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Abstract

Low serum 1,25-dihydroxyvitamin D (1,25(OH)2D) in end-stage renal disease (ESRD) is 
considered a consequence of elevated fibroblast growth factor 23 (FGF23) and concomitant 
reduced activity of renal 1α-hydroxylase (CYP27B1). Current ESRD treatment strategies 
to increase serum calcium and suppress secondary hyperparathyroidism involve 
supplementation with vitamin D analogues that circumvent 1α-hydroxylase. This overlooks 
the potential importance of 25-hydroxyvitamin D (25(OH)D) deficiency as a contributor 
to low serum 1,25(OH)2D. We investigated the effects of vitamin D (cholecalciferol) 
supplementation (40,000 IU for 12 weeks and maintenance dose of 20,000 IU fortnightly), 
on multiple serum vitamin D metabolites (25(OH)D, 1,25(OH)2D3 and 24,25(OH)2D3) in 55 
haemodialysis patients. Baseline and 12 month data were compared using related-samples 
Wilcoxon signed rank test. All patients remained on active vitamin D analogues as part of 
routine ESRD care. 1,25(OH)2D3 levels were low at baseline (normal range: 60–120 pmol/L). 
Cholecalciferol supplementation normalised both serum 25(OH)D and 1,25(OH)2D3. Median 
serum 25(OH)D increased from 35.1 nmol/L (IQR: 23.0–47.5 nmol/L) to 119.9 nmol/L  
(IQR: 99.5–143.3 nmol/L) (P < 0.001). Median serum 1,25(OH)2D3 and 24,25(OH)2D3 
increased from 48.3 pmol/L (IQR: 35.9–57.9 pmol/L) and 3.8 nmol/L (IQR: 2.3–6.0 nmol/L) to 
96.2 pmol/L (IQR: 77.1–130.6 pmol/L) and 12.3 nmol/L (IQR: 9–16.4 nmol/L), respectively  
(P < 0.001). A non-significant reduction in daily active vitamin D analogue dose occurred, 
0.94 µmcg at baseline to 0.77 µmcg at 12 months (P = 0.73). The ability to synthesise 
1,25(OH)2D3 in ESRD is maintained but is substrate dependent, and serum 25(OH)D 
was a limiting factor at baseline. Therefore, 1,25(OH)2D3 deficiency in ESRD is partly a 
consequence of 25(OH)D deficiency, rather than solely due to reduced 1α-hydroxylase 
activity as suggested by current treatment strategies.

Introduction

The kidney is the major site for synthesis of the active form 
of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). 
The enzyme that synthesises 1,25(OH)2D from precursor 
25-hydroxyvitamin D (25(OH)D), 1α-hydroxylase 

(CYP27B1), is expressed primarily in the renal proximal 
tubule (1, 2), and is positively and negatively regulated 
by parathyroid hormone (PTH) and fibroblast growth 
factor 23 (FGF23), respectively (3). While the kidney has 
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a central role in 1,25(OH)2D production, 1α-hydroxylase 
activity has been found in several other cell types 
throughout the body including the parathyroid glands, 
testes, skin, placenta, decidua and macrophages (4, 5). 
The precise contribution of these extra-renal sites of 
1α-hydroxylase activity to circulating levels of 1,25(OH)2D  
remains unclear.

Serum 1,25(OH)2D concentration decreases as chronic 
kidney disease (CKD) progresses, as a consequence of 
reduced renal 1,25(OH)2D synthesis (6, 7). This, in turn, 
contributes to the lack of feedback regulation of PTH 
that can lead to secondary hyperparathyroidism in CKD, 
notably in end-stage renal disease (ESRD). To address 
this, patients with ESRD are routinely prescribed either 
1,25(OH)2D (calcitriol), synthetic analogues of 1,25(OH)2D 
(e.g. paracalcitol) or vitamin D analogues that do not 
require the action of 1α-hydroxylase (e.g. alfacalcidol). 
However, patients with ESRD also have low serum levels 
of the substrate for 1α-hydroxylase (25(OH)D), with 
reported prevalence rates of 25(OH)D deficiency of up 
to 95% (8, 9). The significance of this finding is unclear 
but low serum 25(OH)D may also contribute to impaired 
feedback regulation of PTH (10). 25(OH)D is a substrate 
for both activating and catabolic pathways; thus in 
addition to low serum levels of 25(OH)D and 1,25(OH)2D, 
CKD patients may also have dysregulated levels of 
24,25-dihydroxyvitamin D (24,25(OH)2D). 24,25(OH)2D is 
the most abundant product of vitamin D catabolism and is 
produced by the enzyme 24-hydroxylase (CYP24A1) (11). 
The relative abundance of catabolic vitamin D metabolites 
such as 24,25(OH)2D in patients with CKD has yet to be 
fully defined, but it is important to recognise that decreased 
availability of substrate 25(OH)D may be exacerbated by 
the stimulatory effect of FGF23 on CYP24A1 (12). With this 
in mind, recent research in healthy populations suggest 
that ratios between vitamin D metabolites may provide 
a more pathophysiologically relevant insight into the 
metabolism and function of vitamin D (13). An overview of 
the chemical structures and hydroxylation steps is shown 
in Fig. 1.

In this study, we hypothesised that ESRD 
patients undergoing haemodialysis may benefit from 
supplementation with vitamin D3 (cholecalciferol) 
to elevate serum 25(OH)D levels in addition to 
conventional active vitamin D analogues. Based on 
insight into pathways involved in vitamin D metabolism, 
we postulated that patients with ESRD, when  
given sufficient substrate, retain the capacity to  
generate a significant rise in serum levels of  
1,25(OH)2D3

Materials and methods

All aspects of the study received National Health Service 
ethical approval (reference 14/EE/10 and 14/NS/1012). 
Patients were included if they were established on 
haemodialysis for ≥1 month (three sessions per week 
of 3.5–4 h), had no hospital admissions within the past 
4 weeks and had no active malignancy. Patients were 
excluded if they were already taking cholecalciferol or 
ergocalciferol. All 202 patients having dialysis at University 
Hospitals Coventry and Warwickshire (UHCW) satellite 
dialysis centres meeting the inclusion criteria were invited 
for recruitment; 81 agreed to participate. Cholecalciferol 
supplementation was given by the nursing staff, during 
routine dialysis visits, based on serum 25(OH)D levels. 
Patients received cholecalciferol, 40,000 IU weekly for 
12 weeks if serum 25(OH)D was <50 nmol/L, 20,000 IU 
fortnightly if serum 25(OH)D was 75–150 nmol/L, and 
cholecalciferol was stopped if serum 25(OH)D was ≥150 
nmol/L. Serum 25(OH)D was measured 3 monthly. The 
aim was to maintain serum 25(OH)D levels between 75 
and 150 nmol/L; the lower target of 75 nmol/L is based 
on the level defined as sufficient by current Endocrine 
Society guidelines (14). Active analogue dose was recorded 
at baseline and study end. Serum calcium was measured 
monthly and PTH concentration 3 monthly as part of usual 
care. Blood samples were taken by renal research nurses at 
routine dialysis sessions, processed and stored at −80°C, for 
subsequent measurement of serum 25(OH)D, 1,25(OH)2D3 
and 24,25(OH)2D3 using liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) at baseline (T0) and 
after 12 months supplementation (T1) (using previously 
described, quality controlled methods) (15). All samples 
(T0 and T1) were processed for the measurement of vitamin 
D metabolites at study end; clinicians were blinded to 
serum 1,25(OH)2D3 levels during the study. Doses of 
active vitamin D analogues were modified according to 
calcium and PTH levels as part of usual practice. Vitamin D  
metabolite ratios (VMRs): 1,25(OH)2D3:25(OH)D3,  
25(OH)D3:24,25(OH)2D3 and 1,25(OH)2D3:24,25(OH)2D3,  
were calculated. Analysis was carried out using the related-
samples Wilcoxon signed rank test and Spearman’s 
rank correlation coefficient to compare data pre- and  
post-cholecalciferol supplementation.

Results

Complete data for all parameters at T0 and T1 was 
obtained for 55 of 81 participants. Reasons for  
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incomplete data were death (n = 15), transplantation 
(n = 4), change in modality to peritoneal dialysis (n = 1) and 
haemolysed samples (n = 6). Participants had a median 
age of 69 (range: 27–76), 50% were male and 93% White. 
The study population was representative of the local 
haemodialysis population for all characteristics except 
for ethnicity; 74% of UHCW haemodialysis patients  
were White.

Serum levels of all three vitamin D3 metabolites 
(25(OH)D3, 1,25(OH)2D3 and 24,25(OH)2D3) showed a 

significant increase from baseline to 12 months following 
supplementation with cholecalciferol, P < 0.001 (Fig. 2 
and Table 1). This elevation of individual metabolites 
was associated with a significant reduction in the ratio of 
1,25(OH)2D3:25(OH)D3 and 1,25(OH)2D3:24,25(OH)2D3,  
P = 0.01 and P = 0.05, respectively (Fig. 2 and Table 1).  
There was no significant change in the ratio of  
25(OH)D3:24,25(OH)2D3, P = 0.70. A significant increase in 
serum calcium occurred, P = 0.001. There was no change in 
serum PTH (Table 1).

Figure 1
Vitamin D metabolism – the chemical structures and hydroxylation steps. 25-hydroxylase (25-hydroxylase, CYP2R1) converts vitamin D to 25(OH)D in the 
liver. 1α-hydroxylase (1α-hydroxylase, CYP27B1) converts 25(OH)D to 1,25(OH)2D in the kidney. Other tissues contain these enzymes, but the liver is the 
main source of 25-hydroxylase, and the kidney is considered the main source for 1α-hydroxylase. 1,25(OH)2D is further metabolised by 24-hydroxylase 
(24-hydroxylase, CYP24A1) to 1,24,25(OH)3D. 24-hydroxylase also acts on 25(OH)D to produce 24,25(OH)2D. The production of these metabolites is 
considered degradation; expression of 24-hydroxylase and 1α-hydroxylase is reciprocal in order to control 1,25(OH)2D levels.
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There was no correlation between serum 25(OH)D  
and 1,25(OH)2D3 at T0 or T1, rho = 0.165, P = 0.23, and 
rho = 0.180, P = 0.19, respectively. There was also no 
correlation between serum calcium and serum 25(OH)D 
at T0 or T1, rho = 0.092, P = 0.10, and rho = 0.106, P = 0.11. 
Serum 1,25(OH)2D3 did not correlate with calcium at 
baseline but there was a weak, significant correlation 
at study end (T1), rho = 0.094, P = 0.50 and rho = 0.288, 
P = 0.033, respectively. Mean prescribed daily active 

vitamin D analogue dose reduced from 0.94 at T0 to  
0.77 µg at T1 (P = 0.73). Forty-four of 55 patients (80%) 
were prescribed an active vitamin D analogue at baseline 
and 41 of 55 (75%) were prescribed an active vitamin D 
analogue at 12 months. The prescribed dose of active 
vitamin D analogue reduced during study follow-up in 14 
patients, did not change in 25 patients, and increased (or 
was commenced) in 7 patients. 1-Alfacalcidol accounted 
91% of active analogue prescriptions (Table 2).

Figure 2
Serum 25(OH)D, 24,25(OH)2D3 and 1,25(OH)2D3, 
and the metabolite ratios 25(OH)D3:24,25(OH)2D3, 
1,25(OH)2D3:24,25(OH)2D3 and 1,25(OH)2D3:25(OH)D3 
at baseline and 12 months. Serum 25(OH)D, 
24,25(OH)2D3 and 1,25(OH)2D3 were measured 
using LC-MS/MS and the ratios  
25(OH)D3:24,25(OH)2D3, 1,25(OH)2D3:24,25(OH)2D3 
and 1,25(OH)2D3:25(OH)D3 calculated, in patients 
at baseline, pre-cholecalciferol supplementation 
(T0), and again at 12 months (T1). (A) Serum 
25(OH)D increased: 35.1 nmol/L (23.0–47.5) vs 
130.0 nmol/L (99.5–143.3), P < 0.001. (B) Serum 
24,25(OH)2D3 increased: 3.8 nmol/L (2.3–6.0) vs 
12.3 nmol (9.0–16.4), P < 0.001. (C) No significant 
change in 25(OH)D3:24,25(OH)2D3: 9.1 (7.0–12.4) 
vs 10.3 (8.0–12.9) respectively, P = 0.70. (D) Serum 
1,25(OH)2D3 increased: 48.3 pmol/L (35.9–57.9) vs 
96.2 pmol/L (77.1–130.6), P < 0.001. (E) 
1,25(OH)2D3:24,25(OH)2D3 reduced: 10.4 (5.8–19.4) 
vs 7.9 (5.6–11.9) P = 0.05. (F) 1,25(OH)2D3:25(OH)D3 

also reduced: 1.2 (0.8–2.1) vs 0.9 (0.6–1.1),  
P = 0.01. Wilcoxon signed rank test. Data 
represent median (IQR), n  = 55.

Table 1 Calcium, parathyroid hormone, vitamin D metabolites and metabolite ratios at baseline and 12 months.

Serum level/vitamin D metabolite ratio Baseline (T0) median (IQR) 12 months (T1) median (IQR) Wilcoxon signed-rank test (P)

Corrected calcium (mmol/L) 2.35 (2.23–2.44) 2.39 (2.32–2.52) 0.001
Parathyroid hormone (pmol/L) 27.0 (16.0–43.5) 29.0 (14.0–42.5) 0.81
25(OH)D3 (nmol/L) 35.1 (23.0–47.5) 119.9 (99.5–143.3) <0.001
1,25(OH)2D3 (pmol/L) 48.3 (35.9–57.9) 96.2 (77.1–130.6) <0.001
24,25(OH)2D3 (nmol/L) 3.8 (2.3–6.0) 12.3 (9–16.4) <0.001
1,25(OH)2D3:25(OH)D3 1.2 (0.8–2.1) 0.9 (0.6–1.1) 0.01
25(OH)D3:24,25(OH)2D3 9.1 (7.0–12.4) 10.3 (8–12.9) 0.70
1,25(OH)2D3:24,25(OH)2D3 10.4 (5.8–19.4) 7.9 (5.6–11.9) 0.05

Serum corrected calcium, parathyroid hormone, 25(OH)D3, 1,25(OH)2D3 and 24,25(OH)2D3 were measured at baseline, pre-cholecalciferol 
supplementation (T0) and again at 12 months (T1), n  = 55. A significant increase was seen from T0 to T1 in calcium and all three vitamin D metabolites. 
Median calcium remained within target range. The was no change in parathyroid hormone levels. A significant reduction in 1,25(OH)2D3: 25(OH)D3 and 
1,25(OH)2D3: 24,25(OH)2D3 occurred but no significant change was seen from baseline to 12 months in 25(OH)D3: 24,25(OH)2D3.
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Discussion

This is the first study to date, to assess the impact of 
vitamin D supplementation on the serum vitamin D 
multi-metabolite profile and vitamin D metabolite ratios 
in ESRD. One of the pathophysiological consequences 
of CKD is the reduced renal capacity to synthesise 
1,25(OH)2D, reportedly due to reduced expression of renal 
CYP27B and concomitant reduction of 1α-hydroxylase 
activity in the face of elevated levels of FGF23 (6, 12). In 
the current study, serum 1,25(OH)2D3 concentrations 
were low at baseline (median 48.3 pmol/L, IQR: 35.9–57.9, 
normal reference range 60–108 pmol/L) (16) despite 80% 
of patients receiving vitamin D analogues to promote 
1,25(OH)2D activity in the context of elevated PTH 
levels. This suggests that vitamin D analogues may be 
utilised immediately rather than being stored in a serum 
1,25(OH)2D pool. A possible explanation for this, yet to be 
demonstrated in the literature, is that a sudden increase in 
1,25(OH)2D3 following active analogue administration is 
met with a catabolic response (by increased 24-hydroxylase 
activity) in a bid to minimise the risk of hypercalcaemia. 
This may, in turn, cause 1,25(OH)2D3 to be metabolised to 
its less-active 24-hydroxylated catabolite 1,24,25(OH)3D3. 
This metabolite was not measured in the current study 
but levels of 24,25(OH)2D3 are frequently used as a general 
marker of 24-hydroxylase activity. In the current study, 
the circulating levels of 24,25(OH)2D3 (3.8 nmol/L,  
2.3–6.0 nmol/L) were similar to previously reported serum 
values for healthy individuals (17). However, this level 
increased three-fold following vitamin D supplementation 
highlighting further capacity for 24-hydroxylation of 
vitamin D metabolites that may rapidly counteract 
elevation of 1,25(OH)2D3 levels following administration 
of active analogues.

A lack of consensus on optimal serum levels of 
25(OH)D has hindered the management of vitamin D 
deficiency (18, 19). The UK Scientific Advisory Committee 
on Nutrition (SACN) guidance recommends serum levels 
of 25(OH)D ≥25 nmol/L, with supplementation advised 

for those below this level (20). Most of the participants 
in the current study would, therefore, not have met the 
SACN criteria for supplementation at baseline. However, 
prevention of different chronic disease states may require 
different serum 25(OH)D concentrations (21). Data 
from the current study suggest that patients with ESRD 
may need higher serum 25(OH)D to facilitate optimal 
1α-hydroxylase activity; in this study, most patients 
achieved normal serum 1,25(OH)2D3 concentration with 
serum 25(OH)D ≥75 nmol/L (the level defined as sufficient 
by the Endocrine Society) (14).

Data presented here also indicate that ESRD patients 
retain a significant capacity for 1α-hydroxylase activity, 
with synthesis of 1,25(OH)2D3 occurring in a substrate 
(25(OH)D3)-dependent fashion. Previous studies have 
also described the potential for synthesis of 1,25(OH)2D3 
in ESRD patients. Jean et al. demonstrated a rise in serum 
1,25(OH)2D3 in response to cholecalciferol supplementation 
but not within the normal reference range (45 ± 13 pmol/L 
at study end) (22). Patients had lower baseline serum 
1,25(OH)2D3 than the current study and active vitamin 
D analogue use was an exclusion criteria (22). Other 
studies also demonstrated increased serum 1,25(OH)2D3 

in response to cholecalciferol supplementation, with 
larger increases seen in patients receiving concomitant 
alfacalcidol (23). Again, the increased serum 1,25(OH)2D3 
in these patients did not reach normal range but this 
could have been due to the short intervention period of 
8 weeks (23). Whether cholecalciferol as a sole therapy is 
sufficient remains unknown; concurrent active analogue 
therapy is shown to be safe (not associated with increased 
risk of hypercalcaemia) (24, 25, 26), and may be required to 
maintain target serum 1,25(OH)2D3.

Cholecalciferol supplementation increases the 
inactive substrate 25(OH)D rather than directly increasing 
1,25(OH)2D. Increase in serum 25(OH)D and 24,25(OH)2D3 
are disproportionate to 1,25(OH)2D3 increase, 
demonstrating the known tight regulation of 1,25(OH)2D3 

synthesis and secretion (in response to calcium and 
parathyroid hormone) (27). Therefore optimising  

Table 2 Active analogue type and dose at baseline and 12 months.

Active analogue Baseline (µmcg) mean ± s.d. (n) 12 month (µmcg) mean ± s.d. (n) Wilcoxon signed-rank test (P)

1-Alfacalcidol 0.76 ± 1.30 (n = 40) 0.58 ± 0.95 (n = 37) 0.103
Paricalcitol 8.00 (n = 1) 8.00 (n = 1) N/A
Calcitriol 0.92 ± 0.95 (n = 3) 0.79 ± 1.05 (n = 3) 0.180
Total combined 0.94 ± 1.64 (n = 44) 0.77 ± 1.43 (n = 41) 0.73

Forty-four of 55 (80%) subjects were prescribed an active analogue at the start of the study. 1-Alfacalcidol accounted for 91% of active analogue 
prescriptions (40 of 44), three patients were prescribed calcitriol and only one patient was prescribed paricalcitol. There was no significant change in 
active analogue use during the 12-month study period, n  = 55.
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25(OH)D through cholecalciferol supplementation 
will not result in unlimited 1,25(OH)2D and severe 
hypercalcaemia. An increase in median calcium was seen in 
this study, but this was not clinically relevant. In addition, 
the absence of correlation between calcium and 25(OH)D, 
and 1,25(OH)2D3 and 25(OH)D, supports the documented 
safety of cholecalciferol supplementation in ESRD (28, 
29). Other studies have reported no change in serum  
calcium in response to cholecalciferol supplementation 
(23, 24, 25, 26, 30).

Metabolite ratios have been shown to be useful 
markers of altered vitamin D metabolism. For example 
a high 1,25(OH)2D:25(OH)D ratio can help diagnose 
sarcoidosis and a high 25(OH)D:24,25(OH)2D3 ratio can 
be used to diagnose loss of CYP24A1 (24-hydroxylase) 
function (31, 32, 33, 34). The metabolite ratio offers 
insight above that of a single metabolite measurement; 
a low 24,25(OH)2D3 could simply reflect low 25(OH)D 
whereas a high 25(OH)D:24,25(OH)2D3 ratio is a viable 
marker of altered 24-hydroxylase activity (31). A moderate 
elevation of 25(OH)D:24,25(OH)2D due to reduced 
activity of 24-hydroxylase is seen in CKD and bone 
disorders (35, 36, 37). Evidence suggests the value of using  
25(OH)D:24,25(OH)2D in assessment and management of 
both fracture risk and CKD risk (38, 39). Serum 1,25(OH)2D3 
is not routinely measured clinically (40, 41); yet in ESRD 
1,25(OH)2D3 deficiency is routinely assumed, and active 
analogue treatment is routinely prescribed (42). A low serum 
1,25(OH)2D3 in the presence of a high 1,25(OH)2D3:25(OH)D  
ratio would indicate that 25(OH)D is limiting synthesis 
and secretion of 1,25(OH)2D3, suggesting that treatment 
could include serum 25(OH)D repletion. Results here 
support the findings of Tang and colleagues who reported 
an inverse correlation between 1,25(OH)2D:24,25(OH)2D 
and serum 25(OH)D in healthy young adults (13). 
Data suggest sufficient serum 25(OH)D provides for 
maintenance of 1,25(OH)2D and 24,25(OH)2D in relative 
proportion (within the normal range). In contrast, when 
25(OH)D is lacking, 1,25(OH)2D:24,25(OH)2D increases 
as the production of serum 1,25(OH)2D is prioritised 
over 24,25(OH)2D. Therefore, it appears that, in the 
presence of low 25(OH)D, the 24,25(OH)2D pathway is 
partially inactivated to conserve 25(OH)D for production 
of 1,25(OH)2D. The same study also demonstrated that 
low 25(OH)D (<50 nmol/L), normal 1,25(OH)2D and 
high 1,25(OH)2D:24,25(OH)2D was associated with a 
significantly higher serum PTH (13). It is anticipated 
that treatment with active analogues, for suppression 
of PTH, would increase the 1,25(OH)2D:24,25(OH)2D 
and, therefore, may be counterproductive. Whereas 

treatment focusing on optimising 25(OH)D would induce 
1α-hydroxylase and 24-hydroxylase, increasing 1,25(OH)2D 
and 24,25(OH)2D in a regulated fashion, in turn reducing 
the 1,25(OH)2D:24,25(OH)2D ratio; as shown here. 
Measurement of vitamin D metabolites and calculation 
of the metabolite ratios could, therefore, offer insight 
into the prevention and management of SHPT in CKD. 
Serum PTH did not change in this study but this may be 
due to established secondary hyperparathyroidism in this 
patient cohort which results in parathyroid hyperplasia 
reducing sensitivity to calcium and 1,25(OH)2D through 
downregulation of vitamin D receptors and calcium 
sensing receptors (43, 44). Optimisation of serum 
25(OH)D earlier in the progression of CKD may delay 
the onset, and minimise the severity, of secondary 
hyperparathyroidism (10). The recognition for the need to 
treat 25(OH)D deficiency in the management of secondary 
hyperparathyroidism has grown in recent years, yet in 
ESRD the emphasis has remained on active analogue 
treatment (42).

Prescribers have historically promoted active  
vitamin D analogues to circumvent apparent lack of 
1α-hydroxylase activity (and associated 1,25(OH)2D 
levels) in ESRD yet results here demonstrate otherwise. 
By their very nature, active vitamin D analogues promote 
hypercalcaemia. Cholecalciferol is safer and may provide 
for management of both 25(OH)D and 1,25(OH)2D 
deficiencies. Is it time to approach vitamin D deficiency 
in CKD differently by supplementing the substrate and, 
if indicated by suboptimal serum PTH response, adding 
in the active analogue? For example, analogous to the  
management of anaemia where it is routine to  
administer iron loading initially before concluding a lack 
of erythropoietin. The focus on active vitamin D analogues 
for the treatment of 1,25(OH)2D deficiency in ESRD not 
only overlooks 25(OH)D deficiency, but also vitamin D 
metabolism as a whole. This risks patients’ missing out 
on potential non-bone, as well as bone related benefits of 
serum 25(OH)D (45, 46, 47, 48).

This study is limited by the absence of a control 
group, so a randomised controlled trial is required to: (i) 
confirm findings; (ii) explore potential clinical benefits 
of cholecalciferol repletion; (iii) investigate whether 
concurrent active analogue therapy is required or whether 
cholecalciferol is effective as a sole treatment (can calcium 
and parathyroid hormone levels remain stable without 
the need for an active vitamin analogue in ESRD?). Whilst 
research is steering towards more comprehensive analysis of 
metabolites (49, 50), at present the clinical usefulness of the 
multi-metabolite assay in ESRD requires further research 
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and measurement of serum 25(OH)D concentration 
remains the sole marker of vitamin D status (14). The 
results presented here offer new insight into vitamin D 
metabolism in ESRD, specifically demonstrating that 
haemodialysis patients retain the capacity to significantly 
increase serum 1,25(OH)2D. Conventional oral vitamin D 
(cholecalciferol) supplementation may, therefore, provide 
a cheap and safe strategy for the management of vitamin D 
homeostasis in ESRD patients.
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