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Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Low dose computed tomography (LDCT)
is commonly used for disease screening, with identified candidate cancerous regions further diagnosed using
tissue biopsy. However, existing techniques are all invasive and unavoidably cause multiple complications. In
contrast, liquid biopsy is a noninvasive, ideal surrogate for tissue biopsy that can identify circulating tumor
DNA (ctDNA) containing tumorigenic signatures. It has been successfully implemented to assist treatment
decisions and disease outcome prediction. ctDNA methylation, a type of lipid biopsy that profiles critical epi-
genetic alterations occurring during carcinogenesis, has gained increasing attention. Indeed, aberrant ctDNA
methylation occurs at early stages in lung malignancy and therefore can be used as an alternative for the early
diagnosis of lung cancer. In this review, we give a brief synopsis of the biological basis and detecting techni-
ques of ctDNA methylation. We then summarize the latest progress in use of ctDNA methylation as a diagno-
sis biomarker. Lastly, we discuss the major issues that limit application of ctDNA methylation in the clinic,
and propose possible solutions to enhance its usage.
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Introduction
Lung cancer is the most frequent oncogenic malignancy
and the leading cause of cancer-related deaths world-
wide, with 2.1 million newly diagnosed cases and 1.8
million deaths in 2018.1 Low-dose computed tomography
(LDCT) screening can reduce lung cancer mortality by
20% but causes significant issues, including overdiagno-
sis.2 Although candidate lung cancer regions identified
by LDCT can be further diagnosed via tissue biopsies (the

most common being bronchoscopy, transthoracic needle
aspiration, and surgery), complications may emerge,
including hemorrhage, infection, pneumothorax, and
even mortality.3–5 Moreover, the sensitivity of LDCT
may be severely affected by tumor size and location,
varying in a substantial range (60–80%).6,7 Moreover,
inevitable intratumoral and intertumoral heterogen-
eity resulting from selection during carcinogenesis,
make cancer treatment and surveillance difficult.8,9
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Considering the aforementioned limitations, in recent
years liquid biopsy has been proposed as a favorable
alternative. Through noninvasive or minimally inva-
sive approaches, tumor-originating factors in blood
and other types of body fluid can be detected for can-
cer diagnosis and surveillance.10 Protein and circulat-
ing free DNA (cfDNA) are the most well-studied
biomarkers for liquid biopsy, with other markers
including circulating tumor cells (CTCs), circulating
free RNA, exosomes, and nucleosomes.10,11 cfDNA are
free DNA fragments circulating in the peripheral
blood, ranging from 80 to 200 base pairs (bp),12 and
those generated from tumor cells are called circulat-
ing tumor DNA (ctDNA). ctDNA is hypothesized to
enter the peripheral circulation system through both
active and passive mechanisms. Tumors may secret
DNA fragments into blood spontaneously, whereas
apoptosis and necrosis of tumor cells may also

generate ctDNA passively. Furthermore, it has been
reported that CTCs in circulation are also a possible
source for ctDNA, yet the mechanism for their appear-
ance is unclear.13–15

The first study of cfDNA in human blood was pub-
lished in 1948.16 Later, its potential clinical application
was advanced by a clinical study that found cfDNA
quantity was elevated in participants with diseases.17

This phenomenon also occurs in human malignancy,18

emphasizing the importance of quantitative changes in
ctDNA. Subsequently, other forms of alterations in
ctDNA were also detected, including the presence of
somatic mutations. The Cobas EGFR mutation test,19

the first FDA-approved ctDNA companion diagnostic
test, is now used extensively in diagnosis of non-small
cell lung cancer. Cancer-specific DNA methylation, another
critical aberration in ctDNA, has recently attracted con-
siderable attention, especially in the early detection of
malignancy including liver cancer and colon rectal
cancer.20,21 In this review, we first introduce the under-
lying biology and commonly used detection techniques
of ctDNA methylation, and then discuss the latest
developments of its clinical applications in lung can-
cer diagnosis.

DNA methylation in cancer
DNA methylation is a pivotal epigenetic mechanism
involved in regulating X chromosome inactivation, gen-
omic imprinting, tissue-specific gene expression, and
multiple disorders.22,23 DNA methylation usually occurs
on cytosine at the 5-carbon position and occurs most
frequently around gene promoters in CpG islands,
which are CG-enriched regions with a length of approxi-
mately 1kb.24 Another commonly methylated region is
the CpG island shore, which lies close to CpG islands
(about 2kb) with a lower C and G density. Methylation in
these areas often results in gene silencing, whereas gene
body methylation is associated with transcriptional activa-
tion. The former is often detected in some tumor suppres-
sor genes in malignant cases, whereas the latter may also
result in various diseases.25 Notably, DNA methylation
has been detected in repetitive elements and CHG/CHH
(H stands for C, A, or T) sites as well, and is associated with
some interesting biological processes (e.g. stem cell grow-
ing). Compared with ctDNA mutations and rearrange-
ments, ctDNA methylation has two main advantages. It
may be detectable at an early stage in carcinogenesis,26

and helps in determining the origin of malignancy.27–29

We exemplify this issue in detail later in this review.

Techniques for measuring DNA
methylation
DNA methylation was first detected through chromatog-
raphy in the 1970s, which discriminated methylated from
unmethylated deoxynucleosides quantitatively using UV
absorbance.30 These early technologies proved the

Figure 1. Discovery and detection of methylated biomarkers
and panels. PF, pleural fluid; BALF, bronchoalveolar lavage fluid;
MSRE, methyl-sensitive restriction enzyme; MGMT, O6-
methylguanine-DNA methyltransferase; PTGER4, prostaglan-
din E receptor 4.
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feasibility of charting the DNA methylation landscape
in humans. Since then, a variety of techniques have
been developed to detect DNA methylation, either at a
genome-wide scale or a locus-specific level. Three prin-
ciple approaches are exploited to detect and/or isolate
methylated DNA (Fig. 1), namely immunoprecipitation,
methyl-sensitive restriction enzymes, and sodium
bisulfite conversion.31

Immunoprecipitation

In the 1980s, specific methylcytosine antibodies were iden-
tified. When combined with electron microscopy32 or con-
focal fluorescence microscopy,33 it was possible to detect
methylation alterations quantitatively. These anti-5mC
(anti-5-methylcytosine) antibodies were then combined
with immunological separation techniques (i.e. immuno-
precipitation) and the immunocaptured DNA was further
examined using microarray hybridization or sequencing-
based approaches to explore methylation status at differ-
ent sites. MeDIP (methylated DNA immunoprecipitation) is
representative of immunoprecipitation-based techniques.
In this process, immunocaptured methylated DNA frag-
ments are labeled with a Cy5 fluorescence dye, producing
green fluorescence; whereas unmethylated DNA fragments
are connected to a Cy3 dye and fluoresce red.34 The affinity
of anti-5mC antibodies is key in this assay. Recently,
recombinant protein complexes with stronger affinity have
been developed and applied in more efficient techniques,
such as methyl-CpG immunoprecipitation (MeCIP)35 and
methylated-CpG island recovery assay (MIRA).36

Methyl-sensitive restriction enzymes

Several restriction enzymes recognize the same sequence
but have differential sensitivity to methylcytosine. For
example, HpaII and MspI both recognize and cut DNA at
the same sequence CCGG, but Hpa II does not cleave the
site when the second C is methylated. Genomic DNA is
digested separately with both enzymes, and DNA frag-
ments are PCR amplified and different size fragments are
detected via microarray or sequencing. Large fragments
will occur when a CpG is methylated in the CCGG
sequence. The HELP assay37 (HpaII tiny fragment enrich-
ment by ligation-mediated PCR) and methyl-sensitive
restriction enzyme sequencing (MRE-seq)38 are both based
on methyl-sensitive restriction enzymes, but their appli-
cations are limited by the enzyme recognition sites.

Sodium bisulfite conversion

Cytosine residues in genomic DNA can be changed into
uracil when treated with sodium bisulfite; this reaction
does not occur (or occurs very slowly) at methylcyto-
sine.39 This difference is exploited to discriminate 5mC
and C, converting genomic chemical modification into
an easily detectable DNA residue. Sodium bisulfite con-
version has been implemented in various techniques,
including bisulfite sequencing (BS), methylation-specific
polymerase chain reaction (MS-PCR), and methylation-

specific high-resolution melting (MS-HRM). However,
some distinct flaws also limit its application, such as
reduction in sequence complexity, DNA degradation,
and incomplete bisulfite conversion.37,40

Based on these principle approaches, sequencing devel-
ops into the most widely used technology for detecting
methylation. Several platforms are applied recently, includ-
ing whole-genome bisulfite sequencing (WGBS), SureSelect
Methyl-Seq, SeqCap Epi CpGiant, and reduced representa-
tion bisulfite sequencing (RRBS).41 They detect DNA methy-
lation changes at single base resolution, but with diverse
genome coverages. Researchers should select proper techni-
ques according to specific research aims.

Representative biomarkers

A number of DNA methylation biomarkers have been
associated with lung cancer. In this section, we intro-
duce each biomarker’s biological function and diagnos-
tic performance in lung cancer (Table 1). Generally,
sensitivity and specificity are applied to evaluate the
diagnostic efficacy. The former measures the proportion
of true positives, whereas the latter represents the
actual negatives that are correctly identified.

SHOX2

Short stature homeobox gene 2 (SHOX2) is located on
chromosome 3q (3q25.32). It encodes a homeo-domain
transcription factor, which plays pivotal roles in heart,
skeletal, and brain development.42–44 SHOX2, highly
homologous to another short stature homeobox gene
SHOX, has mostly been studied in the short stature
phenotype of Turner syndrome and idiopathic short
stature.45 Recently, its diagnostic value in lung cancer
has also been exemplified by several studies.

SHOX2 hypermethylation (mSHOX2) was firstly deter-
mined in lung cancer in Schmidt’s study46 in which 523 tis-
sue samples obtained via bronchial aspirates were detected
using differential methylation hybridization (DMH) and
real-time PCR. In this study, mSHOX2 achieved a sensitivity
of 68% and specificity of 95%. Later, this alteration was con-
firmed in Katja’s study.47 He put forward that such alter-
ation might be associated with copy number amplification
in the SHOX2 gene. Based on results in lung cancer tis-
sue,48,49 further attention was paid to plasma samples. A
study with 411 participants yielded a sensitivity of 60% and
a specificity of 90%, but diagnostic performance in stage I
was poor (sensitivity 27%).50 In subsequent studies, the
overall sensitivity was around 70%, but neither reported the
discriminatory power in stage I cancer.51,52 Recently, bron-
chial lavage51,53–55 and pleural effusion56,57 were tested and
gave similar results. Furthermore, recently multiple genes
were combined to enhance sensitivity. A combination of
mSHOX2 and mRASSF1A was tested in bronchial lavage
and achieved a sensitivity of 85.7% (24/28) in stage I lung
cancer,54 and 50% (2/4) in carcinoma in situ.55 These stud-
ies strongly support a possible SHOX2 application in lung
cancer early detection. However, it is noteworthy that
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Table 1. Overview of primary methylation biomarkers from liquid biopsy in lung cancer diagnosis.

Author (year) Sample
types

Method No. of
cases

TNM stage (1/2/3/
4/unknown)

No. of
controls

Sensitivity,
%

Specificity,
%

SHOX2
Kneip (2011)50 (training
group)

Plasma RT-PCR 20 0/0/0/20/0 20 75 95

Kneip (2011)50 (validation
group)

Plasma RT-PCR 188 37/29/53/42/27 155 60 90

Dietrich (2012)53 Bronchial
lavage

RT-PCR 125 NA 125 78 96

Ilse (2013)57 Pleural
effusion

RT-PCR 472 NA 798 39.5 96.2

Konecny (2016)51 Bronchial
lavage

RT-PCR 38 1/4/8/22/3 31 83.78 84.62

Konecny (2016)51 Blood RT-PCR 38 1/4/8/22/3 31 64.52 78.57
Ren (2017)55 Bronchial

lavage
Sanger
sequencing/RT-
PCR

123 51/13/19/25/15 130 64.2 92.3

RASSF1A
Ramirez (2003)68 Serum MSP 50 6/11/18/5/10 0 34 NA
Rykova (2004)69 Plasma MSP 9 NA 16 44 100
Belinsky (2005)75 Plasma MSP 44 NA 195 7 98
Wang (2006)70 Plasma MSP 63 NA 22 82 93
Hsu (2007)71 Plasma qMSP 63 Stage 1–2: 41

Stage 3–4: 21
Unknown: 1

36 39 90

Ponomaryova (2013)127 Blood qMSP 60 Stage 1–2: 20
Stage 3: 40

33 66 57

Zhang (2011)72 Plasma MSP 110 Stage 1 & 2 50 36.36 92
Gao (2015)73 Serum qMSP 40 40/0/0/0/0 36 52.5 97
Gao (2015)73 Plasma qMSP 58 58/0/0/0/0 54 43.1 96
Ren (2017)55 Bronchial

lavage
Sanger
sequencing/RT-
PCR

123 51/13/19/25/15 130 50.4 96.2

p16/CDKN2A
Esteller (1999)82 Serum MSP 22 10/3/8/1/0 0 13 NA
An (2002)85 Plasma Seminested MSP 105 Stage 1: 29

Stage 2: 54
Stage 3–4: 22

0 73.3 NA

Bearzatto (2002)83 Plasma F-MSP 35 28/4/3/0/0 15 40 100
Belinsky (2005)75 Plasma MSP 44 NA 195 25 88
Belinsky (2005)75 Sputum MSP 44 NA 112 19 75
Wang (2006)70 Plasma MSP 63 NA 22 61 92
Wang (2006)70 Sputum MSP 79 NA 22 65 83
Hsu (2007)71 Plasma qMSP 63 Stage 1–2: 41

Stage 3–4: 21
Unknown: 1

36 38 91

Zhang (2011)72 Plasma MSP 110 Stage 1 & 2 50 22.73 92
Xiao (2014)86 Plasma F-MSP 30 Stage 1–2: 24

Stage 3: 6
30 50 100

Xiao (2014)86 EBC F-MSP 30 Stage 1–2: 24
Stage 3: 6

30 40 100

SEPT9
Powrozek (2014)100 Plasma RT-PCR 70 0/7/23/17/23 100 44.3 96
APC
Usadel (2002)103 Serum/

plasma
Semiquantitative
F-MSP

89 NA 50 47 100

Continued
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mSHOX2 is not a lung cancer-specific biomarker. It has
been reported in other cancer types, including head and
neck squamous cell carcinoma (HNSCC),58,59 colorectal
cancer (CRC),60 and ovary cancer.61 Thus, mSHOX2 may
be a marker for many cancer types.

RASSF1A

The Ras association domain family 1A (RASSF1A) is a
member of the RASS family (RASSF), which comprises 10
genes (RASSF1 to RASSF10). These genes play critical roles

in regulating cell cycle control, apoptosis, and microtubule
stabilization.62–64 Hypermethylation in their CpG island
promoters has been reported to induce multiple cancers.62

The RASSF1 gene is located on chromosome 3 (3p21.3). It
encodes eight homologous proteins, including RASSF1A.65

Interacting with tubulin, RASSF1A mainly regulates mitotic
progression by stabilizing microtubules in cell.66,67

The first study reporting RASSF1A hypermethylation in
peripheral blood was published in 2003. In this study,
RASSF1A gene promoter hypermethylation was detected
in 17/50 (34%) lung cancer plasma samples. However,

Table 1. Continued

Author (year) Sample
types

Method No. of
cases

TNM stage (1/2/3/
4/unknown)

No. of
controls

Sensitivity,
%

Specificity,
%

Rykova (2004)69 Plasma MSP 9 NA 16 30 100
Zhang (2011)72 Plasma MSP 110 Stage 1 & 2 50 47.27 90
Zhai (2014)74 Plasma MSP 42 Stage 1–2: 6

Stage 3–4: 36
40 52.4 100

Gao (2015)73 Serum qMSP 40 40/0/0/0/0 36 42.5 94
Gao (2015)73 Plasma qMSP 58 58/0/0/0/0 54 24.1 98
Ali (2017)102 Serum MSP 160 0/0/74/86/0 70 52.5 85.7
RARB
Wang (2006)70 Plasma MSP 63 NA 22 62 93
Wang (2006)70 Sputum MSP 79 NA 22 66 88
Hsu (2007)71 Plasma qMSP 63 Stage 1–2: 41

Stage 3–4: 21
Unknown: 1

36 37 83

Ostrow (2010)109

(evaluation set)
Plasma F-MSP 13 NA 24 38 96

Ostrow (2010)109

(independent set)
Plasma F-MSP 70 49/2/20/4/5 80 16 96.3

Zhang (2011)72 Plasma MSP 110 Stage 1 & 2 50 20 94
Ponomaryova (2011)107 Plasma qMSP 52 Stage 1–2: 25

Stage 3: 27
26 63 51

SOX17
Hulbert (2016)111 Plasma qMSP 150 136/14/0/0/0 60 73 84
Hulbert (2016)111 Sputum qMSP 150 136/14/0/0/0 60 84 88
Balgkouranidou (2016)112

(operable NSCLC)
Plasma MSP 49 Stage 1: 14

Stage 2–3: 29
Unknown: 6

49 56.2 98

Balgkouranidou (2016)112

(advanced NSCLC)
Plasma MSP 74 0/0/0/74/0 49 36.4 98

CDH13
Wang (2006)70 Plasma MSP 63 NA 22 74 97
Hsu (2007)71 Plasma qMSP 63 Stage 1–2: 41

Stage 3–4: 21
Unknown: 1

36 34 84

Zhai (2014)74 Plasma MSP 42 Stage 1–2: 6
Stage 3–4: 36

40 54.8 100

DAPK
Esteller (1999)82 Serum MSP 22 10/3/8/1/0 0 18 NA
Ali (2017)102 Serum MSP 160 0/0/74/86/0 70 52.5 85.7
Yang (2018)113 Serum MSP 117 NA 115 27.4 100

APC, adenomatous polyposis coli; CDH13, cadherin13; CDKN2A, cyclin-dependent kinase inhibitor 2A; DAPK, Death-associated protein kinase;
EBC, exhaled breath condensate; F-MSP, fluorescent MSP; MSP, methylation-specific PCR; NA, not available; p16, p16 gene; PCR, polymerase
chain reaction; qMSP, quantitative MSP; RARB, retinoic acid receptor-β2; RASSF1A, ras association domain family 1A; RT-PCR, real-time PCR;
SEPT9, septin 9; SHOX2, short stature homeobox gene 2; SOX17, SRY-box containing gene 17.
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specificity could not be achieved as no control samples
were analyzed.68 This concern was resolved in another
study that found the RASSF1A gene promoter was hyper-
methylated in 4/9 (44%) lung cancer plasma samples, but
hypomethylated in all nonmalignant plasma samples (0/
16).69 The low sensitivity in plasma remained a major issue
for RASSF1A in subsequent studies,70–74 and it was even
reported that sensitivity in sputum (13/44, 25%) came
much higher than in plasma (3/44, 7%).75 Nonetheless,
mRASSF1A is useful in multigene panels. A study using a
six-gene panel (including BLU, CDH13, FHIT, p16, RARB,
and RASSF1A) showed higher sensitivity (68%) in plasma
samples in early stage lung cancer (including stages I/II).
This rate was even higher (83.64%) in another five-gene
panel (including APC, RASSF1A, CDH13, KLK10, and
DLEC1). An even higher mRASSF1A specificity (over 98%)
was found in a study focused on female lung cancer
patients.76 Therefore, it seems that RASSF1A may work
better in combination with other genes rather than as a
single diagnostic biomarker, and this may give the best sig-
nal in women. RASSF1A methylation was successfully
detected in bronchial lavage. Combined with SHOX2, it
achieved a sensitivity around 80% and a specificity of
95%.54,55 As for mSHOX2, mRASSF1A’s diagnostic potential
has also been reported in other cancers.69,76

p16/CDKN2A

p16 (also designated as cyclin-dependent kinase inhibitor
2A, CDKN2A) is located on chromosome 9p21. It encodes
a cyclin-dependent kinase inhibitor and regulates the cell
cycle through inactivation of the G1 cyclin D-dependent
kinase E (CDKE).77 Hypermethylation in the p16 promoter
suppresses gene transcription, resulting in loss of inhib-
ition of cell cycle progression.78–80 This epigenetic alter-
ation has been reported in various malignancies.81

A relationship between p16 hypermethylation and lung
cancer was first found in tissue samples.48,49,72,82–85 A study
validated p16 hypermethylation in both rat models and tis-
sue samples from lung squamous cell carcinoma (SCC)
patients. Significantly, they also found that p16 was hyper-
methylated in some precursor lesions, and this methyla-
tion frequency increased with disease progression from
basal cell hyperplasia (17%) to carcinoma in situ (50%).84

Based on these important findings, p16 methylation in
plasma samples was studied subsequently, finding that
methylation status was in concordance between plasma
samples and tissue samples.71,72,82 Moreover, the high sen-
sitivity of p16 methylation was also verified in early stage
lung cancer patients. It achieved a sensitivity of 65.5% in
stage I lung cancer.85 Intriguingly, it was more robust in
SCC (77.8%) than in adenocarcinoma (ADC) (45.5%).
Bearzatto and colleagues83 also detected p16 methyla-
tion in 38% (9/24) of plasma samples for stage I lung
cancer patients. Similar sensitivity (54.16%, 13/24) was
obtained in another study enrolling stage I and II plas-
ma samples.86 The high specificity of p16 methylation
was also determined in various studies,70–72 further

supporting its diagnostic value in lung cancer early
detection. Notably, sputum70,75 and exhaled breath
condensate86 may also be alternative samples for lung
cancer diagnosis.

SEPT9

Septins are a series of cytoskeleton-related proteins that
interact with tubulin and actin. There are 14 members in
this family, including SEPT9. SEPT9 regulates cell prolifer-
ation, cell motility, and angiogenesis,87–89 and can act as
both a protooncogene and a tumor suppressor gene,
underscoring its role in oncogenesis. Through genomic
amplification and overexpression, mSEPT9 has been
implicated in breast and ovarian cancer,90–92 T cell lymph-
oma,93 and some other malignancies.94 The most import-
ant clinical application for SEPT9 methylation is in
CRC.60,61,76,95,96 Epi proColon,97,98 a test examining SEPT9
promoter methylation status, is the first FDA-approved
epigenetic tool in cancer diagnosis. SEPT9 hypermethyla-
tion has also been reported in other cancers, including bil-
iary cancer99 and HNSCC.58,59

In recent years, the potential value of SEPT9 methyla-
tion in lung cancer has also been put forward. Tomasz
and colleagues enrolled 70 lung cancer patients and 100
healthy participants, and detected SEPT9 methylation in
ctDNA via real-time PCR. They found that 31/70 (44.3%)
lung cancer patients were hypermethylated in blood,
whereas only 4/100 were positive in healthy controls (spe-
cificity 96%).100 Intriguingly, detection in pleural effusion56

and ascites61 provide further possibilities for SEPT9 sam-
pling in clinical application.

Other biomarkers

In addition to the biomarkers introduced above, other
methylation regions have promising potential in lung
cancer diagnosis (Table 1). Adenomatous polyposis coli
(APC), a Wnt antagonist,101 has attracted much recent
attention as its hypermethylation in plasma and serum
proved to be around 50% in lung cancer.69,72,73,102,103

Notably, this prevalence was higher in lung ADC than in
SCC,104 making it a possible ADC-specific biomarker.
APC hypermethylation is not lung cancer-specific, it has
been detected in other cancers.76,105 Retinoic acid recep-
tor-β2 (RARB), another tumor suppressor gene,106 is
hypermethylated both in lung cancer tissue and plas-
ma,70–72,107–109 and is significantly associated with
pathological types and grades.110 Similar finding have
also been reported for the SRY-box containing gene 17
(SOX17),76,111,112 cadherin13 (CDH13),70,71,74 and Death-
associated protein kinase (DAPK).82,102,113,114

Methylation panels
There is a recent trend towards combining analysis of
different methylation regions into a single panel to
increase sensitivity (Table 2). For example, a combination
of SHOX2 and PTGER4 achieved a sensitivity of 67%
when fixing the specificity at 90%, while yielding a
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Table 2. Summary of multigene panels from liquid biopsy in lung cancer diagnosis.

Author (year) Panel Sample
types

Method No.
of
cases

TNM stage (1/
2/3/4/
unknown)

No. of
controls

Sensitivity,
%

Specificity,
%

Belinsky
(2005)75

p16/MGMT/RASSF1A Plasma MSP 44 NA 195 36 81

Belinsky
(2005)75

p16/MGMT/RASSF1A Plasma MSP 44 NA 112 38 89

Hsu (2007)71 BLU/CDH13/FHIT/
p16/RARB/RASSF1A

Plasma qMSP 63 Stage 1–2: 41
Stage 3–4: 21
Unknown: 1

36 73 82

Ostrow
(2010)109

KIF1A/DCC/RARB/
NISCH

Plasma F-MSP 70 49//2/20/4/5 80 73 71

Zhang (2011)72 APC/RASSF1A/
CDH13/KLK10/
DLEC1

Plasma MSP 110 Stage 1 & 2 50 83.64 74

Begum
(2011)128

APC/CDH1/MGMT/
DCC/RASSF1A/AIM1

Serum F-MSP 76 41/17/11/5/2 30 84.2 56.7

Dietrich
(2013)56

SHOX2/SEPT9 Pleural
effusion

qPCR 8 NA 56 14 100

Ponomaryova
(2013)127

RARB2/RASSF1A Blood qMSP 60 Stage 1–2: 20
Stage 3: 40

33 87 75

Wielscher
(2015)129

HOXD10/PAX9/
PTPRN2/STAG3

Serum/
plasma

MSRE+qPCR 23 Stage 1–2: 8
Stage 3–4: 12
Unknown: 3

23 97 73

Hulbert
(2016)111

CDO1/TAC1/SOX17 Plasma qMSP 150 136/14/0/0/0 60 93 62

Hulbert
(2016)111

HOXA7/TAC1/SOX17 Sputum qMSP 150 136/14/0/0/0 60 98 71

Weiss (2016)52

(specificity
fixed)

SHOX2/PTGER4 Plasma RT-PCR 50 12/11/16/11/0 122 67 90

Weiss (2016)52

(sensitivity
fixed)

SHOX2/PTGER4 Plasma RT-PCR 50 12/11/16/11/0 122 90 73

Zhang (2017)54 SHOX2/RASSF1A Bronchial
lavage

Sanger
sequencing

284 28/30/133/93/
0

38 81 97.4

Ren (2017)55 SHOX2/RASSF1A Bronchial
lavage

Sanger
sequencing/
RT-PCR

123 51/13/19/25/
15

130 71.5 70

Ooki (2017)115 CDO1/HOXA9/AJAP1/
PTGDR/UNCX/
MARCH11

Serum qMSP 43 43/0/0/0/0 42 72.1 71.4

Nunes (2018)76 SCGB3A1/SEPT9/
SOX17

Plasma qMSP 73 NA 103 39.4 85.1

Nunes (2018)76 APC/FOXA1/RASSF1A Plasma qMSP 73 NA 103 85.7 75.7

AIM1, absent in melanoma 1; AJAP1, adherens junction associated protein 1; APC, adenomatous polyposis coli; BLU, a candidate tumor sup-
pressor gene; CDH1, cadherin 1; CDH13, cadherin13; CDO1, cysteine dioxygenase 1; DCC, DCC netrin 1 receptor; DLEC1, deleted in lung and
esophageal cancer 1; FHIT, fragile histidine triad gene; F-MSP, fluorescent MSP; FOXA1, forkhead box A1; HOXA7, homeobox A7; HOXA9,
homeobox A9; HOXD10, homeobox D10; KIF1A, kinesin family member 1A; KLK10, kallikrein-related peptidase 10; MARCH11, membrane-
associated ring-CH-type finger 11; MGMT, O6-methylguanine-DNA methyltransferase; MSP, methylation specific PCR; MSRE, methylation-
sensitive restriction enzymes; NA, not available; NISCH, Nischarin; p16, p16 gene; PAX9, paired box 9; PCR, polymerase chain reaction; PTGDR,
prostaglandin D2 receptor; PTGER4, prostaglandin E receptor 4; PTPRN2, protein tyrosine phosphatase receptor type N2; qMSP, quantitative
MSP; RARB, retinoic acid receptor-β2; RASSF1A, ras association domain family 1A; RT-PCR, real-time PCR; SCGB3A1, secretoglobin family 3A
member 1; SEPT9, septin 9; SHOX2, short stature homeobox gene 2; SOX17, SRY-box containing gene 17; STAG3, stromal antigen 3; TAC1,
tachykinin precursor 1; UNCX, UNC homeobox.
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specificity of 73% when fixing the sensitivity at 90% (AUC
= 0.88).52 In another study, SOX17 combined with CDO1
and TAC1 showed a sensitivity of 86% and a specificity of
78% (AUC = 0.77) in lung cancer plasma.111 Favorable
results were also achieved in stage 1A lung cancer: a six-
gene panel (CDO1, HOXA9, AJAP1, PTGDR, UNCX, and
MARCH11) was sensitive in 72.1% (31/41) of stage 1A lung
cancer plasma, with a specificity of 71.4% (30/42).115

However, larger panels often necessitate higher budgets, a
feature that must be considered for clinical application. In
addition, with developments in high-throughput techni-
ques (such as microarray and sequencing), it may be pos-
sible to expand the number of biomarkers analyzed. In
recent studies, thousands of methylation alterations have
been detected simultaneously, illustrating the pathogen-
esis of several diseases and facilitating diagnosis of mul-
tiple malignancies.20,21,116,117

Current limitations and potential
solutions
Despite the multiple aforementioned advantages, none
of the methylation biomarkers has yet been applied to
lung cancer diagnosis in a clinical setting. The most
important factor contributing to this situation is low sen-
sitivity. As illustrated above, methylation often occurs at
an early stage in carcinogenesis, and is sometimes even
detectable in precursor lesions of lung cancer.84

However, these tumor-derived DNA fragments exist at
very low levels in plasma. It was reported that 2121-8787
copies of cfDNA (= 7-29ng) could be extracted from 1ml
plasma.118,119 Hematopoietic cells, such as leukocytes,
are the major source of cfDNA—ctDNA is a small portion
of this material.120 In fact, it has been estimated that
only two copies of ctDNA can be purified in 1ml plasma
from stage I cancer.121 Furthermore, after treatment with
sodium bisulfate conversion, the ctDNA quantity will
decrease, sometimes with <50% remaining.122 This
amount is far beyond the discriminatory threshold of
quantitative methylation-specific PCR (qMSP), a technol-
ogy applied in most previous studies,123 making it diffi-
cult to find a robust biomarker. Today, techniques with
remarkably higher discriminatory abilities, including
digital PCR and next-generation sequencing, are applied.

Another crucial shortcoming of methylation biomarker
is insufficient specificity. cfDNA methylation levels are
affected by various factors, including age, gender, and
smoking history.124,125 Notably, although significantly
related to lung cancer, smoking itself strongly changes
gene methylation status. Some biomarkers believed to be
cancer-specific (such as SHOX2,48 RASSF1A,71 p16,75 and
NISCH126) have proven to be impacted by smoking.
Choosing proper control groups with matched demo-
graphic characteristics is crucial for further studies.
Additionally, the application of bioinformatics to detect
these signals may be helpful to eliminate these confound-
ing factors. These approaches, along with combining

multiple biomarkers, may enable a highly reliable test for
lung cancer early diagnosis.

Conclusions
In this review, we focused on ctDNA methylation as a
promising diagnostic approach for lung cancer. It could
serve as a surrogate for tissue biopsy in patients with
candidate cancerous regions identified via LDCT, mak-
ing this diagnostic process less uncomfortable and
expensive. Besides plasma and serum, more attention
should be paid to other samples in future studies,
including pleural effusion, sputum, and bronchoalveolar
lavage fluid. Although unlikely to replace the existing
gold standard within a short time frame, ctDNA methy-
lation does provide a possible alternative for cancer
diagnosis and surveillance in the future, particularly in
the context of ctDNA.
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