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OBJECTIVE—We aimed at developing and cross-validating a mathematical prediction model
for an optimal basal insulin infusion pattern for children with type 1 diabetes on continuous
subcutaneous insulin infusion therapy (CSID).

RESEARCH DESIGN AND METHODS —We used the German/Austrian DPV-
Wiss database for quality control and scientific surveys in pediatric diabetology and retrieved
all CSII patients <20 years of age (November 2009). A total of 1,248 individuals from our
previous study were excluded (dataset 1), resulting in 6,063 CSII patients (dataset 2) (mean
age 10.6 £ 4.3 years). Only the most recent basal insulin infusion rates (BRs) were considered.
BR patterns were identified and corresponding patients sorted by unsupervised clustering.
Logistic regression analysis was applied to calculate the probabilities for each BR pattern.
Equations were based on both independent datasets separately, and probabilities for BR
patterns were cross-validated using typical test patients.

RESULTS —Of the 6,063 children, 5,903 clustered in one of four major circadian BR patterns,
confirming our previous study. The oldest age-group (mean age 12.8 years) was represented by
2,490 patients (42.18%) with a biphasic dawn-dusk pattern (BC). A broad single insulin max-
imum at 9-10 p.m. (F) was unveiled by 853 patients (14.45%) (mean age 6.3 years). Logistic
regression analysis revealed that age, to a lesser extent duration of diabetes, and partly sex
predicted BR patterns. Cross-validation revealed almost identical probabilities for BR patterns
BC and F in the two datasets but some variation in the remaining two BR patterns.

CONCLUSIONS —Reconfirmation of four key BR patterns in two very large independent
cohorts supports that these patterns are realistic approximations of the circadian distribution of
insulin needs in children with type 1 diabetes. Prediction of an optimal pattern a priori can
improve initiation and clinical follow-up of CSII in children and adolescents. In addition, these
BR patterns represent valuable information for insulin-infusion algorithms in closed-loop CSIIL.
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ontinuous subcutaneous insulin in-
fusion therapy (CSII) has become a
major therapeutic approach for the
treatment of type 1 diabetes including all
pediatric age-groups since the late 90s of
the last century (1,2). The prospective
German Austrian DPV-Wiss database (3)
currently contains 47,288 patients with
type 1 diabetes aged <20 years, of
whom 22.7% (10,752 patients) are on in-
sulin pumps (DPV-Wiss, 2 July 2011). In
our recent study based on 1,248 children
on CSII (4), we discovered that pediatric
diabetologists in specialized pediatric di-
abetes centers throughout Germany and
Austria have independently developed a
defined set of qualitatively distinct basal
insulin patterns for their patients. One of
the major characteristics of these patterns
was the shift of the maximum basal insu-
lin infusion rate (BR) in the early morning
as seen in the pubertal and postpubertal
children back to late evening as observed
in younger children (4). Age-dependent
BRs have been confirmed by descriptive
analyses stratified by age-groups (5,6).
In contrast to multiple adjustments of
the individual BR in a child starting CSII
based on only anecdotal assumptions like a
biphasic dawn-dusk (BC) pattern or any
other arbitrary age-adjusted pattern, com-
mencement of CSII in children will profit
from a standardized and differentiated
approach assigning an optimal pattern a
priori. We demonstrate here that in 5,903
children from the DPV-Wiss database who
started CSII only after our first study, vir-
tually identical patterns were chosen by
the diabetes teams as identified by an un-
supervised hierarchical clustering strategy.
We here show by logistic regression anal-
ysis that the probability of clustering within
one of four major baseline insulin infusion
patterns is mainly based on age, partly on
duration of diabetes, and less on male or
female sex. Calculated probabilities are
mostly highly similar in our large new data-
set (dataset 2) compared with the previous
independent dataset (dataset 1).

RESEARCH DESIGN AND
METHODS —The German/Austrian
DPV-Wiss database for quality control
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and scientific surveys in pediatric diabe-
tology (3) served as the data source. Data
collection in DPV-Wiss is in compliance
with the hospital data-protection agencies
in all participating centers. Only anony-
mous data are transmitted for centralized
analysis at the Institute of Epidemiology
and Medical Biometry, University of Ulm,
Ulm, Germany.

We first retrieved all patients on CSII
<20 years of age as documented in DPV-
Wiss (November 2009) excluding all 1,248
individuals from our first study (4) (dataset
1) resulting in 6,063 CSII patients (dataset
2). Only the most recent BR individually
adjusted during the course of diabetes
was considered. BR data of patients using
normal insulin instead of rapid-acting in-
sulin analogs were corrected by 1 h.
Mean = SD age of patients in dataset 2
was 10.6 £ 4.3 years (12.6 £ 3.7 years
in dataset 1). Age at onset of diabetes in
dataset 2 was 6.6 * 3.8 years (7.3 £ 3.7
years in dataset 1). Duration of diabetes was
4.0 £ 3.4 yearsindataset 2 (5.2 = 3.4 years
in dataset 1). Dataset 2 contained 48% boys
(43% boys in dataset 1). Secondly, we per-
formed unsupervised hierarchical average
linkage clustering of BR data as previously
described (4,7) to sort the 6,063 dataset 2
children according to BR patterns.

Subsequently, we used logistic re-
gression analysis to identify the predic-
tion factors for clustering of individual
patients in the distinct BR patterns. Be-
cause of the results from our previous
study (4), we only considered age, dura-
tion of diabetes, and sex. We performed
this calculation in both the new 6,063 pa-
tients (dataset 2) and the previous 1,248
patients (dataset 1). In order to be able to
assess the probabilities of a patient for
clustering in a distinct BR group, we
then calculated the maximum probabil-
ity estimates with the corresponding
SEs, Wald Xz, and P values for the pa-
rameters intercept, age, duration of dia-
betes, and sex—again, for both datasets
1 and 2.

To display the correlation of probabil-
ities for clustering in a distinct BR cluster to
age of the patient, duration of diabetes, and
male or female sex, we created typical “test
patients” and introduced their data into the
following equations containing the respec-
tive dataset-specific and BR cluster—specific
maximum probability estimates of either of
the two datasets:

We used the following characteristics for
the test patients: age 4, 8, 12, and 16 years;
duration of diabetes 1, 2, 4, 8, and 12 years
(where applicable); and assignment of ei-
ther male or female sex.

RESULTS —Hierarchical clustering of
the most recently documented BRs in
the 6,063 CSII children of dataset 2
clearly confirmed the existence of distinct
circadian patterns in 5,903 classifiable
patients. One hundred and sixty patients
did not sort into clusters. The heat map
(Fig. 1) shows that the patients subdi-
vided into four major patterns, thus con-
densing the previous, more diverse
picture (4). A total of 2,490 patients
(42.2%) showed a biphasic pattern with
maximum insulin peaks at 5-6 am. and
5-6 pM. and minimum insulin at 0-1 aM.
and 11-12 pm. (cluster BC) (Fig. 1 and
Supplementary Table 1). Mean age in
this cluster was 12.8 years, thus repre-
senting the oldest age-group. The shape
of the cluster corresponded well with
clusters B and C in our previous work
(dataset 1 [4]). A total of 2,154 patients
(36.5%) clustered in a pattern with a con-
tinuous insulin rise in the evening lasting
past midnight approaching a maximum at
5-6 aM., corresponding with cluster D in
our previous work (dataset 1 [4]) (cluster
D) (Fig. 1 and Supplementary Table 1).
Mean age in this group was 10.1 years. A
total of 853 patients (14.5%) formed a
cluster with a single insulin peak at 9—
10 pMm. (cluster F) (Fig. 1 and Supplemen-
tary Table 1), which nicely reflected
cluster F in dataset 1 (4). Mean age of
this group was only 6.3 years, thus repre-
senting the youngest children. An inverse
cluster was observed in 406 patients
(6.9%) with a mean age of 8.7 years
and a plateau of insulin during daytime
from 9-10 am. to 7-8 p.m. (cluster AG)
(Fig. 1 and Supplementary Table 1).
This cluster represents a combination of
the previous clusters A and G in dataset 1
.

Since age, duration of diabetes, and
sex proved to be associated with differ-
ences in the assigned BR regimen (4), we
used these variables for logistic regression
analysis to identify prediction factors for
clustering of individual patients in clus-
ters F, AG, BC, or D, respectively. This
procedure was undertaken for both data-
set 2 and dataset 1. Age was a significant

P(girls) — 1/(1 + e—[eslimale intercept] —[estimate age] Xage—[estimate duration of diabetes] X duration of diabeteS)

P (b OYS) =1 / (1+ e-[esllma[e intercept] —[estimate age] Xage—[estimate duration of diabetes] X duration of diabetes— [estimate sex] )

and by far the most striking prediction
factor for all four BR patterns (Supple-
mentary Table 2). Duration of diabetes
played a less prominent role (Supplemen-
tary Table 2). Interestingly, having a BR
pattern AG correlated significantly with
female sex (Supplementary Table 2).
This tendency was even more pro-
nounced in the larger dataset 2 compared
with the previous dataset 1. In summary,
dataset 2 analyses were well in line with
analyses based on the previous dataset 1
(Supplementary Table 2).

Based on calculation of the maximum
probability estimates for each of the pa-
rameters (Supplementary Table 2), we in-
troduced the corresponding data of our
test patients into the prediction equation
for each of the four BR patterns. We per-
formed this procedure for both the new
dataset 2 and the previous dataset 1 inde-
pendently. Figure 2 underlines in general
that age is indeed the most predominant
predictor of having a certain BR pattern in
both datasets. In particular, Fig. 2A dem-
onstrates that the probability of having a
pattern F BR is clearly linked to young
age. Importantly, the curves for previous
and new datasets are almost identical.
Moreover, no obvious differences in the
distribution of probabilities for BR F exist
that rely on male or female sex in either
dataset (Fig. 2A and Supplementary Table
3A). In contrast, Fig. 2C (see also Supple-
mentary Table 3C) shows the inverse pic-
ture for the BR BC. Probability is clearly
increasing with age, particularly at the age
of =12 years. Interestingly, the overall
probability of having a BR BC is slightly
lower in the new dataset 2 than in the
previous dataset 1, which might reflect
the higher percentage of younger children
on insulin pumps in dataset 2. Figure 2D
shows that probability of BR D is also de-
pendent on age and decreases slightly
with increasing age. While boys and girls
show virtually congruent curves in both
datasets, there is a higher probability of
having a BR D in dataset 2 compared
with dataset 1 (Fig. 2D and Supplemen-
tary Table 3D). Since BR D children are
again younger than the BC children, this
finding most likely also reflects the
change of the age distribution between
the two datasets. The probability of BR
pattern AG decreases with age, too (Fig.
2B and Supplementary Table 3B). This
holds true for both independent datasets.
However, patients in dataset 2 had a lower
probability for this pattern than in dataset
1. Since this pattern likely compensates
mealtime insulin with a high daytime
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Figure 1—Left panel: Data heat map based on unsupervised hierarchical average linkage
clustering of the most recent BRs of 6,063 pediatric patients with type 1 diabetes treated with CSII.
The patients have been sorted by clustering along the y-axis, while the time course of the BRs is
displayed from left to right over a period of 4 X 24 h on the x-axis for visualization of the dif-
ferences of patterns and circadian rhythms. Increasing red intensity represents increasing insulin
infusion rates, while increasing green intensity represents decreasing insulin infusion rates.
Blackish colors reflect BRs near an individual’s mean BR. Clustering identifies the most similar
BRs and sorts them right next to each other. The right margin of the heat map depicts the four
leading BR patterns of the dataset, named F, AG, BC, and D. Right panel: mean BRs of all patients
clustering in pattern F, AG, BC, or D and the variation from mean = SD BR per pattern (y-axis)
are displayed (mean BR = 1). (See also Supplementary Table 1.) The x-axis represents a 24-h

interval from 0000 h to 2300 h.

BR, this observation might reflect a
change in BR strategy applied in the di-
abetes centers. AG is the only BR pattern
with a prominent sex difference, since
girls have a higher probability of running
on BR AG than boys in both datasets (Fig.
2B and Supplementary Table 3B).

CONCLUSIONS—We here demon-
strate that in the largest cohort of children
and adolescents with type 1 diabetes on

CSII thus far reported in the literature,
four major distinct BR patterns had been
programmed by independent clinical di-
abetes teams during the course of diabe-
tes. Logistic regression analysis revealed
that unsupervised assignment of a child
by hierarchical clustering to one of the
four different BR patterns was obviously
based on the same prediction factors in
both independent datasets, i.e., age, to a
much lesser extent duration of diabetes,

Holterhus and Associates

and rarely sex. In essence, the youngest
children showed the highest insulin in-
fusion rates in the late evening before
midnight (BR F), older school children
had higher insulin at midnight up to the
early morning (BR D), and pubertal chil-
dren showed the typical dawn-dusk pat-
tern (BR BC) (4). Therefore, and owing to
the fact that in total >7,000 children had
been investigated in both of our studies
together, we conclude that these patterns
likely represent a realistic approximation
to the real age-dependent circadian distri-
bution of insulin needs. One hundred and
sixty patients of the study did not cluster
into one of the four patterns. This may be
due to particular therapeutic needs in in-
dividual patients or due to individual
clinical situations. While we believe that
the statistical bias is acceptable for the
whole picture, these data point to the
fact that in addition to characteristic BR
patterns children with diabetes on CSII
may have very variable metabolic needs
to be handled by their BR.

Initiation of CSII and continuous
clinical follow-up of a child with type 1
diabetes on insulin pump would profit
significantly from knowledge and consid-
eration of the individual circadian BR
distribution. Therefore, we developed a
mathematical prediction model that cal-
culates the maximum probability for a
given child to be treated with a certain BR
pattern. In order to verify the biological
significance, we performed these calcula-
tions independently in both of the two
datasets. With use of test patients of a
given age, duration of diabetes, and sex,
the resulting probability curves were al-
most identical in the two datasets con-
cerning BR F and BR BC reflecting the
youngest and the oldest age-groups (Fig.
2A and C). Probabilities for assignment to
patterns D and AG varied more between
datasets 1 and 2 but generally showed the
same age dependence (Fig. 2B and D). We
conclude that this difference is most likely
due to the differences in the age distribu-
tion of the two cohorts with younger chil-
dren in dataset 2. The high similarity of
the patterns and the good reproducibility
of the probabilities for clustering to BR
patterns comparing the two datasets sup-
port an overriding biological significance
of our findings independent of the given
cohort 1 or 2. The differences of the cir-
cadian distribution of insulin needs are
likely to be due to the continuously
changing neuroendocrine hormonal
background from early childhood to ad-
olescence, e.g., changing sleep patterns
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Figure 2—Calculation of probabilities for typical patients of being treated with a BR pattern F
(A), AG (B), BC (C), and D (D), respectively. The y-axis represents the probability for each of the
four patterns in percent. (See also Supplementary Table 3A-D.) Age and duration of diabetes (in

parenthesis) are given on the x-axis.
2); [, boys (dataset 2).

influencing growth hormone secretion in
the small child, changing physical activ-
ity, growth, body proportions, growth
spurt, puberty, and sex steroids (4,8—
13). In this sense, increasing sex steroid
secretion during puberty of a child with
type 1 diabetes on CSII enhancing growth
hormone secretion during the night
would increase early morning insulin re-
sistance resulting in higher insulin needs
and, hence, a higher probability of being
treated with a BC BR pattern. We con-
clude that based on our mathematical
model, it is possible to predict a “best
fit” BR pattern for individual children
with type 1 diabetes treated with CSIIL.
Continuous glucose monitoring by
glucose sensors is at the advent of a revo-
lution in CSII treatment in children with
type 1 diabetes (14-17). Furthermore,
different diabetes research groups all
over the world work on closing the loop
between continuous glucose sensing and
insulin delivery via insulin pumps (18-
20). A perfect system would actually act
completely automatically like the healthy
B-cells of the normal pancreas. One of
several difficult tasks to solve is program-
ming suitable computer algorithms (21—
24) matching subcutaneous insulin deliv-
ery via the pump with the continuous

@, girls (dataset 1); O, boys (dataset 1); B, girls (dataset

physiological changes of insulin sensitiv-
ity and insulin needs during the course of
day and night. We suggest that our large-
scale data provide valuable information
for modulating mathematical prediction
models in closed-loop algorithms by pro-
viding relevant information on age-de-
pendent changes and circadian variation
of insulin sensitivity in children. In this
context, our prediction equations could
be used to approximate decision corri-
dors for insulin delivery in individual
children set on closed-loop CSIL.
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