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Immunosuppression and immunomodulation are valuable therapeutic approaches for managing neuroim-
munological diseases. In times of the Coronavirus disease 2019 (COVID-19) pandemic, clinicians must deal
with the question of whether immunotherapy should currently be initiated or discontinued in neurological
patients. Uncertainty exists especially because different national medical associations publish different rec-
ommendations on the extent to which immunotherapies must be continued, monitored, or possibly
switched during the current pandemic.
Based on the most recently available data both about the novel coronavirus and the approved immunothera-
pies for neurological diseases, we provide an updated overview that includes current treatment strategies
and the associated COVID-19 risk, but also the potential of immunotherapies to treat COVID-19.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The rapid pandemic outbreak of the Coronavirus disease 2019
(COVID-19) poses one of the most significant global challenges in the
21st century. The clinical presentations vary from asymptomatic and
mild clinical symptoms to acute respiratory distress syndrome
(ARDS) and associated death [1]. At the time of writing, more than
three million people are officially infected worldwide, and more than
200,000 people died due to the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection. Unfortunately, there are no
proven therapies, especially no vaccination, for SARS-CoV-2, and
experiences with previous CoV epidemics reflect the ongoing and dif-
ficult challenge of finding effective treatment [2,3].

At present, there is a lack of data on how COVID-19 affects people
with neuroimmunological diseases. In particular, neuromuscular dis-
orders can affect respiratory muscles, and there is a heightened sense
of concern for the potential risk of SARS-CoV-2 infections and the
severity of manifestations [4]. Moreover, most patients with neuroin-
flammatory disorders are on immunosuppressive or immunomodu-
latory therapies. Due to its nature and previous evidence from other
respiratory viral infections, immunosuppression appears to be
another risk factor for both becoming infected with SARS-CoV-2 and
developing serious complications [5]. However, stabilizing the neuro-
immunological disorder with immunosuppression could hinder dis-
ease exacerbation and potentially outweighs the higher risks of
infection [4]. Current uncertainty about applying immunotherapies is
illustrated by numerous but inconsistent recommendations circu-
lated by national and international societies for diverse neuroimmu-
nological diseases.

Similar to other severe virus infections, the disease characteristics
of COVID-19 comprise two critical phases in which the interplay
between pro- and anti-inflammatory mechanisms of the host appear
to play an important role in the disease-related outcome (Fig. 1a)
[6,7]. Though an adequate and rapid immune response weakens virus
replication and cytopathic tissue damage, the virus-induced
increased host immunity, however, seems to conversely cause organ
failure like ARDS and a cytokine storm (Fig. 1b) [8,9].

While the elevated risk of infection under immunomodulatory
therapies is obvious, there is increasing evidence that the application
of tailored immunotherapies may have beneficial effects in dampen-
ing excessive inflammation in late stages of infection [5]. Thus, expe-
rience in treating neuroinflammatory disorders could help to
estimate the risk of infection with SARS-CoV-2 and to identify thera-
peutic strategies to minimize severe overactivation of the immune
response following the viral phase of SARS-CoV-2 infection [9]

Here, we provide an overview covering the known and suspected
SARS-CoV-2 induced immunological mechanisms and the related
potential risks under currently recommended immunotherapies used
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Fig. 1. Implication of inflammation during the viral and host response phase (adapted from Abbas et al. [116]) A: In the early stages of COVID-19 disease, antiviral treatment
approaches may be effective, whereas immunosuppressive/immunomodulating therapies are an option in the inflammatory phase. B: Affected alveolus during both phases of
COVID-19. Left: immune mechanisms during the viral response phase; right: several immune-mediated mechanisms in acute lung injury during the inflammatory host stage; *
potential target of immunotherapies with antiviral potential; $ leukocyte trafficking as a potential target; inhibition of cytokine production and release during the phase of cytokine
storm as a treatment target. MMP = matrix metalloproteinases; TNF-a = tumor necrosis factor-a; IL-1 = interleukin 1.
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in neuroinflammatory disorders, but also opportunities of those
approaches to treat the second phase of COVID-19.

2. Search strategy and selection criteria

References for this narrative review were identified by searches of
PubMed for articles published between 1990 and 15th April 2020. The
first and the last authors used combinations of the terms “coronavirus”,
“COVID-1900, “SARS”, “MERS”, “multiple sclerosis”, “neuroimmunological
disorder”, “neuroinflammatory disorder”, “immunosuppression”, “cyto-
kine storm”, “disease modifying therapy” and “vaccination”, and applied
no language restrictions.

3. COVID-19 and the role of inflammation

SARS-CoV-2 belongs to the group of highly diverse, enveloped,
positive-sense, single-stranded RNA viruses and is the third known
highly pathogenic zoonotic CoV after the SARS-CoV and the Middle
East respiratory syndrome CoV (MERS-CoV) [2]. Despite the large
number of current publications on COVID-19, conclusions regarding
the pathogenesis are mainly drawn from clinical observations and
experimental studies with SARS-CoV and MERS-CoV [2,10,11]. Unfor-
tunately, the persistent lack of treatment options and the associated
high mortality rates of these two CoVs underline the current chal-
lenge to treat COVID-19 successfully [2,3]. With regard to the two
different disease stages of COVID-19, different immunological path-
ways are emerging that offer potential treatment targets (Fig. 1b).

In the viral response phase, receptor-mediated viral attachment
and entry of SARS-CoV2 into the target cells are realized by the host
angiotensin II converting enzyme (ACE-II) receptor binding to the
viral spike glycoprotein [12]. Cells with high ACE-II expression are
present in the salivary glands of the mouth, the whole respiratory
tract and lung epithelial cells [13]. Moreover, SARS-CoV particles and
viral genome have been detected in macrophages and lymphocytes
as well as vascular endothelial cells [14].

The early cytopathic and inflammatory effects are related to rapid
viral replication interfering with protein synthesis and function in
infected cells leading to progressive dysfunction and finally apopto-
sis. Additionally, the virus induces a downregulation and shedding of
the ACE-II receptor, causing pulmonary injury and the release of exu-
berant pro-inflammatory mediators [7,15,16]. Certain innate and
adaptive immune cells provide important immune counterparts dur-
ing the first stage of inflammation. Early-on synthesized and released
viral proteins are recognized by the endosomal toll-like receptor 7 of
infected tissue or innate immune cells (macrophages, neutrophils,
and dendritic cells), leading to activation of intracellular pattern rec-
ognition receptors and transmembrane proteins [6,17]. The latter
mechanisms converge on the activation of protein kinases, which in
turn activate interferon (IFN) regulatory transcription factors that
stimulate tumor necrosis factor-a (TNF-a) as well as interleukin
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(IL)�1, IL-6, IL-8, and IL-12 transcription and secretion. In addition to
the inhibitory effects against viral replication in both infected and
non-infected cells, chemokine secretion induces an adaptive immune
response primarily driven by T cells [6,18,19]. T cell differentiation
and stimulation are supported by antigen presentation due to den-
dritic cells and cytokine release of CD4+ T cells [20,21]. Cytotoxic T
cells recognize cytosolic viral peptides presented by MHC class I mol-
ecules. CD8+ T cells directly kill infected cells, activate nucleases that
degrade viral genomes, and initiate further cytokine secretion that
activates phagocytosis by pulmonary macrophages [22]. In terms of
virus-induced shutoff of MHC class I expression on the infected cells,
natural killer (NK) cells can recognize and kill virus-infected tissue
cells as well [18,20,23].

In most COVID-19 patients the primary inflammatory reaction
results in a reduction of viral activity followed by decremental damp-
ening of inflammation [7]. The more significant challenge represent
the secondary phase of inflammation in some patients, characterized
by a cytokine storm and leukocyte infiltration into pulmonary tissue
(Fig. 1b) [9]. Currently, various inadequate virus-induced immune
defense mechanisms are being discussed. During the viral response
phase, virus-neutralizing antibodies do not play a major role due to
the lack of memory B cell clones. However, after B cell activation and
proliferation, anti-spike-protein-neutralizing antibodies might pro-
mote proinflammatory macrophage accumulation and production of
matrix metalloproteinases, leukotrienes, and IL-8 in the lungs by
binding to Fc receptors [24]. IL-8 has a negative impact on T cell prim-
ing by dendritic cells, thereby providing an important mechanism for
SARS-CoV2 to evade host immune responses. The continuous circle
of viral replication and death leads to cell pyroptosis, which subse-
quently triggers massive cytokine release and immune cell migration
into the lung [24,25]. Moreover, antibody-mediated activation of the
complement system leads to chemokine production and invasion of
granulocytes and lymphocytes that further increase pulmonary tissue
damage (Fig. 1b) [10].

Overall, it can be concluded that different mechanisms of the
innate and adaptive immune response to SARS-CoV-2 infection are
self-perpetuating indicating potential detrimental but also beneficial
effects of anti-inflammatory treatment approaches against COVID-19.

4. Mode of action of immune therapies and implications for
COVID-19 infection

4.1. Interference with DNA synthesis

Azathioprine, methotrexate, and cyclophosphamide are long-
established therapies in myasthenia gravis (MG), neuromyelitis
optica spectrum disorders (NMOSD), idiopathic inflammatory myop-
athies (IIM), primary angiitis of the central nervous system (PACNS),
inflammatory neuropathies and autoimmune encephalitis. While
azathioprine and methotrexate are mainly used at disease onset and
over a longer time, cyclophosphamide is mainly indicated in severe
disease exacerbations aiming at a preferably low small cumulative
dose [26]. Mitoxantrone, a type II topoisomerase inhibitor, is another
immunosuppressive drug that was commonly used in secondary pro-
gressive multiple sclerosis (SPMS) and in treatment-refractory
relapsing remitting MS (RRMS) as well as in NMOSD [27]. All drugs
are characterized by long-term lymphopenia and neutropenia, result-
ing in higher infection rates [26].

Teriflunomide is a recently approved immunosuppressive drug
for RRMS. It reversibly inhibits the dihydroorotate dehydrogenase
that is expressed in lymphocytes [28]. Though, a notable decrease in
peripheral lymphocyte counts of approximately 15% was observed,
the incidence of infections was comparable between placebo- and
teriflunomide-treated RRMS patients in both phase III trials [29,30].
However, the long-term risk of lymphopenia and infections in teriflu-
nomide treated RRMS patients seems to be low [31]. Besides the anti-
inflammatory effect, the inhibition of the de novo pyrimidine biosyn-
thetic pathway promotes antiviral properties as was already shown
for various DNA and RNA viruses [32].

Mycophenolate mofetil (MMF), currently used in MG, IIM, PACNS,
and NMOSD, reversibly inhibits inosine monophosphate dehydroge-
nase and the synthesis of guanine monophosphate, disrupting the de
novo purine synthesis [33]. Consequently, MMF mainly curtails the
proliferation of T and B lymphocytes. Moreover, MMF reduces the
production of lymphocyte-derived proinflammatory cytokines such
as IFN-g and TNF-a. Due to the mode of action, MMF increases the
possibility of infections through reactivating latent viruses [34]. Inter-
estingly, the active compound, mycophenolic acid, exhibits antiviral
activity in vitro against various viruses, including MERS-CoV [35,36].
An in vivo study with MERS-CoV infected marmosets, however,
showed high viral loads with more severe or even fatal disease out-
come [37]. A case series of 8 patients treated with MMF and IFN-b
revealed an overall survival [38]. Nevertheless, renal transplant recip-
ients who were on maintenance MMF therapy also developed severe
or fatal MERS-CoV infections [3]. In conclusion, continuous MMF
therapy might increase the risk of infection, while the antiviral prop-
erties could be exploited as an acute treatment approach against
COVID-19. However, the previous results must be interpreted with
caution, since the usual dosage of MMF is unlikely to be a guarantee
for prophylaxis or treatment of CoV infections [39].

Cladribine is a synthetic purine analog that disrupts DNA synthe-
sis and repair, specifically in lymphocytes. Up to 4 months after appli-
cation, cladribine leads to a preferential decrease of circulating CD4+T
cells, and for a shorter period to a reduction of NK cells, mature and
memory B cells, and CD8+ T cells [40]. The resulting lymphopenia ren-
ders patients transiently more susceptible towards infections, espe-
cially viral infections and reactivation [41]. Of note, the pulsed
immunosuppression shortly after administration is associated with a
higher infectious risk but could be beneficial due to the long-term
anti-inflammatory effect without associated immunosuppression.

4.2. Pulsed depletion of immune cells

Monoclonal antibodies (mAb) targeting B cells are frequently
applied in neuroinflammatory disorders. Especially rituximab, a chi-
meric anti-CD20 mAb, has shown promising effects in a wide range
of inflammatory neurological disorders, including MG, NMOSD, auto-
immune encephalitis, inflammatory neuropathies as well as RRMS
[42]. For RRMS and primary progressive MS, the humanized CD20
mAb ocrelizumab received approval in 2018 [43,44]. The CD20 mole-
cule is expressed throughout B cell maturation. Thus, both com-
pounds effectively deplete late pre-B cells up to and including
memory B cells but not early pro-B cells, plasma cells, or plasma-
blasts. Moreover, the CD20 antigen is also expressed on a subset of
CD4+ T cells [42,43].

Inebilizumab is a mAb against the CD19 antigen and has recently
shown positive results in NMOSD patients [45]. Compared to CD20
mAb, inebilizumab has a more pronounced impact on B-cell deple-
tion, since CD19 expression starts at the pro-B cell stage, and CD19 is
expressed on the majority of plasma cells [46]. B-cell depletion is
associated with a slightly increased frequency of upper respiratory
tract infections and certain influenza and pneumonia cases [43�45].
In particular, the associated interference with CD4+ T cells might
reduce the acute defense against SARS-CoV2. Concerning the
repeated application of mAb against CD19 and CD20 antigens, the
long-term absence of a B cell immune response appears to be the
main issue. In general, all three drugs often show persistent B cell
depletion even before the planned reapplication [43�45]. However,
despite a recovery of the total B cell account, the repopulated B cell
compartment consists largely of naive B cells, while memory B cells
remain almost absent in peripheral blood for several years after the
last administration [47]. The lack of memory B cells might be relevant
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in the future for COVID-19 since low vaccination response rates dur-
ing B cell depletion treatment approaches are reported [48]. How-
ever, long-lived plasma cells, themselves unaffected by CD20 mAb
and persisting after depletion of the B cell precursors, suggests vacci-
nation before treatment initiation. Contrary, inebilizumab might pre-
dict a higher infectious risk due to the relevant depletion of long-
lived plasma cells in peripheral blood and bone marrow [49]. Another
risk factor for COVID-19 is thought to be the treatment-related late-
onset neutropenia, which commonly occurs along with hypogamma-
globinemia [50].

Alemtuzumab is a humanized anti-CD52 mAb approved for the
therapy of active RRMS. The CD52 antigen is highly expressed on the
surface of B and T cells and at lower levels on monocytes and macro-
phages [51]. The rapid and profound lymphopenia in the first months
following alemtuzumab administration results in a small but definite
increase in the risk of infection [51,52].

The repopulation dynamics of immune cells derived from
hematopoietic stem cells are distinct for different immune cell types.
Since T cell recovery is slower than B cell repopulation, opportunistic
infections are more likely to be associated with T cell depletion [53].
However, pneumonia and upper respiratory tract infections might be
related to the additionally documented hypogammaglobulinemia
after T and B cell recovery [54]. Notably, after the critical phase of
lymphopenia induced by alemtuzumab, there is both sufficient
immunocompetence and corresponding inhibition of MS-related
inflammatory activity in the further course of disease [51]. Moreover,
the pulsed nature of this treatment approach provides the opportu-
nity to delay further therapy courses without a detectable impact on
efficacy [55].
4.3. Peripheral sequestration of leukocytes

Natalizumab is a recombinant humanized mAb directed against
alpha4-integrin molecules on leukocytes and blocks transmigration
of peripheral immune cells into the CNS [56]. Natalizumab is cur-
rently available for RRMS treatment. Since focal immunosuppression
rather increases the risk of serious opportunistic infections of the
brain, respiratory infections are rarely reported [57]. Alpha4-integrin
also serves as a retention signal for mainly lymphoid progenitor cells
in the bone marrow. Thus, natalizumab treatment results in an
increase of NK cells, T lymphocytes, and especially B cells in the
peripheral blood [58,59]. The higher B cell-mediated inflammatory
Table 1
Current clinical trials on COVID-19 with approved or recommended immunotherapies for ne
leukin 6; IVIG = intravenous immunoglobulins; n/a = not applicable; RCT = randomized contr

Drug(s) Study title Phase Study design Subj

Fingolimod Efficacy of Fingolimod in the
Treatment of New Coronavirus
Pneumonia (COVID-19)

II single-arm 30

Eculizumab Soliris to Stop Immune Mediated
Death In Covid 19 Infected
Patients. A Trial of Distal Com-
plement Inhibition.

II single-arm n/a

Tocilizumab Multicenter Study on the Effi-
cacy and Tolerability of Tocili-
zumab in the Treatment of
Patients With COVID-19
Pneumonia

II single-arm 400

IVIG The Efficacy of Intravenous
Immunoglobulin Therapy for
Severe 2019-nCoV Infected
Pneumonia

II RCT (standard care) 80

Glucocorticosteroids Efficacy and Safety of Corticoste-
roids in COVID-19

II RCT (placebo) 400
state might be favorable against infectious disease. Moreover, a
decreased migration of lymphocytes after blocking alpha4-integrin
was reported in inflammatory lung disease suggesting a possible pro-
tective effect of natalizumab in COVID-19 infection [60].

Favorable effects of peripheral sequestration of leukocytes are
assumed for oral sphingosine 1-phosphate receptor (S1PR) modula-
tors in MS therapy. Fingolimod is effective in treating RRMS, whereas
siponomid was recently approved for secondary progressive (by
EMA) and relapsing forms (by FDA). Both medications inhibit lym-
phocyte egress out of secondary lymphoid organs, resulting in a pro-
found diminution of naive and central memory T cells and memory B
cells in the periphery [61,62]. S1PR modulators lead to a peripheral
lymphopenia up to 20�30% compared to baseline with implications
for infection rates. Although various reports underline pulmonary
complications occurring during treatment with fingolimod, modula-
tion of S1PR was protective against experimental asthma, and docu-
mented to inhibit pulmonary vascular leakage in murine models of
acute lung injury [63�65]. Moreover, fingolimod suppresses the IL-6
and IL-8 mRNA expression and protein secretion from lung epithelial
cells [66].

To date, one clinical trial has examined changes of pneumonia
severity on X-ray images in severe COVID-19 cases under fingolimod
(Table 1).
4.4. Pleiotropic immunomodulation

Glatiramer acetate is a mixture of synthetic polymers consisting of
four amino acids and competes with myelin antigens for presentation
to T cells. There is no increased risk of infections observed in RRMS
patients [67].

Like glatiramer acetate, dimethyl fumarate is approved for RRMS.
The mode of action has not been fully elucidated but may include
anti-inflammatory and cytoprotective aspects. Dimethyl fumarate
can lead to pronounced lymphopenia below 500/ml that may persist
for several months. Importantly, patients > 55 years of age appeared
to be at a higher risk of lymphopenia [68].
4.5. Cytokine targeted agents

IFN-b is approved for RRMS and secondary progressive MS for
more than 20 years [69]. IFN-b shifts cytokine production in favor of
anti-inflammatory cytokines and modulates the antigen-presenting
uroinflammatory diseases. COVID-19 = Coronavirus disease 2019; d = days; IL-6 = inter-
olled trial.

ects Primary endpoints NCT number (Assumed) mechanism
of action

The change of pneumonia
severity on X-ray images (5d
after fingolimod treatment)

NCT04280588 Leucocyte sequestration

Mortality
Time in the ICU
Time on a ventilator

NCT04288713 Complement inhibition

One-month mortality rate NCT04317092 Il-6 inhibition

Clinical improvement based on
the 7-point scale

NCT04261426 Pleiotropic
immunomodulation

The incidence of treatment
failure in 14d

NCT04273321 Downregulation of
inflammatory
cytokines

ctgov:NCT04280588
ctgov:NCT04288713
ctgov:NCT04317092
ctgov:NCT04261426
ctgov:NCT04273321
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function of dendritic cells and promotes anti-inflammatory B-cell
functions [67,69]. There is no heightened risk of infection during IFN-
b treatment. Only a few patients experience mild leukopenia or lym-
phopenia [67]. IFN-b is naturally secreted by fibroblasts and binds to
the IFN receptor, which activates the Janus kinase/signal transducer
and activator of the transcription pathway and consequently leads to
increased gene expression of antiviral and antiproliferative mole-
cules. During a viral infection, the extensive release of IFNs is trig-
gered by innate immune players [70]. Interestingly, studies
evaluating the antiviral activity of IFNs have reported IFN-b as the
most potent of them in reducing MERS-CoV replication in vitro
[71,72]. Therefore, combining IFN-b with other antiviral agents is
investigated in MERS-CoV, both in vitro studies and clinical trials
(Table 1) [73,74].

The inhibition of IL-6 is an intensively investigated treatment
approach for inflammatory diseases. Tocilizumab and satralizumab
are mAbs against the IL-6 receptor and currently used in NMOSD
[75,76].

IL-6 production has been associated with predominantly pro-
inflammatory effects. IL-6 is immediately produced in response to
infections but also upregulated in chronic autoimmune processes
[77]. Although potential antiviral properties of exogenous IL-6
have been suggested, mostly detrimental consequences of
increased IL-6 levels in infections have been reported [78]. The
increased expression of T cell-regulating molecules such as pro-
grammed cell death-1 and its ligand, as well as synergistic interac-
tion with IL-17, lead to an increased inflammatory host stage.
Subsequently, IL-6 is a key player in cytokine release syndromes
(CRS) seen in infections or after adoptive T cell therapy [79,80].
Elevated systemic levels of IL-6 were frequently reported with the
exacerbation of clinical outcomes involving viral pathogens
[78,81]. With respect to COVID-19, CRS are commonly reported in
severe and fatal disease cases with corresponding high IL-6 levels
in the blood [9,82�84]. Interestingly, tocilizumab is approved for
the treatment of a chimeric antigen receptor T cell-induced CRS
[85]. Subsequently, various reports also suggested a favorable out-
come of tocilizumab treatment in severe CRS in COVID-19 cases
[86,87]. In a non-randomized, open-label, clinical trial, 21 patients
with severe COVID-19 received tocilizumab in addition to lopina-
vir and methylprednisolone. All patients survived without side
effects [88]. The early signals of clinical improvement and the rela-
tively low rate of side effects due to IL-6 inhibition prompted initi-
ation of an ongoing clinical trial (Table 1).

4.6. Complement inhibition

The humanized mAB Eculizumab blocks the cleavage and
activity of complement factor 5 (C5), ultimately inhibiting com-
plement-mediated cell lysis. It became the first mAb approved for
aquaporin-4-antibody-positive NMOSD and for severe MG
[89,90]. Eculizumab is associated with a heightened risk of pneu-
mococcal and meningococcal infections, but also reports about
viral infections are available at present, possibly due to the com-
plement-dependent regulation of T cell activation [91,92].
Although the complement system plays a crucial role in the anti-
viral response of the host, the increased complement activation
during the inflammatory phase in COVID-19 sheds new light on
its possible destructive potential [93]. In SARS-CoV-infected mice,
the complement system may not play a key role in controlling
virus replication but mediates lung tissue damage by upregula-
tion of inflammatory cytokines and neutrophil activation [94].
Interestingly, C3a and C5a blockade has been proposed as a treat-
ment option for virus-induced acute lung injury, and the anti-C5a
antibody has been shown to weaken sever lung tissues injury in
SARS-CoV infected mice [10,93]. To date, a clinical trial with ecu-
lizumab in COVID-19 is under investigation (Table 1).
4.7. Blockade of intracellular signaling pathways

Cyclosporine A (CsA) is an immunosuppressive drug that is com-
monly used in MG and IIM cases [95,96]. CsA therapy does not seem
to render patients with neuroinflammatory disorders more suscepti-
ble to infections [97]. CsA binds to cellular cyclophilins to inhibit cal-
cineurin. The inhibition of calcineurin blocks the translocation of the
nuclear factor of activated T cells from the cytosol into the nucleus,
thereby reducing the transcription of pro-inflammatory genes encod-
ing e.g. cytokines such as IL-2. Although CsA mainly targets T cell acti-
vation, accumulating evidence supports a crucial regulatory impact
on innate immune cells, including dendritic cells, macrophages, and
neutrophils [98]. In vitro studies have shown that CsA inhibits the
replication of diverse CoVs [11]. However, studies in humans are still
lacking and might be limited due to the very close margin between
therapeutic and toxic blood concentrations [99].

4.8. Acute treatment approaches

Glucocorticosteroids (GCS) are widely used in various neuroin-
flammatory diseases.

GCS restrict the production of numerous inflammatory mediators
and inhibit the migration of immune cells across the blood-brain bar-
rier [100].

Long-term administration of GCS is associated with bacterial and
viral infections. In contrast to continuous treatment, repeated pulse
therapy does not increase the risk to develop bacterial infections, but
severe viral infections are reported [101]. In terms of COVID-19, there
is currently a controversy concerning the application of GCS applica-
tion in cases of ARDS or severe respiratory failure, since previous data
have shown increased mortality and secondary infection rates in CoV
patients [102,103]. However, results from a clinical trial are still
awaited (Table 1).

Repeated administration of intravenous immunoglobulins (IVIG)
is a well-established immune-modulating therapy, particularly in
inflammatory neuropathies as well as MG. Besides their favorable
role in pathogen recognition and clearance in immunodeficient
patients, IVIG might have promising effects on pathogen-induced
host inflammation. Regarding myeloid cell activation in the inflam-
matory phase, IVIG saturate the IgG recycling capacity of neonatal Fc
receptors and consequently reduce the levels of antiviral neutralizing
antibodies responsible for activation of macrophages and NK cells
[104,105]. Moreover, IVIG inhibit both TNF-a-induced NF-kB activa-
tion in neutrophils and endothelial cells [104]. IVIG also reduce pro-
inflammatory cytokine production by mononuclear cells while they
increase the production of the anti-inflammatory IL-1 receptor antag-
onist [106]. IVIG can also expand regulatory T cells and suppress
pathogenic Th1 and Th17 subsets [107]. As dysregulated excessive
complement activity is likely to be a key molecular mechanism in the
acute inflammatory phase, IVIG-mediated neutralization of comple-
ment factors could be beneficial [108]. IVIG also inhibit endothelial
cell proliferation and downregulate mRNA expression of adhesion
molecules such as vascular cell adhesion protein 1 [109]. In addition,
IVIG attenuate IL-1a-dependent leukocyte adhesion to endothelium,
activation, and tissue injury [106]. The endothelial effects of IVIG are
thus potentially useful in ameliorating disease severity or possibly
preventing the onset of acute inflammatory lung injury. Since only a
few cases of IVIG treatment for COVID-19 have been reported to date,
but further immunotherapies have been administered, conclusions
about its efficacy could not be drawn. However, previous studies in
septic patients showed a favorable outcome upon IVIG administra-
tion, and a clinical trial in COVID-19 is still ongoing (Table 1) [110].

Therapeutic apheresis is considered as a treatment option in dis-
ease exacerbation of several neuroinflammatory disorders [111].
Higher infection rates are observed during and after treatment but
mainly include catheter-associated infections. With regard to the
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inflammatory host phase, the removal of circulating inflammatory
cytokines and the replacement of protective plasma proteins may
counteract inflammation and vascular leakage [112]. Due to the small
number of randomized trials in septic patients, however, only weak
evidence exists to recommend plasma exchange.

5. Implications for the application of immunotherapies in the age
of COVID-19

Although respective data are still lacking, we believe that classical
immunosuppressive agents such as azathioprine, methotrexate,
mitoxantrone, and cyclophosphamide might be associated with a
higher risk of infection due to the caused long-lasting lymphopenia.
Unfortunately, such compounds are still continuously used for
numerous neurological diseases as the corresponding approval stud-
ies for new selective therapies, especially for orphan diseases, are
rarely conducted. However, a treatment cessation due to the COVID-
19 pandemic may both worsen the disease and increase the risk of
poor outcome in case of a COVID-19 infection. In particular, disease
exacerbation might result in the need for acute therapy intervention
with GCS, which could also result in longer-lasting immunosuppres-
sion. Furthermore, hospitalization could lead to a higher probability
of exposure to already infected patients. Thus, the associated risk of
infection might be offset by the improvement in neurological func-
tion in severe disease cases by controlling the inflammation. For
long-term disease stability, de-escalating strategies, e.g., dose reduc-
tion, could be considered. For treatment initiation in orphan diseases
such as MG or IIM, the off-label compounds MMF or CsA might be
more advisable than the therapies described above. Fortunately,
there are currently several selective immunotherapies for MS that
offer more options in times of COVID-19. In modest MS, self-injected
therapies (glatiramer acetate, IFN-b), dimethyl fumarate, and teriflu-
nomide do not seem to be associated with an increased risk of
COVID-19 infection or complications due to their low level of immu-
nosuppression and should therefore be initiated or continued.

Regarding active RRMS, the inhibition of leukocyte trafficking
using fingolimod is related to a mildly increased risk of viral infec-
tions and complications. In the context of natalizumab, opportunistic
CNS infections are more relevant than systemic virus spread. Never-
theless, treatment with natalizumab may offer more flexibility, as a
recent retrospective evaluation showed that extending the dosing
interval to up to 6 weeks appeared to be associated with a lower pro-
gressive multifocal leukoencephalopathy risk [113]. The initiation
and continuation of both drugs, however, do not pose an additional
risk of developing more severe COVID-19 to RRMS patients. In con-
trast, treatment cessation might result in MS reactivation. Pulsed
immunosuppressive therapies, including mAbs against CD19/20 as
well as CD52 and cladribine, are associated with an increased infec-
tious risk over a limited period after initiation. However, the extent
of immunosuppression and the repopulation dynamics differ funda-
mentally between such therapeutic agents and should be considered
in treatment decisions. Especially after B cell depletion with rituxi-
mab, ocrelizumab, or inebilizumab, a reduced humoral immunity
develops over the next 6�12 months and is maintained by the subse-
quent reapplication. Thus, for repeated applications, it seems to be
advisable to use serological markers, such as the CD19 B cell status,
to avoid long-term side effects like hypogammaglobinemia [50].

Concerning the mode of action of cladribine and alemtuzumab, a
normalization of the total lymphocyte count due to immune reconsti-
tution can be expected 6�12 months after application and, at most,
leads to a slightly increased risk of severe virus infections. The pulsed
nature of these compounds provides the opportunity to delay ther-
apy until the peak of the pandemic is over.

For eculizumab, there is currently no evidence of increased sus-
ceptibility to COVID-19 infection or its outcome. In light of its indica-
tion for active MG and NMOSD cases, therapy should, therefore, be
initiated and continued. The same applies to the use of mAbs against
IL-6 in patients with NMOSD.

With regard to acute treatment approaches, including IVIG and
therapeutic apheresis, there is currently no sufficient evidence that
either intervention poses an additional risk of COVID-19 infection.
Due to the increased risk of infection, intravenous GCS therapies
should only be conducted if there is a clear clinical indication such as
relapses or as a required premedication in pulsed immunotherapy
regimens

6. Implications for treatment continuation in the case of an acute
COVID-19 infection

In the event of an acute COVID-19 infection, the continuation of
immunotherapy should be questioned critically, especially considering
the previous course of the neuroimmunological disease. In particular
with immunosuppressive therapies, a sustained therapeutic effect can
be expected for weeks and months even after the therapy has been
discontinued. These therapies should therefore be suspended. In con-
trast, selective immunotherapies such as glatiramer acetate, IFN-b, ter-
iflunomide or dimethyl fumarate seems to be safe in case of COVID-19
infection. However, in severe lymphopenia resulting from the latter
therapy, treatment should also be interrupted.

With respect to immunotherapies for active RRMS, both natalizu-
mab and fingolimod could be continued or stopped for few weeks
before a disease reactivation or rebound are expected. Pulsed immu-
notherapies including treatment approaches with exclusive B-cell
depletion, alemtuzumab and cladribine should be delayed in case of
an acute infection. In view of both the safety data and the current
indications, especially in severe refractory cases, mAbs against IL-6,
complement inhibitors and CsA should be continued.

7. Implications for vaccination under immunotherapies in the
age of COVID-19

Regarding the intensive search for vaccines, the question arises to
what extent an adequate vaccination response can be expected
among recipients of immunotherapies. Whether vaccination is as
effective under immunotherapies in neurological disorders as in the
general population is not well studied. Unfortunately, the few exist-
ing studies gave contradicting results [48,114]. While a sufficient vac-
cination response is more probable with immunomodulatory and
selective treatment strategies, immunosuppressants and especially
B-cell depletion approaches might be unfavorable in such a situation.
Overall, immune reconstitution after pulsed cell depletion might be a
determining factor for a successful vaccination with few side effects
[114]. On the other hand, theoretically an increased immune
response against different types of vaccines, such as live attenuated
viruses or inactive viruses as well as adjuvanted-containing vaccines,
could trigger immune response to self-antigen with increased relapse
rates after vaccination [115].

Furthermore, the restriction on vaccines with live attenuated
viruses, especially under diseases modifying treatments must be
observed [114].

8. Outstanding questions and concluding remarks

In general, immunotherapies are a mainstay in the management
of neuroimmunological diseases, while it is still unclear whether and
how they increase the risk of COVID-19 and its complications. The
risks of treatment cessation can be higher than the risk of a worsened
COVID-19 disease course under ongoing immunotherapy. In this con-
text, factors such as the local prevalence rate for COVID-19 might
also play a role regarding future therapeutic decisions.

Moreover, the current lockdown in various countries around the
world has led to limited availability of healthcare services. Future
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studies should therefore also investigate the relationship between
such treatment delay and disease activity. In general, the potential
long-term risk of infection must be considered in future treatment
decisions. Hence, approved selective immunotherapies from other
indications should also be investigated for their use in rare neuroin-
flammatory diseases. It is, therefore, appropriate to amend the off-
label use regulations and, in particular, to consider immunological
investigations. In this review, we have outlined several beneficial
aspects of immunotherapies in COVID-19 cases: antiviral effects of
IFN-ß, CsA, and teriflunomide; leukocyte sequestration by natalizu-
mab or S1PR modulators; complement inhibition by eculizumab; as
well as potential immunoregulatory effects in terms of a cytokine
storm by IVIG or GCS. So far, however, the experience is limited to
therapies that target IL-6. This is mainly explained by previous suc-
cessful observations with tocilizumab in CRS, which seems to be a
hallmark in severe COVID-19 cases [87,88]. The major challenge of
the current and future COVID-19 studies investigating the above-
mentioned therapies could be to determine the right time for starting
and discontinuing treatment. Several biomarkers are available to
identify the beginning of the host response phase and should be con-
sidered as regular inclusion criteria in clinical trials [9]. The use of
immunotherapies other than tocilizumab beyond clinical trials or
without using a standardized definition for the inflammatory host
phase should be avoided, as neither success nor failure will allow
conclusions to be drawn.
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