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ABSTRACT Clear similarities between antibiotic resistance islands in the chromo-
somes of extensively antibiotic-resistant isolates from the two dominant, globally
distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin.
A close relative of the likely progenitor of both of these regions was found in R1215,
a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980.
The 37.8-kb resistance region in R1215 lies within the mucB gene and includes
aacC1, aadA1, aphA1b, blaTEM, catA1, sul1, and tetA(A), genes that confer resistance
to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicil-
lin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone
of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-
Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrange-
ments, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest
form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the
multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in
AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has
been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create
the MARR of AbaR0, a different circular form, again generated by IS26 from an
R1215 resistance region variant, has been opened at a different point by recombina-
tion with a copy of the sul1 gene already present in the AbaR precursor. Recent
IncM plasmids related to R1215 have a variant resistance island containing a blaSHV

gene in the same location.

IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii cur-
rently plaguing modern medicine each acquired resistance to all of the original anti-
biotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the
1970s and then became resistant to antibiotics from newer families after they were
introduced in the 1980s. Here, we show that, in both of the dominant globally dis-
seminated A. baumannii clones, a related set of antibiotic resistance genes was ac-
quired together from the same resistance region that had already evolved in an
IncM plasmid. In both cases, the action of IS26 was important in this process, but
homologous recombination was also involved. The findings highlight the fact that
complex regions carrying several resistance genes can evolve in one location or or-
ganism and all or part of the evolved region can then move to other locations and
other organisms, conferring resistance to several antibiotics in a single step.
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Gram-negative bacteria share a relatively small number of genes that confer resis-
tance to the original antibiotics (such as ampicillin, tetracycline, kanamycin, and

sulfonamides). These genes have all been shown to be included within mobile ele-
ments that facilitate their spread, namely, compound or class I transposons, class II
transposons, or class 1 integrons and their associated gene cassettes. In early resistant
isolates, the transposons were generally intact. However, over time more complex
resistance regions have emerged as various mobile elements have acted on one
another. These regions include several resistance genes either in transposons located
within other transposons, such as Tn2670 (1) or Tn4 (2). They are frequently found in
plasmids that carry horizontal transfer functions, allowing them to spread into multiple
strains and species. For example, Tn2670, which includes Tn21, and Tn10 were first
found in the FIIA plasmid NR1 (or R100) in the late 1950s (reviewed in reference 1),
Tn1696 was found in the IncP plasmid R1033 in 1979 (3, 4), and Tn1721 was found in
pRSD1 in 1979 (5). As further events took place, resistance genes were both added and
lost, and rearrangements also occurred, these regions evolved to become increasingly
complex arrangements of a series of fragments, each derived from an original trans-
poson. Indeed, as many complete plasmid sequences have become available, evidence
has emerged that much of the evolution of large resistance regions occurs within the
boundaries of a transposon that is located in a specific position. For example, the class
1 integron in SGI1 genomic islands found in Salmonella and Proteus chromosomes has
many internal configurations (reviewed in reference 6), many A/C plasmids carry a form
of the ARI-A resistance island (7), which has a fixed location but varied gene content
(reviewed in reference 8), and evolution of a resistance region in situ has also been
reported for IncHI1 plasmids (9) and IncL/M plasmids (10). The final arrangements can
include characteristic specific junctions, such as the exact location of a transposon or
insertion sequence (IS), or the junction between regions derived from different mobile
elements, which allow larger complex regions with a shared history to be identified.

Acinetobacter baumannii is an important nosocomial pathogen whose treatment is
increasingly problematic due to high levels of antibiotic resistance. Both globally
disseminated clones, global clones 1 and 2 (GC1 and GC2), contain several antibiotic
resistance genes in chromosomally located resistance islands that are made up of
transposons and fragments of transposons. GC1 isolates carry a single region desig-
nated AbaR (11–16), whereas two resistance islands are found in most GC2 isolates
(17–19). The multiple antibiotic resistance region (MARR) in the center of AbaR islands
in GC1 isolates and AbGRI2, found in recent GC2 isolates, have been found to share
some features (17). Recently, we determined the structure of AbGRI2 of the earlier GC2
reference, RUH134/A320, which was isolated in 1982, and we predicted the ancestral
arrangement, AbGRI2-0* (20), which is shown in the top line in Fig. 1. Comparison of
AbGRI2-0* to the MARR of AbaR0, the ancestral AbaR island (21), revealed large regions
of identical sequence (Fig. 1), suggesting a common origin. However, both resistance
islands contain sequence that is not present in the other (highlighted in yellow in
Fig. 1), indicating that the source should include both of these segments.

Here, an IncM plasmid, R1215, recovered from a Serratia marcesens strain that was
isolated in or prior to 1980 and stored as NCTC 50331 in the National Collection of Type
Cultures was found to contain resistance genes present in AbGRI2 and AbaR-type
resistance regions, and the plasmid sequence was determined. The R1215 resistance
island was compared to both the AbaR MARR and AbGRI2.

RESULTS
Structure of R1215. A group of 16 Escherichia coli strains containing plasmids of
known incompatibility type obtained from the United Kingdom National Collection of
Type Cultures (NCTC) for use as references for PCR-based replicon typing was screened
for resistance phenotype and, using PCR, for resistance and other genes as described
elsewhere (22). We noticed that R1215, which confers resistance to ampicillin, chlor-
amphenicol, gentamicin, kanamycin, streptomycin, sulfonamide, and tetracycline, con-
tained all of the genes found in the AbaR islands of multiply antibiotic-resistant isolates
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belonging to GC1 of A. baumannii. Specifically, R1215 contained a class 1 integron with
the sul1 gene in the 3=-conserved segment (3=-CS), the gene cassette array aacC1-orfP-
orfP-orfQ-aadA1 (conferring resistance to gentamicin and spectinomycin), and a merA
gene identical to that found in Tn1696. It also included the blaTEM ampicillin resistance
gene, the tet(A) tetracycline resistance determinant, catA1, which confers resistance to
chloramphenicol, and the aphA1b kanamycin and neomycin resistance gene. Using
primers designed to amplify the MARR of AbaR (14), some of the characteristic junctions
were found to be present in R1215.

As it was a possible source of the A. baumannii resistance islands, the plasmid was
purified and sequenced. The sequence reads assembled into three contigs, which were
linked by PCR, with the final structure confirmed by restriction digestion. R1215 is a
95,855-bp plasmid (GenBank accession number KU315015) that belongs to the IncM1
incompatibility group, as recently defined by Carattoli and coworkers (23). The antibi-
otic resistance genes were clustered together in a 37,808-bp region that interrupts the
mucB gene and is surrounded by a 5-bp duplication of the target site (5=-AAATA-3=).
The plasmid backbone obtained by removing the resistance region was found to be
99.9% identical to the backbone of several IncM plasmids for which sequences are
available in GenBank (the closest relatives are listed in Table 1 and described in more
detail below). Like these plasmids, R1215 includes a set of genes required for conju-
gative transfer. R1215 was shown to conjugate by transferring it into an E. coli recipient.
All resistances associated with the donor strain were transferred, and the repM replicon
was shown to be present in the transconjugants.

Structure of the resistance region. The resistance region (Fig. 2) is bounded by
remnants of Tn1721 (5), and the tetA(A) tetracycline resistance determinant is present
at the right-hand end. A transposon with a hybrid Tn21-Tn1696 backbone is found close
to IRRI of Tn1721, and at the tnp end of this transposon the sequence extends into the
catA1-IS1 configuration found next to Tn21 in Tn2670. However, the outer end of IS1
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FIG 1 Relationship between AbGRI2-0* and the MARR of AbaR0. Thick blue lines depict adjacent chromosomal sequence
portions. The thick black solid and dashed lines indicate sequences within the resistance island of AbGRI2-0* and the
MARR of AbaR0. Arrows below diagrams indicate the extent and orientation of some of the genes and open reading
frames, with antibiotic resistance genes shown in color IS are boxes and the internal arrow depict the orientation of the
tnp transposase gene. The boxes highlighted in pink are IS26, and an asterisk indicates that the IS26 is 3 nucleotides
different from the standard sequence. White and gray boxes represent IS1 and IS6100, respectively, and IS6100� is drawn
above the main line. Inverted repeats are shown as vertical lines. The lines above indicate regions of identical sequence,
while sequences within the yellow boxes are unique to each island. The corresponding locus tag of the gene interrupted
by AbGRI2-0* from the genome of A1 (GenBank accession number CP010781) is provided. The thick maroon lines
represent the backbone transposons of AbaR0.

Acinetobacter baumannii One-Step Multiple Resistance

Volume 1 Issue 3 e00117-16 msphere.asm.org 3

http://www.ncbi.nlm.nih.gov/nuccore/KU315015
http://www.ncbi.nlm.nih.gov/nuccore/CP010781
msphere.asm.org


has been truncated by 32 bp due to the insertion of Tn1, carrying the blaTEM gene, and
at the other end the Tn1 has itself been truncated by IS26 and lacks the final 129 bp at
the blaTEM end. The IS26 forms one end of Tn6020, an IS26-bounded transposon, which
includes the aphA1b gene that was originally found in A. baumannii (13). The final
fragment is composed of one end of a transposon related to Tn1000 and a small
internal fragment of Tn5393c, followed by IS26; again, this configuration was first seen
in Acinetobacter (11, 13). The length and identity of the various segments are summa-
rized in Table 2.

Not only does the R1215 resistance region carry the same cassette array as AbaR0
(21), but also all of the boundaries between the DNA segments derived from different
sources are identical to those in AbaR and AbGRI2 islands (indicated in Fig. 4 in
reference 20). Furthermore, the two segments that are present only in either AbaR or

TABLE 1 IncM1 plasmids related to R1215

Plasmid
Plasmid
size (bp)

GenBank
ID Species Location

Yr
isolated

Backbone
size (bp)

RI size
(bp)

Resistance
genes
present Reference

R1215 95,856 KU315015 S. marcescens �1980 58,043 37,808 aphA1b, blaTEM, catA1, aacC1, aadA1,
sul1, tetA(A), merA

This study

pACM1 89,977 KJ541681 K. oxytoca United States 1995 58,130 31,842 blaSHV-5, dfrA1, aadA1a, aacA4, aacC1,
merA, tetA(A)

28

pIGT15 74,839 KP294351 E. coli Poland 2005 47,849b 26,985 blaSHV-5, aacA4, aacC1, aadA1, sul1,
merA, tetA(A)

31

pARM26 86,948 KP294350 Uncultured Poland 2011 58,128 28,815 blaSHV-5, aacA4, aacC1, aadA1, sul1,
merA, tetA(A)

31

p202c 79,502 KM406490 S. enterica Albania 1985 52,483c 27,019 blaSHV-5, aacA4, aacC1, aadA1, sul1,
merA, tetA(A)

31

apACM1 contains two copies of the aadA1 gene.
bMissing 10.28 kb in the backbone, including radC, rmoA, and klcA.
cThere is a 4.35-kb deletion in the backbone left of the RI.

D merA C P T R tetR(A) tetA(A) pecM

26 26

mucAmucB∆
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FIG 2 Resistance island in R1215. Thick green lines indicate adjacent plasmid backbone, and black lines represent
sequence of the resistance island. The extent and orientation of some of the genes and open reading frames are indicated
by the arrows below the line, and antibiotic resistance genes are shown in color. The origin of different DNA segments
is shown above. Insertion sequences are shown as boxes with arrows above indicating the orientation of the tnp
transposase gene and numbers inside indicating the identity of the IS. IS26* differs by 3 nucleotides from the standard
sequence of IS26. Inverted repeats are shown as vertical lines. The attI1 site of the class 1 integron is shown as a tall open
box, and each narrow box represents a cassette with a vertical bar that indicates the attC site. The 5-bp target site
duplication flanking the island is underlined.
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in AbGRI2 islands (highlighted in Fig. 1) are both present in R1215. These features are
consistent with the resistance region of R1215 being the source or closely related to the
source of the antibiotic resistance genes in both of the A. baumannii resistance islands.

From R1215 to AbGRI2-0*. To simplify the description of the pathway to AbaR0
and AbGRI2-0*, we invoked precursors RI-a and RI-b for the R1215 resistance region
(Fig. 3). In both precursors, the region between the outer copies of IS26 is inverted
relative to the R1215 RI, and this could have occurred via recombination between two
inversely oriented copies of IS26. In RI-a, the IS6100 at the right end of the class 1
integron is followed by a partial copy of the same IS. This configuration is seen in In4
of Tn1696, but the duplication can be lost by homologous recombination (24, 25). An
alignment of RI-a with AbGRI2-0* is shown in Fig. 3B. A deletion generated by the IS26
on the left (in replicative mode) creates a circular molecule or translocatable unit (TU)
(26, 27). This TU was then incorporated into the gene corresponding to ABA1_01225 in
A1 (GenBank accession number CP010781) in the A. baumannii genome, again likely
using the replicative mode to generate the second IS26 bounding AbGRI2-0* and the
8-bp target site duplication.

From R1215 to AbaR0. RI-b contains all of the regions of the MARR of AbaR0 but
in a different order, as shown in the alignment in Fig. 3C. Multiple steps are required
for the evolution from RI-b to AbaR0. First, an inversion between regions of high
identity in tnpA of Tn21 and tnpA of Tn1721 creates a hybrid tnpA (Fig. 4A). This hybrid
is composed of 1,418 bp of Tn1721 and 401 bp of Tn21 as present in AbaR0. Second,
a different deletion, again generated by the IS26 on the left in replicative mode and
extending to 446 bp into Tn21 (Fig. 4B), would create a TU. Finally, this TU could then
be incorporated into the GC1 A. baumannii chromosome, where another sul1 was
already present, through homologous recombination between the two copies of the
sul1 gene (Fig. 4C).

R1215 is not stably maintained in A. baumannii. E. coli containing R1215 was
mated with rifampin-resistant A. baumannii ATCC 17978 (17978-Rifr), using kanamycin,
or ampicillin, or kanamycin, ampicillin, spectinomycin, gentamicin, and tetracycline to
select for transfer. On two separate occasions, A. baumannii resistant to kanamycin
(17978-RifrKmr) was recovered but was not resistant to the other antibiotics. The
aphA1b gene was detected by PCR in the 17978-Rifr Kmr colonies, accounting for the
phenotype, but the IncM replicon was not detected, indicating that R1215 had entered
the A. baumannii recipient but could not be maintained in it. In R1215, the aphA1b gene

TABLE 2 Modules in the resistance region in R1215

Region
no.a

Length
(bp)

Progenitor

Region or
gene(s)

Identity
(%)Name

Length
(bp)

GenBank
accession no.b

Portion
presentc

1 1,707 Tn1721 11,128 AB366441.1d 9422–11128 ΔorfI 100
2 820 IS26 820 AY123253 Complete IS26 100
3 2,883e Tn1000 5,981 X60200 1–2883 tnpA 74
4 685 Tn5393c 5,470 AF313472 2968–3652 ΔtnpR 99.9
5 3,069 Tn6020 3,069 FJ172370 1–3069 aphA1b 100
6 4,820 Tn1 4,949 HM804085 130–4949 blaTEM, tnpR, tnpA 99.8
7 6,264 Tn2670 22,760 AP000342 38–6301 ΔIS1, catA1, tnpA, tnpR, tnpM 100
8 731 IS1 768 AP000342 38–768 ΔIS1 100
9 4,039 Tn21 19,672 AF071413 1–4039 tnpA, tnpR, tnpM 100
10 1,371 5=-CSf 1,371 U12338 Complete 5=-CSf 99.6
11 2,908 Cassettes 2,908 AF453999 1–2908 aacC1-orfP-orfP-orfQ-aadA1 99.6
12 7,731 Tn1696 16,318 U12338 8285–16318 3=-CSf-IS6100-mer1696 99.9
13 5,568 Tn1721 11,139 X61367d 1–5568 ΔtnpA-tetR-tetA(A)-pecM-ΔtnpA 100
aThe analysis begins with the first base of the resistance region in R1215 (GenBank accession number KU315015).
bThe accession number used was either that for the earliest complete sequence or for the complete and annotated sequence.
cNumbering for an IS includes the transposase gene from left to right; for class II Tn, the tnpA gene is on the left.
dX61367 is the original complete GenBank entry for Tn1721, but this sequence has several single-base differences and a short deletion which are also not present in
other published sequences of this region and might be errors.

eOf the region’s length, 209 bp were 99.6% identical to a Tn1000-like element found in GenBank sequence accession number AY598759.
f5=-CS and 3=-CS are the 5=-conserved segment and 3=-conserved segment of a class 1 integron.
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is located in Tn6020, and A. baumannii 17978-RifrKmr was screened to determine if the
gene was still located in this transposon. Tn6020 was present, presumably incorporated
into the genome, but the location was not determined.

Related IncM1 plasmids carrying the blaSHV-5 gene. Some more recent plas-
mids (listed in Table 1) include a resistance region in the same location as in R1215. The
structure of the resistance regions is shown in Fig. 5. In each case, the right-hand end
is identical to that in R1215 except for an additional aacA4 gene cassette in the
integron. The left-hand end from the IR of Tn1721 to the first IS26 is also present in
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FIG 3 Conversion of the resistance island in R1215 to AbGRI2-0* and the MARR of AbaR0. (A) Predicted precursor RI-a and RI-b of the R1215 resistance
island. (B) Relationship between RI-a and AbGRI2-0*. (C) Relationship between RI-b and the MARR of AbaR0. Thick solid green, blue, and black lines
represent sequences of the plasmid backbone, chromosome, or the resistance island, respectively. The arrows below indicate the extent and orientation
of some of the genes and open reading frames. Antibiotic resistance genes are shown in color. Inverted repeats are shown as vertical lines. Insertion
sequences are shown as boxes, and pink, white, and gray boxes represent IS26, IS1, and IS6100, respectively. An asterisk indicates the IS26 is 3 nucleotides
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three of them, but an IS26-mediated deletion has removed a short segment in pACM1.
The presence of the same Tn21-Tn1721 boundary in this region and in AbaR has been
noted (28). In p202c, the left end has been removed together with flanking backbone
sequence via an IS26-mediated deletion. The blaSHV-5 gene is in an IS26-bounded
transposon in each plasmid, though in p202c the internal segment is inverted.

DISCUSSION

The complexity of the organization of the resistance region of R1215 reflects a complex
evolutionary history. The first step is likely to have been the insertion of Tn1721 into the
mucB gene. Then, a series of transposition and deletion events occurred within the
boundaries of the Tn1721, resulting in the loss of the central part of this transposon. In
this process, a series of unique boundaries were generated, and these serve to
unambiguously link this resistance region to those of the AbaR and AbGRI2 islands in
A. baumannii. In both cases, an IS26 formed a TU via an adjacent deletion event (26).
This TU was then incorporated into the A. baumannii chromosome. The presence of the
region found in the AbaR0 MARR that is not in AbGRI2-0*, and vice versa, indicates that
both regions were acquired directly from R1215 or a variant of it, rather than one from
the other. However, while we obtained evidence that R1215 could transfer into an
A. baumannii isolate, it does not appear to be stably maintained. Nonetheless, entry
would bring the resistance region into the cell and enable the TU formation and
transposition or homologous recombination reactions to take place; this occurred in
the case of Tn6020 in the experiments reported here.
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Neither the AbaR0 form of the MARR nor the AbGRI2-0* configuration of AbGRI2 has
survived unaltered in all members of the GC1 and GC2 complexes, respectively. It is
now well established that variant forms are numerous and their formation tends to
involve IS26-mediated events, particularly deletions occurring adjacent to one end of
the IS (13, 15, 16, 19, 20, 29). However, to date, a remnant of the relevant region is
present in all reported genomes, indicating that the modern day multiply, extensively,
and pan-resistant A. baumannii isolates from GC1 and GC2 are all the progeny of a
single progenitor for each clone.

MATERIALS AND METHODS
Bacterial strains and plasmids. Plasmid R1215 was obtained from the United Kingdom National
Collection of Type Cultures (NCTC 50331), in Escherichia coli K-12 strain J53-2 as part of a group of 16
strains containing plasmids of known incompatibility groups for use as controls for PCR-based replicon
typing. These strains were screened for resistance to common antibiotics and for the presence of
antibiotic resistance genes, mercuric ion resistance genes, class 1 and class 2 integrons, and gene
cassettes in class 1 and class 2 integrons, as described elsewhere (22). Strains containing R1215 were
maintained under selection with 100 �g/ml ampicillin and 25 �g/ml kanamycin. R1215 was transferred
into E. coli E294rifr as described previously (7), and transconjugants were recovered on plates containing
rifampin (100 �g/ml) to select against the donor and for the recipient and kanamycin to select for R1215.
Transconjugant colonies were screened for resistance to antibiotics that the donor strain was resistant
to, using L-agar containing the following antibiotics and corresponding concentrations: ampicillin at
100 �g/ml, kanamycin at 20 �g/ml, streptomycin at 25 �g/ml, gentamicin at 8 �g/ml, neomycin at
50 �g/ml, chloramphenicol at 25 �g/ml, tetracycline at 10 �g/ml, and Mueller-Hinton agar containing
sulfamethoxazole at 100 �g/ml. Transconjugants were purified and stored at �80°C.

Plasmid DNA extraction and sequencing. R1215 plasmid DNA was isolated from a pure transcon-
jugant culture grown overnight at 37°C by using an alkaline lysis miniprep method optimized for the
extraction of large plasmids, as previously described (25). The DNA was sequenced at the Australian
Genome Research Facility by using a 314 chip on the Ion Torrent PGM platform (Life Technologies). The
sequencing reads (191-fold coverage) were assembled de novo into contigs by using Geneious version
6.1.6 (Biomatters).

Plasmid assembly. The contigs containing backbone sequence overlapped and were assembled
with Sequencher 5.1 (Gene Codes). PCR using published primer pairs (17) and RH1581 (5=-GCGGCATAT
CTGGGTGCTT-3=) in orfI, followed by sequencing of the amplicons, was used to assemble the resistance
island. PCR conditions used to detect short amplicons were described previously (30). PCR amplicons
were resolved by electrophoresis on 1% (wt/vol) agarose gels with molecular weight standards, stained

R1215

mucB∆ ∆orfI tnpA1000 tnpR5393c aphA1b tnpA1tnpR1
mucA

blaTEM catA1 tnpA21 tnpR21 intI1 P Q aadA1 sul1 tetA(R)
tetA(A)

pecM tnpA ∆mucB

26 26 26 1∆ 6100

1 kb

IR1000

26

IR1 IR21 IRi IRt IRt IR1696IRRI IRRII

pARM26

∆mucB

IRRII

mucB∆mucA

26 26

blaSHV-5

6100

tetA(R)
tetA(A)

pecM tnpA

IRt IR1696IRRI

aacC1
P Q

aadA1sul1aacA4
intI1∆orfI

p202c 26 26 6100

tetA(R)
tetA(A)

pecM tnpA ∆mucB

IRt IR1696IRRI IRRII

intI1∆ aacC1
P Q

aadA1sul1blaSHV-5orf∆ orf orf orf
deoR

recF lacY∆trbB

∆4,350 bp 

aacA4

P

aacC1

pACM1
mucB∆mucA

26 6100

tetA(R)
tetA(A)

pecM tnpA ∆mucB

IRt IR1696IRRI IRRII

aacC1
P Q

aadA1sul1aacA4
intI1intI1

dfrA1
aadA1

1

blaSHV-5

∆26

∆26

∆orfI

∆630 bp 

pIGT15 

mucB∆mucA

26

blaSHV-5 ∆mucB

IRRII
26 6100

tetA(R)
tetA(A)

pecM tnpA

IRt IR1696IRRI

aacC1
P Q

aadA1sul1aacA4
intI1∆orfI

∆1,931 bp

recF

lacY

recFlacY

recFlacY

deoR

deoR

deoR

orf∆orf orf orf

orf∆orforforf

orf∆orf

∆78 bp

∆164 bp

(298/820 bp) (763/820 bp)
merAD C PT R

merAD C PT R

merAD C PT R

merAD C PT R

merAD C PT R

∆26

FIG 5 Resistance islands found in the mucB gene in the M1 backbone. Thick solid green lines indicate adjacent plasmid backbone portions. Solid
horizontal lines represent the sequence of the resistance island, with the extent and orientation of some of the genes and open reading frames indicated
by the arrows below. Antibiotic resistance genes are shown in color. Insertion sequences are shown as boxes, with arrows above indicating the orientation
of the tnp transposase gene and numbers inside indicating the identity of the IS. Inverted repeats are shown as vertical lines. The attI1 site of the class
1 integron is shown as a tall open box, and each narrow box represents a cassette, with a vertical bar indicating the attC site. Gray blocks between lines
indicate regions of identical sequence, and black triangles indicate the location of deletions, along with their size.

Blackwell et al.

Volume 1 Issue 3 e00117-16 msphere.asm.org 8

msphere.asm.org


with ethidium bromide, and visualized using a GelDoc1000 image analysis station (Bio-Rad). Separated
PCR products were purified for sequencing by using the QIAquick gel extraction kit (Qiagen Inc., Valencia,
CA, USA), following the manufacturer’s protocols. Sequences were assembled using Sequencher, and the
Textco (West Lebanon, NH, USA) gene construction kit (version 4.0) was used to draw figures to scale. To
confirm the assembly, R1215 plasmid DNA was digested with BsiW1 or BamHI-HF as per the manufac-
turer’s instructions, and fragments were resolved by electrophoresis on a 0.7% (wt/vol) agarose gel with
molecular weight standards, poststained with ethidium bromide, and visualized using a GelDoc100
image analysis station. The observed fragment pattern was compared to digestion patterns predicted
from the assembled sequence of R1215 by using the Textco gene construction kit, version 4.0.

Nucleotide sequence accession number. The sequence of R1215 has been deposited with GenBank
under the accession number KU315015.
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