Hurst
exponent can be either equal or smaller, but not larger than
the average of univariate Hurst exponents (Kristoufek, 2015).
In line with this notion, multiple processes have been proposed
with such properties (Sela and Hurvich, 2012; Kristoufek, 2013a).
Along these lines, in an earlier study we presented a novel
method for analyzing bivariate (multi)fractality, with statistical
tests for assessment of genuine scale-free coupled dynamics
included (Stylianou et al., 2020). In that and a following paper

(Stylianou et al., 2021) we introduced the notion of extrinsic and
intrinsic bivariate fractality, referring to the cases when Hxy is
equal or smaller than the average of Hx and Hy, respectively. In
contrast to extrinsic fractality, the presence of intrinsic fractality
implies that the properties of the bivariate processes cannot
only be explained from those of the univariate processes. In
other words, the latter case implicates genuine scale-free coupled
processes due to intrinsic interaction of their dynamics, which
may not result from pure autocorrelation effects originating
from external source. To distinguish between these two cases
of bivariate fractality, uni- and bivariate Hurst exponents of
the analyzed signal pairs could be compared, which bears
significance in fractal connectivity analysis. Although our mixed-
correlated ARFIMA-based testing framework would theoretically
allow for extending our investigations into these directions,
for the sake of clarity and simplicity we omitted this aspect
for now. Nevertheless, assessing this aspect of the analyzed
data provides means for surrogate thresholding of connections
depending on the strength and quality of the scale-free coupling,
which is a fundamental question in functional connectivity
studies. Thus, future analytical frameworks implementing
MRCSA would benefit from surrogate testing procedures for the
origin and nature of coupled dynamics, which is beyond the
scope of this paper.

Results From Experimental
Electroencephalography Data
By analyzing experimental EEG obtained from a baseline
and word generation paradigm we demonstrated that fractal
cross-spectral slope can be utilized to distinguish between
different mental states. We observed a strong increase in cross-
spectral slope in increased mental activity when compared
to an idle state. This is in line with previous results
identifying an increase in the bivariate Hurst exponent due
to performing a cognitive task (Stylianou et al., 2021). The
observed results imply that long-range cooperation among
distinct brain regions strengthened while performing the
word generation task. It is important to stress that an
increase in the cross-spectral slope does not necessarily mean
increased/strengthened synchronization, but instead it reflects
that coupling between the two processes remains significant
even on ever longer time scales (Kristoufek, 2015). This might
be understood based on the nature of the task: the word
generation paradigm involved increased association between
many higher order brain functions, such as short- and long-
term memory, association and attention. Furthermore, the
subjects had to sustain this increased cooperation for 10 s,
which might have indeed resulted in increased long-term
coupling between the involved brain regions. In line with
this hypothesis, most increase in βxy could be observed in
connections linking frontal and prefrontal regions and parietal
regions (see Figure 6), cortical areas that can be mostly
associated with dorsal and ventral attention networks (Yeo et al.,
2011; Racz et al., 2019). It has to be noted, however, that
conclusions regarding the underlying cortical regions cannot
be made with certainty based solely on source-space EEG data
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(Giacometti et al., 2014). Simultaneously to the increase in
cross-spectral slope, our analysis revealed an increasing tendency
in the proportion of fractal cross-spectral power of functional
connections. These results indirectly suggest a decrease in
narrow-band synchronization, which might reflect the alpha
desynchronization commonly observed during intense mental
workload (Klimesch et al., 1997).

Despite intense research, the physiological role and
significance of fractal brain activity is yet not completely
understood and thus it is a subject of long-lasting debate in
the scientific community. Substantial skepticism stems from
the fact that fractal dynamics are ubiquitous in many natural
processes (Bak, 1996; Gisiger, 2001), while other approaches
simply consider fractal neural dynamics as ‘1/f noise’ (Mitra and
Pesaran, 1999). On the other hand it has been observed in many
studies that scale-free characteristics of brain dynamics change in
relation to physiological state such as increased mental workload
(He et al., 2010; He, 2011; Ciuciu et al., 2012; Zilber et al., 2012),
anxiety (Tolkunov et al., 2010) or self-consciousness (Huang
et al., 2016; Kolvoort et al., 2020). Nevertheless, the vast majority
of previous studies considered univariate fractal dynamics
and not long-term correlations in interregional connections.
On the other hand, only a handful of studies analyzed fractal
brain connectivity (Achard et al., 2008; Wang and Zhao, 2012;
Stylianou et al., 2020; La Rocca et al., 2021) and even less assessed
its changes due to performing a cognitive task (Ciuciu et al., 2014;
Stylianou et al., 2021). Our results contribute to the growing
body of literature suggesting that fractal brain connectivity has
functional significance as it can differentiate between various
mental states, in which capacity MRCSA could prove as a
valuable tool in future studies.

Future Perspectives and Plausible
Developments
Although we demonstrated that MRCSA is effective in separating
the fractal component of the cross-power spectrum, a number of
considerations and assumptions must be made at its application,
as touched upon previously. Nevertheless, theoretical and
technical development in the future might offer solutions for or
extend upon some of the shortcomings of the currently presented
method. The extension of MRCSA to the bimodal domain might
be pursued along the lines of Nagy et al. (2017) and Mukli
et al. (2018). Additionally, in many natural fractal processes the
scaling property itself can vary over time, meaning that dynamics
of such processes cannot be fully characterized by a single
scaling exponent. This can be achieved instead by estimating
a set of scaling exponents; a phenomenon called multifractality
(Benzi et al., 1984; Mandelbrot, 1986). Multifractality has been
confirmed in many physiological processes such as heart rate
variability (Ivanov et al., 1999) or cerebral hemodynamics
(Shimizu et al., 2004). Importantly, functional brain connectivity
has also been shown recently to express not only fractal but
indeed multifractal dynamics on the level of global network
topological properties (Racz et al., 2018a, 2020) as well as
individual connections (Racz et al., 2018b; Stylianou et al., 2020,
2021). The presented MRCSA algorithm by itself is only capable

of characterizing the global monofractal character of functional
coupling, however, by utilizing a sliding window approach one
can actually obtain a trajectory/distribution of local cross-spectral
exponents over time. Then, the distribution width can be used
to characterize the degree of multifractality, while the center
of distribution describes the global monofractal scaling. Finally,
MRCSA could be utilized in disciplines other than neuroscience,
as well as complementary to other analysis techniques. In fact,
assessing long-range coupling between processes so far gained
the most attention in financial data analysis (Podobnik and
Stanley, 2008; Podobnik et al., 2009; He and Chen, 2011; Pal
et al., 2014), but applications are also found in the fields
of geophysics (Marinho et al., 2013), molecular biology (Stan
et al., 2013) or traffic flow data analysis (Xu et al., 2010).
Financial time series in particular often express long-range
auto- and cross-correlations, while at the same time are affected
by common periodic trends (e.g., daily/yearly periods and
business cycles) introducing enhanced synchronization at specific
frequencies (He and Chen, 2011). MRCSA provides a solution
for eliminating the confounding effects of multiple periodic
trends simultaneously, and thus it can become an important
tool for financial data analysis, too. Furthermore, it can also
be used to complement other analysis methods from the fields
of chaos theory (Abarbanel et al., 1993; Anishchenko, 2007;
Glushkov, 2012), non-linear analysis (Takens, 1981; Grassberger
and Procaccia, 1983; Khetselius, 2013) or information theory
(Schreiber, 2000; Besserve et al., 2010), among others, for a better
understanding of complex dynamical systems.

CONCLUSION

In this study we introduced the MRCSA algorithm for
separating the fractal component of the cross-spectral spectrum
of long-range coupled signals. MRCSA is the extension of
the previously published univariate IRASA method to the
bivariate domain, and as such builds on the same principles.
We showed that MRCSA efficiently eliminates narrow-band
peaks in the cross-power spectrum introduced by correlated
oscillatory components in the signals. MRCSA also appeared
immune to increasing the number and/or amplitude of correlated
oscillatory components, as well as it proved robust against
additive Gaussian noise to a moderate extent. Apart from
in silico simulations we demonstrated the applicability of
MRCSA on empirical EEG data as well and showed that cross-
spectral slopes could be used to distinguish between resting-
state and increased mental workload conditions. MRCSA also
carries potential utility in disciplines other than neuroscience,
e.g., financial data analysis, where periodic trends might
present a similar challenge as narrow-band oscillations in
neurophysiological signals.
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