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Abstract
Ovarian cancer (OC) is the most lethal gynaecological malignancy, characterized 
by high recurrence and mortality. However, the mechanisms of its pathogenesis 
remain largely unknown, hindering the investigation of the functional roles. This 
study sought to identify key hub genes that may serve as biomarkers correlated 
with prognosis. Here, we conduct an integrated analysis using the weighted gene 
co-expression network analysis (WGCNA) to explore the clinically significant gene 
sets and identify candidate hub genes associated with OC clinical phenotypes. The 
gene expression profiles were obtained from the MERAV database. Validations of 
candidate hub genes were performed with RNASeqV2 data and the corresponding 
clinical information available from The Cancer Genome Atlas (TCGA) database. In ad-
dition, we examined the candidate genes in ovarian cancer cells. Totally, 19 modules 
were identified and 26 hub genes were extracted from the most significant mod-
ule (R2 = .53) in clinical stages. Through the validation of TCGA data, we found that 
five hub genes (COL1A1, DCN, LUM, POSTN and THBS2) predicted poor prognosis. 
Receiver operating characteristic (ROC) curves demonstrated that these five genes 
exhibited diagnostic efficiency for early-stage and advanced-stage cancer. The pro-
tein expression of these five genes in tumour tissues was significantly higher than 
that in normal tissues. Besides, the expression of COL1A1 was associated with the 
TAX resistance of tumours and could be affected by the autophagy level in OC cell 
line. In conclusion, our findings identified five genes could serve as biomarkers re-
lated to the prognosis of OC and may be helpful for revealing pathogenic mechanism 
and developing further research.
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1  | INTRODUC TION

Ovarian cancer (OC), the most fatal gynaecological malignancy, is 
characterized by early diagnosis difficulty, rapid metastasis and high 
recurrence rate.1 Despite good therapeutic response in early stage, 
most patients are diagnosed in advanced stage with poor overall sur-
vival.2 These features are related to the biological mechanism, which 
is the key determinant of outcome.3 Current therapeutic strategies 
of OC have improved significantly. The outcome depend on numbers 
of factors, including the patient's age, physical condition and stage at 
presentation.4 However, the 5-year survival rate for advanced OC is 
much lower than in early stage, and about 70% of patients relapse.5

Previous study has linked OC recurrence to histological type, 
FIGO stage and chemotherapy regimens.6 Numerous genetic vari-
ations occur during the development of the tumour. With the help 
of large-scale screening and bioinformatics, hundreds of genes alter-
ations have been revealed to be closely related to the development 
and prognosis of tumours.7 However, studies of hub genes remain 
lacking. Therefore, more meaningful biomarkers need to be explored.

The weighted gene co-expression network analysis (WGCNA) is a 
powerful technique developed by Langfelder and Horvath.8 It is widely 
used as a systematic biology method to describe the correlation patterns 
between genes and clinical features. Thus, in the present study, we focused 
on the association between the gene sets and common OC phenotypes 
and identified novel biomarkers for better OC prognostic investigation.

In many cases, recurrence leads to adverse reactions to che-
motherapy.9 And tumour recurrence is closely related to drug re-
sistance. In fact, studies have exhibited that drug-resistant cancer 
cells augmented activation of autophagy, which seems to be a major 
obstacle in chemotherapy.10,11 In this context, we validated the can-
didate hub gene COL1A1 which was regulated by autophagy and 
affected the drug sensitivity of tumour cells. This indicates that our 
screening candidates demonstrate the prognostic value of OC.

2  | MATERIAL S AND METHODS

2.1 | Data procession

The gene expression profiles of OC were extracted from the MERAV 
(MERAV, http://merav.wi.mit.edu) database. Data adjustments in-
cluded data filtering, log2 transformation and normalization. All data 
were summarized using ‘Affy’ package from Bioconductor (http://
www.bioco nduct or.org/). Then, the top 25% most variant genes 
were selected for subsequent WGCNA.

2.2 | Establishment of weighted co-
expression network

The chosen variant genes were constructed to an approximate scale-
free fundamental gene co-expression network using the R package 
‘WGCNA’.8

In order to calculate the connection strength between each pair 
of genes, the adjacency matrix aij was defined as follows:

aij encoded the adjacent network connection strength between 
gene i and gene j, xi and xj were vectors of expression value for gene 
i and j, and sij represented Pearson's correlation coefficient between 
gene i and gene j. For network generation, genes with a high cor-
relation coefficient were clustered. The network modules were gen-
erated using the topological overlap measure (TOM),12 which was 
calculated using the adjacency matrix.

The adjacency matrix Aij was defined as follows:

According to the TOM-based dissimilarity measure, the net-
work was built with the function blockwiseModules, where the 
minimum module size (minModuleSize) was 30. Average linkage 
hierarchical clustering was conducted to classify genes with high 
correlation coefficients into the same modules. DynamicTreeCut 
algorithm was used to identify the co-expression module, where 
MergeCutHeight = 0.25 merges modules with a similarity of 0.75.

2.3 | Clinical significant relevant modules identify

After obtaining the gene modules, we combined the clinical informa-
tion with the genes in modules to analyse gene significance (GS) and the 
modular membership (MM), which were used to measure the correla-
tion between the sample traits and the gene modules. Next, the tar-
geted module genes were visualized with Cytoscape 3.6.1 software.13

2.4 | Functional enrichment annotation

The targeted gene module was annotated, visualized and ana-
lysed using g:Profiler (https://biit.cs.ut.ee/gprof iler/gconv ert.cgi) 
with default settings. The enrichment contains biological process 
(BP), molecular function (MF), cellular component (CC) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG). The cut-off crite-
rion was P < .001. The results were demonstrated in the form of 
networks.

2.5 | Hub gene identification and validation

Hub genes are the genes that rank high in connectivity in a mod-
ule. They are located at the central hub, which can represent the 
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characteristics of the module. Compared with all genes in the net-
work, the hub genes in the module have greater biological signifi-
cance. In this study, the protein-protein interaction (PPI) information 
was extracted from the STRING database (http://strin g-db.org/) and 
visualized using Cytoscape software. Subsequently, the plug-in mo-
lecular complex detection (MCODE) of Cytoscape was used to con-
struct the subnetwork for further validation.

Kaplan-Meier plotter (www. kmplot.com) was used to perform 
progression-free survival (PFS) analyses of hub genes.14 RNA sequenc-
ing data and the corresponding clinical information of OC were ex-
tracted from The Cancer Genome Atlas Project (TCGA, https://cance 
rgeno me.nih.gov/) database and normalized using edgeR package. The 
expression of hub genes was measured by the immunohistochemistry 
using the Human Protein Atlas (http://www.prote inatlas. org).

2.6 | Cell culture

The human ovarian carcinoma A2780 cell line was  purchased from 
ATCC (American Type Culture Collection), and TAX was obtained from 
Sigma (Poole, UK). TAX-resistant A2780R cell line was developed by ex-
posing them to cyclic TAX treatment. Cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM) containing 10% foetal bovine serum 
or serum-free DMEM at 37°C with 5% CO2 and incubated for the fol-
lowing experiments. 3-methyladenine (3-MA), dissolved directly in 
media, was purchased from Selleck Chemicals, and cells were treated 
with 3-MA at the concentration of 10 mmol/L for 24 hours.

2.7 | CCK-8 assay

Cell viability was evaluated by performing a Cell Counting Kit-8 
(Dojindo) assay and was measured with the BioTek Gen5 system 
(BioTek) at OD 450 nm.

2.8 | Western blot analysis

Cells in different groups were collected, respectively, and were 
lysed in radioimmunoprecipitation assay (RIPA) lysis buffer 
(Beyotime Biotechnology) containing 1% protease inhibitor 
cocktail. Protein quantitative processing was performed with 
the BCA Kit (Sigma). Protein samples were separated on 10% 
SDS-polyacrylamide gel and blotted to polyvinylidene difluoride 
(PVDF) membranes. Immunoblotting was incubated with the pri-
mary antibody (1:1,000 dilutions) at 4°C overnight and the second-
ary antibody at room temperature for 2 hours. Immunostaining 
was performed with ECL Western blotting detection reagent 
(Thermo).

2.9 | RNA extraction and qRT-PCR

For qRT-PCR analyses, total RNA was extracted using an RNA 
extraction kit (Takara Bio) according to the manufacturer's in-
structions. cDNA syntheses were performed with PrimeScript 

F I G U R E  1   Clustering dendrogram of 
23 samples
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RT Master Mix (Takara Bio) and amplified with SYBR pre-mix EX 
Taq (Takara Bio). The qRT-PCR analyses were performed on a 
7500 PCR system (Applied Biosystems) with the primers shown 
in Table S1.

2.10 | Statistical analysis

The sensitivity and specificity were depicted by receiver operating 
characteristic (ROC) curves using GraphPad Prism software. The 
log-rank test was used to compare survival curves. Student's t test 
was used to compare the differences between groups, and P < .05 
was considered statistically significant. Statistical analyses were 
conducted using R software (version 3.5.0).

3  | RESULTS

3.1 | Construction of weighted co-expression 
network and identification of key modules

After data pre-processing, the top 25% most variant genes were se-
lected for subsequent analyses. The samples were clustered using 
average linkage method and Pearson's correlation analysis (Figure 1). 
In this study, to ensure a scale-free network, the power of β = 8 
(R2 = .919) was chosen for the soft-threshold parameter (Figure 2A-
B). Nineteen modules were identified based on the average linkage 
hierarchical clustering (Figure 2C). The relationships between the 
modules and clinical traits were analysed. Finally, the blue module 
was found significantly correlated with clinical stages and pathologi-
cal T factor (P < .01, Figure 2D). Total genes of the blue module are 
shown in Table S2.

3.2 | Functional enrichment analysis and protein-
protein network construction

The genes in blue module were categorized into four groups, includ-
ing biological process (BP), cellular component (CC), molecular func-
tion (MF) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis. In the BP group, genes were mainly enriched in 
extracellular region, endomembrane system and vesicle; in the CC 
group, anatomical structure development, multicellular organism 
development and development process; and in the MF group, pro-
tein binding, growth factor binding and structural molecule activity. 
According to KEGG pathway analysis, genes were mainly involved in 
ECM-receptor interaction, PI3K-AKT signalling pathway and protein 
digestion and absorption (Figure 3A-D).

Based on the protein associations obtained from the String da-
tabase and the utilization of MCODE algorithm, 26 highly intercon-
nected genes were selected to better characterize the blue module 
and were identified as hub genes (Figure 3E-F).

3.3 | Validation of hub genes

To further validate the prognostic value of the hub genes, we con-
ducted survival analyses of the hub genes. Then, five genes includ-
ing COL1A1, DCN, LUM, POSTN and THBS2 were found negatively 
associated with the PFS (Figure 4A-E). In order to verify these five 
genes, expression levels of the selected genes were evaluated 
based on the TCGA data. In 379 OC samples from TCGA, the ex-
pression levels of these five genes were obviously up-regulated in 
advanced tumour stages (Figure 4F-J). ROC curve analyses showed 
that COL1A1, DCN, LUM, POSTN and THBS2 exhibited diagnostic 
efficiency for early-stage and advanced-stage OC (Figure 4K-O). In 
addition, immunohistochemistry data from the Human Protein Atlas 
demonstrated that protein levels were higher in tumours compared 
with normal samples (Figure 5A-J).

3.4 | Construction of tax-resistant cells and 
experimental validation of COL1A1

To further test the importance of the hub genes, COL1A1 was selected 
as we also previously reported.15 Drug resistance of OC chemotherapy 
is an important factor affecting prognosis, and TAX is currently the first 
line of chemotherapy. Studies have shown that the autophagy level of 
drug-resistant tumour cells was higher than that of parental tumour 
cells.16,17 Therefore, we constructed the A2780 TAX-resistant OC cell 
line and verified the expression change in COL1A1 gene and the au-
tophagy level. Tax-resistant cells showed considerable difference in cell 
morphology (Figure 6A). After adding the autophagy inhibitor (3-MA) 
to the A2780R cells, COL1A1 expression was significantly lower com-
pared with GAPDH, indicating that COL1A1 was affected by autophagy 
in TAX-resistant OC cells (Figure 6B). In order to explore the relationship 
between autophagy and TAX resistance, we adopted CCK-8 method to 
detect cell activity at different TAX concentrations. The difference in 
TAX resistance among groups was then determined by half-maximal 
inhibitory concentration (IC50). In A2780R group, IC50 was signifi-
cantly higher than the parental A2780 group (22.42 ± 1.007 μmol/L vs 
5.109 ± 1.478 μmol/L, P < .05, Figure 6C-D), and 3-MA reduced drug 
resistance compared with A2780R group (IC50, 15.82 ± 2.07 μmol/L 
vs 22.42 ± 1.007 μmol/L, P < .05, Figure 6C-D). This suggested that au-
tophagy could affect TAX resistance in OC cells. Further, we found that 
the mRNA expression level of COL1A1 was related to TAX resistance 
of OC cells. With the inhibition of autophagy, COL1A1 mRNA expres-
sion showed a similar trend (Figure 6E). This indicates that COL1A1 is 
related to the autophagy level and TAX resistance of OC cells. And the 
prognostic value was further demonstrated.

4  | DISCUSSION

Ovarian cancer (OC), one of the three common gynaecological ma-
lignancies, ranks seventh among the tumours in women.18 There 
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are numerous factors that affect the prognosis of OC, and the 
mechanism is complicated. Most OC patients will undergo clini-
cal standardized treatment, but still develop tumour recurrence 
in 6-18 months after treatment; however, advanced OC has a 
worse prognosis.19  Therefore, the analyses of OC’s clinical stages 
and drug-resistance have important references value. It is neces-
sary to conduct in-depth analyses in clinical and basic researches 
to find out the biomarkers for the prognosis and explore their 
mechanisms.

In the current exploratory research, it is very important to con-
struct a gene co-expression network, which can help us identify 
genes related to diseases.20 Gene sets of weak effect are difficult for 
traditional analysis, but the WGCNA system is a good supplement, 

and modules can integrate weakly affecting genes. WGCNA has been 
successfully applied in the study of disease pathogenesis, classifica-
tion, diagnosis and prognosis. After the power function processing, 
WGCNA will not make strong correlation relationships affected; 
however, the weak correlation relationships decrease significantly, 
which leads to the unsigned relationship network. Comparing with 
the conventional clustering method, the non-scale network greatly 
demonstrates the whole physiological process of genes involved 
in the biological process, and the results are more credible. In this 
study, WGCNA was used to analyse the gene expression data of 
OC and 19 independent modules were obtained, among which blue 
module was the most relevant to OC clinical stage. Finally, we iden-
tified five genes (COL1A1, DCN, LUM, POSTN and THBS2) that are 

F I G U R E  2   Determination of soft-thresholding power in the WGCNA. A, Analysis of the scale-free fit index for various soft-thresholding 
powers (β). B, Analysis of the mean connectivity for various soft-thresholding powers (β). We choose the lowest β that results in approximate 
scale-free topology. Identification of modules associated with the clinical traits of ovarian cancer. C, Dendrogram of all differentially 
expressed genes clustered based on a dissimilarity measure (1-TOM). The colour band provides a simple visual comparison of module 
assignments. The colour band shows the results from the automatic single block analysis. D, Heat map of the correlation between module 
eigengenes and clinical traits of ovarian cancer
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F I G U R E  3   Gene ontology and pathway enrichment and network analysis of blue module genes. Biological process analysis (A). Cellular 
component analysis (B). Molecular function analysis (C). KEGG pathway analysis (D). Protein-protein network of blue module genes (E). 
Subnetwork, the yellow nodes represent hub genes in the module (F)

F I G U R E  4   Progression-free survival (PFS) of the five hub genes in ovarian cancer based on Kaplan-Meier plotter. The patients were 
stratified into high-level group and low-level group according to median expression. (A) COL1A1. (B) DCN. (C) LUM. (D) POSTN. (E) THBS2. 
The correlation of gene expression of COL1A1, DCN, LUM, POSTN and THBS2 with clinical stages. The mRNA levels of COL1A1 (F), DCN 
(G), LUM (H), POSTN (I) and THBS2 (J). *P < .05. One-way analysis of variance (ANOVA) was used to evaluate the statistical significance 
of differences. Receiver operator characteristic (ROC) curve analysis, early stage (I/II) vs advanced stage (III/IV). (K) COL1A1, (L) DCN, (M) 
LUM, (N) POSTN and (O) THBS2
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associated with clinical phenotype and may serve as potential new 
biomarkers.

Autophagy plays a complex role in human cancer, which is in-
fluenced by tumour micro-environment, carcinogenic mutation 
type and other factors. It can effectively inhibit tumour growth in 
early stage. However, when cancer has suffered a long-term stim-
ulation, autophagy could degrade lipids and proteins to produce 
ATP, which promotes the development and growth of cancer.17 
Among the five candidate biomarkers, the collagen type I alpha 
1 chain (COL1A1) was found to be closely related to the devel-
opment of OC, which was consistent with our previous study.15 
Therefore, we constructed the A2780 TAX resistance cell line and 
attempted to verify the relationships among COL1A1, autophagy 

and TAX resistance of OC. The results showed that the TAX resis-
tance of tumour cells was positively correlated with the autoph-
agy level. Meanwhile, the inhibition of autophagy also decreased 
the expression of COL1A1. This indicates that COL1A1 is closely 
related to chemotherapy resistance and clinical stages, which 
demonstrated its prognostic value.

Collagen, the primary component of extracellular matrix (ECM), 
is the most abundant protein in the body. It ensures the structural 
integrity of tissues and organs and is closely related to the early de-
velopment of the human body, cell-cell connection, organ formation, 
platelet aggregation, cell chemotaxis, membrane permeability and 
other functions.21 The entire family of collagen, encoded by more 
than 30 different genes, contain 19 types of collagen.22 Type I col-
lagen (COL1) is found in different connective tissues of the human 
body and is most abundant in human tissues. COL1 consists of two 
alpha 1(I) chains (COL1A1) and one alpha 2(I) chain (COL1A2) in a 
triple helix structure. The three peptide chains intertwine with each 
other to form a long helix, forming the unique triple-helix structure 
of the collagen molecule. In OC, the degradation of mature COL1 
reflects the clinical changes in cytotoxic chemotherapy and indi-
cates the prognosis.23 Our results indicated that the expression of 
COL1A1 was increased in OC tissues compared with normal tissues 
and that its expression was significantly associated with clinical 
stages and TAX resistance.

Decorin (DCN), an important component of ECM, belongs 
to the small leucine-rich proteoglycans (SLRPs) family. DCN is a 
three-dimensional structure with four different domains, which 
can interact with a variety of cytokines or membrane receptors 
and participate in the regulation of collagen fibre formation.24,25 
Studies have found that DCN can inhibit the proliferation and mi-
gration of a variety of tumour cells in vitro, such as liver cancer, 
kidney cancer and breast cancer.26-28 In this study, it was found 
that DCN expression in tumour tissues was significantly higher 
than that in normal tissues, but the difference in advanced and 
early OC was not significant, suggesting that DCN is an onco-
gene in tumorigenesis, but it has no predictive effect on tumour 
development.

F I G U R E  5   Immunohistochemistry of the five hub genes based 
on the Human Protein Atlas. A, Protein levels of COL1A1 in normal 
tissue (staining: high; intensity: moderate; quantity: <25%). B, 
Protein levels of COL1A1 in tumour tissue (staining: high; intensity: 
strong; quantity: >75%). C, Protein levels of DCN in normal tissue 
(staining: low; intensity: moderate; quantity: <25%). D, Protein 
levels of DCN in tumour tissue (staining: high; intensity: strong; 
quantity: >75%). E, Protein levels of LUM in normal tissue (staining: 
low; intensity: moderate; quantity: <25%). F, Protein levels of 
LUM in tumour tissue (staining: high; intensity: strong; quantity: 
>75%). G, Protein levels of POSTN in normal tissue (staining: not 
detected; intensity: weak; quantity: <25%). H, Protein levels of 
POSTN in tumour tissue (staining: medium; intensity: moderate; 
quantity:<25%). I, Protein levels of THBS2 in normal tissue (staining: 
medium; intensity: strong; quantity: <25%). J, Protein levels of 
THBS2 in tumour tissue (staining: medium; intensity: strong; 
quantity: 25%-50%)
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Lumican (LUM), an important component of ECM, is a mainly 
keratin-rich polymeric protein originally found in the corneal stroma 
and is also a member of the SLRPs-related family. It is widely ex-
pressed in human skin, blood vessels, lungs, breast, pancreas, col-
orectal, articular cartilage and other tissues.29 Aberrant expression 
of LUM can further affect the metastasis and invasion of tumour.30 
In breast cancer, high expression of LUM indicates poor prognosis.31 
However, LUM can induce proteoglycan composition changes and 
regulate the cell cycle to participate in tumour development.32 In the 
validation data of TCGA, our results indicated that LUM was signifi-
cantly up-regulated in OC tissues, and even higher in advanced stage 
than in early stage.

Periostin (POSTN) is a cellular adhesive protein. As an ECM 
protein, POSTN has been found to be highly expressed in a variety 

of malignancies and is often associated with recurrence, metasta-
sis and poor prognosis.33-35 In OC, study has found that POSTN 
expression was substantially higher with chemotherapy resistance 
specimens than in those with chemotherapy-sensitive patients.36 
In our analysis, POSTN expression is negatively correlated with 
PFS, and the expression is more significantly up-regulated in ad-
vanced OC.

As an important member of the thrombospondins (THBS) fam-
ily, thrombospondin-2 (THBS2) participates in a variety of cellular 
biological processes by binding ECM proteins and cell-surface re-
ceptors.37 Studies have shown that THBS2 plays an important role in 
tumours and is related to the degree of malignancy.38-42 In this study, 
we found that THBS2 may be related to the clinical stage of OC and 
may be used as a biomarker for the prognosis.

F I G U R E  6   Experimental validation of COL1A1. A, Cellular morphological difference between parental A2780 and Tax-resistant 
A2780R cell line. B, Western blotting showing the expression levels of COL1A1, LC3 and GAPDH. C, D, Inhibition rate of different TAX 
concentrations on A2780, A2780R and A2780R + 3MA, respectively. The difference in TAX resistance represented by IC50 (IC50, 5.109± 
1.478 μmol/L vs 15.82± 2.07 μmol/L vs 22.42± 1.007 μmol/L). E, Quantitative real-time PCR (qRT-PCR) was performed to analyse the 
mRNA levels of COL1A1 and autophagy (BECN1 and ATG5) genes (n = 3). *P < .05; **P < .01; and ***P < .001. Student's t tests were used to 
evaluate the statistical significance of differences. BECN1: Beclin 1; ATG5: autophagy-related 5
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All five biomarkers we screened are closely related to the for-
mation of ECM. This may shed light on the pathophysiological 
mechanism of OC and contribute to potential targeted therapies. 
In conclusion, our WGCNA identified candidate biomarkers for OC. 
Meanwhile, further studies were needed to make clear the underly-
ing molecular mechanisms.
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