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Abstract

Introduction: The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower
COUP-TFII expression in tamoxifen/endocrine- resistant versus sensitive breast cancer cell lines. The identification of COUP-
TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.

Results: FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin
among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII
and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In
vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin.
Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of
nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated
RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2
promoter was increased by all-trans retinoic acid (atRA). RARb2 regulated gene RRIG1 was increased by atRA and COUP-TFII
transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear
COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERa, SRC-
1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.

Conclusions: Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor
RARB2 by COUP-TFII.
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Introduction

COUP-TFI (NR2F1) and COUP-TFII (NR2F2) are ‘orphan’

members of the steroid/nuclear receptor (NR) superfamily [1]

COUP-TFs regulate gene transcription in a cell- and gene- specific

manner. COUP-TFII differs from COUP-TFI at the N-terminus,

but is conserved within the DNA binding and ligand binding

domains (DBD and LBD) [1]. Gene knockout mice demonstrated

that COUP-TFI (Nr2f1) and COUP-TFII (Nr2f2) have distinct

roles during embryogenesis, notably in the nervous and cardio-

vascular systems, respectively [2,3]. Although COUP-TFs are

classified as orphan receptors, as they have no currently

established physiological ligands, the crystal structure of the

COUP-TFII LBD showed that its ‘‘auto-repressed conformation’’

was relieved by 9-cis and all-trans retinoic acids (9cRA and atRA)

that bind the LBD with ,17–26 mM affinity [4].

While the precise gene changes and epigenetic events that lead

to breast tumorigenesis are still under investigation [5,6,7],

estrogens are well-established risk factors in breast cancer [8].

Adjuvant endocrine therapies including the use of antiestrogens,

e.g., tamoxifen (TAM), and aromatase inhibitors (AI), e.g., letrozole,

are effective in reducing disease recurrence in many patients [9].
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Antiestrogens, including TAM and fulvestrant, work by targeting

estrogen receptor a (ERa) because of its proliferative activity in

breast tumors [10,11]. AI work by blocking the synthesis of

estrogens from androgenic precursors including androstenedione

and testosterone [12].

Altered gene expression can dictate both the formation of

tumors and patient response to treatment. In breast cancer,

conflicting evidence has been reported on the nature of COUP-

TFII in either promoting or inhibiting cancer formation, as well as

influencing patient survival with adjuvant therapy. COUP-TFII is

not expressed in basal-like, triple negative, dedifferentiated MDA-

MB-231 and is lower in tamoxifen (TAM)/endocrine-resistant

LCC9 and LY2 breast cancer cells than in parental endocrine-

sensitive MCF-7 cells, whereas COUP-TFI expression is similar

[13], suggesting a role in maintenance of differentiation and

endocrine sensitivity. In agreement with this data, COUP-TFII

was reduced in some ERa-null breast cancer cell lines [14]. These
results suggest that, like ERa, loss of COUP-TFII may be

considered an indicator of poor prognosis. Other reports suggested

that COUP-TFII may play a role in mammary tumor formation

in mice and that COUP-TFII expression in human breast tumors

is associated with reduced survival [15,16]. These conflicting

findings may be resolved through further investigation of the

activities of COUP-TFII in breast cancer.

The function of COUP-TFs as transcription factors that can

either suppress or stimulate gene transcription is dependent on

interactions with other proteins. COUP-TFI [17] and COUP-

TFII [18] interact with corepressors NCoR and SMRT. Proteins

interacting with COUP-TFI include Sp1 [19]; the viral transacti-

vator Tat [20]; CTIP1 and CTIP2, HDACs 1 and 2, and

a nucleosome remodeling and deacetylation (NuRD) complex

[21]; ERa [22,23]; AhR [24]; and many coregulators (reviewed in

[25]). Twenty-four proteins interacted with HA-FLAG-COUP-

TFI in stably-transfected HeLaS3 cells [26]. Interaction of ORCA

with the COUP-TFII LBD stimulated transcriptional activation of

the rat hydratase-dehydrogenase gene promoter in transiently

transfected Bsc40 monkey kidney cells [27]. COUP-TFII inter-

acted with the hinge domain of the glucocorticoid receptor

a (GRa) and repressed phosphoenolpyruvate carboxykinase gene

transcription [28]. No one has, to our knowledge, reported

proteomic identification of COUP-TFII-interacting proteins.

The focus of the present study was to identify proteins that

interact with COUP-TFII in MCF-7 cells to gain new insights into

COUP-TFII’s role in breast cancer. Nucleolin was identified

among the nuclear proteins interacting with COUP-TFII. COUP-

TFII-nucleolin interaction was confirmed by co-immunoprecipi-

tation. This study reports a significant inverse association of

COUP-TFII with breast tumor grade. Expression of the tumor

suppressor retinoic acid receptor b2 (RARb2), reduced in breast

cancer [29,30], and dependent on COUP-TFII [31] was increased

by nucleolin overexpression. Our data indicate that nucleolin plays

a coregulatory role in COUP-TFII transcriptional regulation of

RARB2.

Materials and Methods

Chemicals
4-hydroxytamoxifen (4-OHT) and 9-cis and all-trans retinoic

acid (9cRA and atRA) were from Sigma (St. Louis, MO). ICI

182,780 (Fulvestrant) was from Tocris (Ellisville, MO). Sequences

of AS1411 (AGRO100, an antiproliferative, 26-mer G-rich

oligonucleotide) and an inactive negative control C-rich control

oligonucleotide (CRO) were reported [32] and purchased from

Integrated DNA Technologies, Inc. (Coralville, IA).

Antibodies and reagents
The following antibodies were purchased: polyclonal COUP-

TFII (Abcam, Cambridge, MA); monoclonal (mAB) anti-human

COUP-TFII (R&D systems, Minneapolis, MN; PP-H7147-00.

2ZH7147H); mAB anti-FLAG M2 and b-actin (Sigma); polyclonal

nucleolin (NB600-241, Novus Biologicals, Littleton, CO), mono-

clonal nucleolin/C23 (MS-3; Santa Cruz Biotechnology, Santa

Cruz, CA); MBP-probe (R3.2; Santa Cruz Biotechnology); and

HDAC-1 (Santa Cruz Biotechnology). HRP–conjugated second-

ary antibodies were from GE Healthcare (Piscataway, NJ).

Goat anti-rabbit and anti-mouse magnetic beads were from

Thermo Scientific (Waltham, MA). In vitro transcription/trans-

lation used PROTEINScript II kit (Ambion, Austin, TX) or TNT

Quick Coupled Transcription/Translation (Promega, Madison,

WI).

Plasmid Construction
Human COUP-TFII cDNA was amplified from DNA from

MCF-7 cells using Pfx DNA polymerase (Invitrogen, Carlsbad,

CA). The forward primer contained an EcoRI restriction site (59-

CCGAATTCGATATGGCAATGGTAGTTAGCACG-39) and

the reverse primer was designed to remove the stop codon from

COUP-TFII and add a XhoI restriction site (59-

GTCCTCGAGTCGTTGAATTGCCATATACGGCCA-39).

The resulting fragment was cloned into pIRES-GFP-1a (Strata-

gene, Santa Clara, CA) to construct a C-terminal FLAG-tagged

COUP-TFII expression plasmid (pIRES-COUP-TFII-FLAG).

The inclusion of COUP-TFII-FLAG in the resulting pIRES-

COUP-TFII-FLAG plasmid was verifed by DNA sequencing and

western blot analysis (Figure S1).

Cell culture
MCF-7 and T47D breast cancer cells were purchased from

ATCC and used at passage ,10. T47D were grown in RPMI

1640 (Invitrogen) supplemented with 5% FBS and 6 mg/ml insulin

(Sigma). MCF-7 cells were maintained as described [13].

Affinity purification and identification of COUP-TFII-FLAG
interacting proteins
One mg of whole cell extract (WCE), prepared as described in

[13], from MCF-7 cells transfected (24 h) with pIRES-COUP-

TFII-FLAG as described in Methods S1 was incubated with EZ

viewTM Red ANTI-FLAGH M2 Agarose Affinity gel (Sigma)

overnight (,16 h) at 4uC with constant rotation. COUP-TFII-

FLAG interacting proteins were eluted using two methods: 1)

0.1 M glycine, pH 3.5, 15 min at room temperature with constant

rotation; 2) an additional incubation with 0.1 M glycine, pH 3.5,

5 min at 95uC (Fig. S2A).

Protein identification by multidimensional protein
identification technology (MudPIT)
Proteins eluted from the FLAG-affinity gel were trypsin digested

and processed for mass spectrometry as detailed in Methods S1.

MS/MS spectra of the peptides were acquired by Q-TOF mass

spectrometer (Waters, Milford, MA) in data dependent mode.

Proteins were identified by comparing MS/MS spectra with

sequences in Swiss-Prot database by ProteinLynx from Waters.

Co-immunoprecipitation (co-IP) and immunoblotting
Nuclear and cytosolic proteins were harvested in lysis buffer

(10 mM HEPES pH 7.9, 1.5 mM MgCl2, and 10 mM KCl)

containing 0.1 M DTT, protease and phosphate inhibitors

(Roche, Indianapolis, IN). Following centrifugation, the superna-

COUP-TFII-Nucleolin Interaction
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tant containing cytosolic extract (CE) was collected. The pellet was

resuspended in nuclear extraction buffer (20 mM HEPES pH 7.9,

1.5 mM MgCl2, 0.4 M NaCl, 0.2 M EDTA, and 25% (v/v)

glycerol), 0.1 M DTT, protease and phosphatase inhibitors.

Nuclei were disrupted by sonication and the nuclear extracts

(NE) were collected after centrifugation.

For IP, 4 mg COUP-TFII polyclonal antibody, nucleolin

monoclonal antibody, rabbit or mouse IgG (Abcam, Santa Cruz)

were added to 250 ml prewashed MagnaBind goat anti-rabbit or

anti-mouse IgG beads in RIPA buffer (Sigma) containing DTT,

protease and phosphatase inhibitors for 30 min at 4uC. 200–

400 mg NE was added and incubated for 4 h at 4uC. Antibody-
bound beads were incubated with buffer without NE as an

additional negative control. Beads were washed 26 with RIPA

buffer, resuspended in 16 Laemmli loading buffer (BioRad,

Hercules, CA), separated by SDS-PAGE and analyzed by western

blot [13].

In vitro transcribed-translated COUP-TFII interaction with
purified recombinant maltose binding protein (MBP)–
nucleolin fusion proteins
Extracts from E. coli expressing MBP-tagged nucleolin con-

structs, a gift from Dr. Nancy Maizels [33], were prepared in

column buffer (CB, 20 mM Tris-HCl (pH 7.4), 0.2 mM NaCl,

1 mM EDTA) with 0.1 mM PMSF. 200 mg crude extract was

incubated with 100 mL amylose resin (New England Biolabs,

Ipswich, MA) for 2 h at 4uC. After washing with CB, 20 mL of in

vitro transcribed/translated COUP-TFII (pIRES-COUP-TFII-

FLAG) was added to the amylose resin for 2 h at 4uC. After

washing 36with CB, bound proteins were eluted with 50 mL of

16Laemmli loading buffer.

Immunofluorescence staining of COUP-TFII and nucleolin
MCF-7 cells were grown on culture slides (BD Biosciences,

Bedford, MA) and fixed with cold methanol. Cells were

permeabilized with 0.2% Triton X-100. After blocking with

Table 1. Identification of COUP-TFII interacting proteins in MCF-7 cells.

Protein name Accession Mass pl Matched Coverage

(GI) (Mr) (No) (%)

Histones

Histone H1.0 P07305 20719 11.2 1 6.7

Histone H2A type 2-C Q16777 5919 11.8 1 16.1

Histone H1.4 P10412 21721 11.4 7 4.1

Proteins involved in cell cycle &
proliferation

Antigen KI-67 P46013 358525 9.8 6 0.5

Regulator of chromosome condensation P18754 44941 7.7 4 3.1

Poly [ADP-ribose] polymerase 1 (PARP-1) P09874 112881 9.2 7 5.7

Proteins involved in transcription

Activated RNA polymerase II transcriptional
coactivator p15

P53999 14255 9.9 1 8.7

DNA Repair Proteins

DNA topoisomerase 1 P11387 90669 9.6 5 1.6

DNA topoisomerase 2-beta (TopoIIb) Q02880 183152 8.4 4 2.0

ATP-dependent DNA helicase 2 subunit 1 P12956 69668 6.6 3 2.1

ATP-dependent DNA helicase 2 subunit 2 P13010 82521 5.7 3 3.0

Peptidyl-prolyl cis-trans isomerase B P23284 22728 9.6 3 10.6

RNA binding proteins

RNA-binding protein FUS P35637 53394 9.5 3 2.7

Splicing factor, arginine/serine-rich 1 Q07955 27597 10.5 4 12.6

Splicing factor, arginine/serine-rich 9 Q13242 25526 8.9 2 5.4

Splicing factor, arginine/serine-rich 7 Q16629 27350 11.8 2 3.8

Other nuclear proteins

Nonhistone chromosomal protein HMG 14 P05114 10522 10.0 2 24.2

Nucleolin Protein C23 P19338 76167 4.6 3 1.7

Heat shock cognate 71 kDa protein P11142 70854 5.4 2 4.3

GTP-binding nuclear protein Ran P62826 24408 7.6 2 9.7

Heat shock 70 kDa protein 1 (hsp70, HSPA1) P08107 70009 5.6 2 4.4

WCE from pCOUP-TFII-FLAG-transfected MCF-7 cells (Fig. 1) was incubated with anti-FLAG affinity gel, eluted with 0.1 M glycine, pH 3.5 for 5 min. at 95uC, and
subjected to MudPIT peptide identification. Matched (No) indicates the number of sequenced peptides that match the full length protein. Coverage indicates the % of
the total protein matched. (Only matches of .1 peptide match and/or .3% coverage are included.)
doi:10.1371/journal.pone.0038278.t001
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10% BSA in PBS for 1 h, primary monoclonal COUP-TFII

(R&D) and polyclonal nucleolin (Novus Biologicals) antibodies

were added (1:100) for 2 h. The cells were stained with

secondary anti-mouse antibody labeled with DyLightTM 488 or

anti-rabbit antibody labeled with rhodamine (TRITC) (Jackson

ImmunoResearch, West Grove, PA) (1:500). Cells were in-

cubated with Hoechst (2,59-Bi-1H-benzimidazole, Invitrogen) for

10 min. Images were captured using an Olympus FV1000

confocal microscope with a 406objective lens using FluoViewTM

software.

Immunohistochemistry of breast tissue microarrays
(TMA)
COUP-TFII and nucleolin immunohistochemistry (IHC) was

performed using commercial breast tissue microarrays BR961 and

BR963 (U.S. Biomax) or an in-house TMA constructed following

ethical approval from St. Vincent’s University Hospital Ethics

Board with tissue from 332 primary breast patients, following

written informed consent, as previously described [34,35]. Data on

the patients included pathological characteristics (tumor size,

grade, lymph node status, estrogen receptor status) as well as

treatment with radiotherapy, chemotherapy or tamoxifen. Follow-

up data, median 7.72 years, was collected on the patients to

determine disease free and overall survival. Staining was called by

two independent observers using the Allred scoring system [34].

Xenografted MCF7 and HCT116 tumors were used as positive

and negative controls, respectively (data not shown). Anti-

Nucleolin antibody (Clone 4E2, Abcam) was diluted at 1:500

with overnight incubation at 4uC for BR961 and BR963. A

metastatic melanoma was used as a positive control for nucleolin

(data not shown). COUP-TFII and nucleolin staining were

expressed as H-score: product of intensity (0 to 3 scale, 0 = no

expression, 3 strongest expression) and frequency (fraction

positive, 0–100%).

Figure 1. Endogenous nuclear nucleolin-COUP-TFII interaction in MCF-7 and T47D cells. NE (200 mg protein) from MCF-7 cells (A) and
(400 mg protein) from T47D (B) cells were immunoprecipitated with COUP-TFII antibody or with rabbit IgG (negative control), followed by western
blot analysis for nucleolin and COUP-TFII. 5% input NE serves as loading control. C, Immunofluorescent staining of endogenous COUP-TFII (green)
and nucleolin (red) in the nuclei (Hoechst, blue) of MCF-7 cells. Merged images are shown at the right. Bar is 10 mm. D, schematic representation of
the N- terminal maltose binding protein (MBP)-tagged recombinant nucleolin proteins used for MBP pull-down assays. MBP was fused to the N-
termini of the RNA binding domains (RBD) and/or the arginine/glycine-rich domain (RGG) of nucleolin. E, In vitro transcribed/translated COUP-TFII was
incubated with the MBP-nucleolin fragments or MBP. Interacting proteins were captured with amylose resin. Eluted proteins were probed for COUP-
TFII (top) and MBP (bottom, control).
doi:10.1371/journal.pone.0038278.g001
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Statistical Evaluation of IHC
The univariate associations between COUP-TFII and nucleolin

H-scores and categorical predictors used the Kruskal-Wallis test

[34]. A multiple linear regression model was used to fit with

COUP-TFII and nucleolin H-scores against pathology, tumor

grade, and TNM, classification. The TNM staging system classifies

tumors according to disease progression based on the tumor size

(T), regional lymph node involvement (N), and distant metastasis

(M). Upon assignment of TNM, tumors can further be designated

into a condensed grade/stage (I–IV) based on disease severity [36].

Comparisons in the ERa-positive invasive ductal carcinoma subset

and among TNM classification within tumor grades were

examined (t-test). Fisher’s exact test was used for categorical

variables to compare two proportions. Kaplan Meier estimates of

survival functions were computed and the Wilcoxon test was used

to compare survival curves. Two-sided P values of ,0.05 were

considered to be statistically significant.

Transient transfection
MCF-7 and T47D cells were transfected with a constant

amount of total plasmid DNA, pcDNA 3.1 (Promega), pCMV-

Tag2 (Stratagene), pcDNA 3.1-mCOUP-TFII (kindly provided by

Drs. Sophia and Ming-Jer Tsai [37]), pCMV2-nucleolin [38] using

Fugene 6 or HD (Roche) for 24 h prior to treatment with 10 mM
CRO (negative control), AS1411, or random oligomer (RO, 59-

GTTCAGCAGTCACGATTCAGTCCAGT-39) for 6 or 24 h, as

indicated. Where indicated, cells were co-treated with 1 mM atRA

or 9cRA for 6 h. Transient transfection of MCF-7 cells with the

RARB promoter tk-luciferase reporter (kindly provided by Dr.

Richard M. Niles [39]) and pTK-Renilla (Promega), for dual

luciferase reporter assays, as described [23].

RNA Isolation, RT-PCR and Quantitative Real-Time-PCR
(QRT-PCR)
RNA was extracted from cells using Trizol (Invitrogen) or

RNeasy (Qiagen, Valencia, CA). The High Capacity cDNA

Reverse Transcription kit (Applied Biosystems) was used to reverse

transcribe total RNA. QRT-PCR for RARB2, NCL, ESR1, ESR2,

GAPDH, and 18S, using Taqman primers and probes as Assays-

on-Demand, was performed in the ABI PRISM 7900 SDS 2.1

(Applied Biosystems, Carlsbad, CA). COUP-TFII (NR2F2) and

RRIG1 [40] mRNA expression was measured by QRT-PCR using

the SYBR green method and normalized by GAPDH [13].

Analysis and fold differences were determined using the compar-

ative CT method. Fold change was calculated from the DDCT
values with the formula 22DDCT and data are relative to EtOH-

treated and control vector transfected cells.

siRNA transfection
For nucleolin, cells were transfected for 48 h with 25 nM

(MCF-7) or 10 nM (T47D) nucleolin Stealth Select RNAi or

Stealth RNAi Negative Control (Invitrogen) using Lipofectamine

RNAiMAX (Invitrogen). For COUP-TFII, MCF-7 cells were

transfected for 48 h with 100 pmol NR2F2 Silencer Select siRNA

(Ambion). Following transfection, cells were treated for 6 h with

1 mM atRA.

Chromatin immunoprecipitation (ChIP)
MCF-7 cells were transfected with pIRES-COUP-TFII-FLAG

or empty vector for 24 h and serum starved for 48 h in media

containing 5% dextran-coated charcoal stripped FBS (DCC-FBS)

(Atlanta Biologicals, Lawrenceville, GA). Cells were treated with

1 mM atRA or EtOH for 1 h before crosslinking with 1%

formaldehyde for 5 min. ChIP was performed using MAGnify

ChIP (Invitrogen). Lysates were incubated with anti-FLAG M2

antibody (Sigma) or mouse IgG (Invitrogen). The following

primers were used for PCR to amplify the region of the RARB2

promoter containing a COUP-TFII binding site [31]: F 59-

CAGGGCTGCTGGGAGTTTTTA-39 and R 59-GGCATCC-

CAGTCCTCAAACAGC-39. Quantitation was performed as

described in [41].

Statistical analysis
Values are reported as 6 SEM. Student’s t test was used for

comparisons between control and treatment. One way ANOVA

was used for multiple comparisons followed by Student-Newman-

Keuls or Dunnett’s post-hoc tests using GraphPad Prism. P values

considered statistically significant are indicated.

Results

Identification of COUP-TFII-associated proteins
C-terminal FLAG-tagged COUP-TFII was overexpressed in

MCF-7 cells (,2-fold higher expression compared to COUP-TFII

endogenous expression, Fig. S1 and S2) and interacting proteins

were captured by immunoprecipitation (IP) with anti-FLAG-

affinity gel (Fig. S2A). The negative control was MCF-7 cells

transfected with the pIRES-GFP-1a parental vector and parallel

purification of nonspecific interacting proteins (Table S1). The

capture of COUP-TFII-FLAG by the anti-FLAG affinity gel was

demonstrated (Fig. S2C). Serial glycine steps eluted COUP-TFII-

FLAG-associated proteins (Fig. S3). In the first elution, 18 proteins

having a ‘moderate association’ with COUP-TFII including

hsp70, an established NR chaperone that interacts with COUP-

TFI [26], were identified (Table S2). The second elution identified

36 more ‘strongly associated’ nuclear proteins, i.e., ribnucleopro-

teins, histones, DNA repair proteins, and RNA binding proteins,

and nucleolin (Table 1), reflecting COUP-TFII nuclear localiza-

tion.

Nucleolin is a multifunctional protein with roles in processes

including transcription, ribosome biogenesis, DNA replication,

histone chaperone/chromatin remodeling, apoptosis, and macro-

pinocytosis [42,43,44,45]. There are several examples of nucleolin

functioning as a transcription factor or as a coregulator through its

interactions with other proteins [46,47,48]. Because nucleolin

plays multiple nuclear roles and is a target of anticancer therapy

[43], we selected nucleolin for follow-up studies.

Endogenous COUP-TFII and nucleolin interact in MCF-7
and T47D cells
We next examined endogenous nucleolin-COUP-TFII in-

teraction in untreated MCF-7 cells. IP with a COUP-TFII

antibody detected nucleolin interaction in the NE (Fig. 1A),

although nucleolin is in CE as well (Fig. S4A). We did not detect

COUP-TFII-nucleolin interaction in CE because COUP-TFII is

not in the CE (Fig S4A). Reciprocal co-IP of COUP-TFII with

nuclear nucleolin was detected (Fig. S4A). Another example of

a COUP-TFII- nucleolin co-IP in MCF-7 cells is also provided

(Fig. S4C and D). To examine whether COUP-TFII interacts

with nucleolin in another luminal breast cancer cell line, we

performed IP with a COUP-TFII antibody in T47D cells and

confirmed nucleolin-COUP-TFII interaction in the NE (Fig 1B).

Immunofluorescence microscopy revealed a pattern of co-

localization of endogenous nucleolin and COUP-TFII in the

nucleus, but not within the nucleolus nor in the cytoplasm, of

MCF-7 cells (Fig. 1C). These data confirm endogenous COUP-

TFII-nucleolin nuclear interaction. Because the focus of this

COUP-TFII-Nucleolin Interaction

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e38278



study is COUP-TFII-interacting proteins, we did not evaluate

COUP-TFI-nucleolin interaction.

Direct interaction of COUP-TFII with the RGG domain of
nucleolin
To determine if COUP-TFII interacts directly with nucleolin

and which domain(s) are involved, in vitro transcribed/translated

COUP-TFII and MBP-tagged recombinant nucleolin polypep-

tides were incubated with an amylose affinity resin (Fig. 1D and E).

The MBP fusion proteins contain the RNA binding domains

(RBD1,2,3,4) and/or the arginine-glycine repeat (RGG). Nine

RGG repeats are present in the C-terminus of nucleolin. Only

these domains were investigated because the N-terminal domain of

nucleolin cannot be expressed in E. coli [38]. COUP-TFII was

bound to all MBP-tagged polypeptides containing the RGG

domain but not with MBP-RBD1,2, MBP-RBD3,4, or MBP

Figure 2. COUP-TFII and nucleolin in breast cancer tissue microarrays. A and B, COUP-TFII immunostaining at 2006: A, benign breast tissue
(H-score 30) and B, invasive ductal carcinomas, grade 2 (H-score 153). Bar is 200 mm. C, Average 6 SEM of H-score for nuclear COUP-TFII staining in
ERa-positive invasive ductal carcinomas by tumor grade. * significantly different from T2N0M0 (p,0.05). D and E, Nucleolin immunostaining at 4006:
D, benign breast tissue (H-score 13) and E, invasive ductal carcinomas, grade 3 (H-score 151). Bar is 100 mm. F and G, immunohistochemical
localization of COUP-TFII (1006, inset: 2006) on a tissue microarray constructed from archival tissue from 332 breast cancer patients [34] showing
positively (F) and negatively (G) stained cores COUP-TFII at 2006, bar is 100 mm. H and I, Kaplan-Meier estimates of disease-free survival functions
were computed, and the Wilcoxon test was used to compare survival curves. In addition, the Wilcoxon rank sum test was used to compare two
medians. The data are not statistically significant.
doi:10.1371/journal.pone.0038278.g002
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alone. RGG9 appears to interact with COUP-TFII with weaker

affinity compared to RGG4, perhaps because of the lower

abundance of the MBP-RGG9 protein relative to MBP-RGG4.

Overall, these results indicate that the C-terminal RGG domain is

the minimal domain required for COUP-TFII-nucleolin interac-

tion.

Immunohistochemical COUP-TFII and nucleolin staining
in human breast tissue and tumor tissue microarrays
Nuclear COUP-TFII and nucleolin immunoreactivity were

examined in two independent human breast tissue microarrays

(TMAs, Fig. 2). In the TMAs from U.S. Biomax, significant

differences in COUP-TFII staining were observed between TNM

classes of tumor grades II (d =251.7, p= 0.078) and II,III

(d =258.5, p= 0.046) (Fig. 2C). COUP-TFII and nucleolin

staining were correlated in invasive ductal carcinomas

(Qp = 0.31, p = 0.0281; Qs = 0.30, p = 0.0334). Normal breast tissue

was also positive for COUP-TFII expression (Average H-score

127.5, SEM 5; data not shown). In a separate breast TMA [34],

staining of a total of 332 patient tumors showed ,47% were

positive for nuclear COUP-TFII (Table 2, Fig. 2F). There was

a significant association between tumor grade and COUP-TFII

with high grade tumors tending to be COUP-TFII negative

(Table 2). COUP-TFII was also significantly positively associated

with ERa, SRC-1, PEA3, MMP2, and phospho-Src and

negatively associated with HER2 (Table 2). High SRC-1 (NCOA1)

was associated with a favorable response to TAM [49], a finding

that corresponds to COUP-TFII’s role in 4-OHT-medicated

inhibition of breast cancer cell proliferation [13]. However, breast

tumors from aromatase inhibitor-resistant patients show high

expression of SRC-1 and a reduction in disease-free survival [50];

thus, the relationship between COUP-TFII and SRC-1 expression

will require further investigation. SRC-1 and PEA3 synergistically

activated COUP-TFII-promoter luciferase activity in transiently

transfected HeLa cells [51]. PEA3 directly activates MMP2

transcription [35]; hence COUP-TFII may be correlated with

MMP2 through the PEA3-COUP-TFII connection, although this

hypothesis will require further analysis beyond the scope of the

present study. The relationship between COUP-TFII and

phospho-Src may be because activation of Src is part of the

MAPK pathway that increases COUP-TFII expression [52].

According to Kaplan Meier, COUP-TFII did not associate with

disease free survival in tamoxifen-treated patients (p = 0.4471,

Fig. 2H and I).

atRA enhances COUP-TFII binding to the RARB2 promoter
COUP-TFII is required for atRA- or 9cRA- induced RARB2

expression in breast cancer cells [31,53] and binds the RARB2

promoter in electrophoretic mobility shift assays [31]. To examine

COUP-TFII interaction with the RARB2 promoter, we first

examined recruitment of endogenous COUP-TFII to the RARB2

promoter using the R&D systems COUP-TFII antibody, but were

unable to detect product in the PCR reactions (data not shown)

likely due to lower COUP-TFII protein in MCF-7 cells compared

to C3H10T1/2 CH3 mouse embryo mesenchymal cells that

express high levels of COUP-TFII [54]. To obviate this difficulty,

MCF-7 cells were transfected with an empty vector or COUP-

TFII-FLAG and ChIP was performed after FLAG IP. ChIP

revealed for the first time that COUP-TFII binds the RARB2

promoter and atRA increased COUP-TFII occupancy at the

RARB2 promoter by 72% in MCF-7 cells (Fig. 3A, Fig. S5).

AS1411 inhibits COUP-TFII-stimulated RARB2 gene
expression in MCF-7 and T47D breast cancer cells
Once establishing the presence of COUP-TFII at the promoter

of its target gene RARB2, we sought to determine if nucleolin

functions as a coactivator for COUP-TFII-mediated RARB2

expression. RARB2 was increased in MCF-7 cells transfected with

COUP-TFII and nucleolin overexpression potentiated the RARB2

induction in a concentration-dependent manner (Fig. 3B). Further,

Table 2. COUP-TFII staining in breast tumor microarray.

Total Population
% COUPTFII
positive p value

n=321 47%

ER

neg 99 34.3

pos 222 52.3 0.004

PR

neg 133 50.4

pos 146 44.5 0.339

Her2

neg 267 50.2

pos 62 32.3 0.011

Grade

1 24 54.2

2 122 54.1

3 112 33.0 0.003

Node

neg 156 47.4

pos 167 46.1 0.824

Recurrence

neg 200 46.0

pos 132 47.7 0.822

SRC-1

neg 214 41.6

pos 113 56.6 0.011

AIB1

neg 88 25.0

pos 221 55.7 ,.001

Pea3

neg 120 35.8

pos 120 58.3 0.001

MMP2

neg 29 20.7

pos 284 48.2 0.005

psrc

neg 226 42.0

pos 87 56.3 0.031

Associated expression of COUP-TFII with ERa, PR, HER2, SRC-1, AIB1, Pea3, AIB1,
MMP2, and phospho-Src (psrc) staining in 560 human breast tumors [34,35].
Statistical analysis was performed using the Fisher’s exact test, and a P value of
,0.05 is considered to be significant (bold values).
doi:10.1371/journal.pone.0038278.t002
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because the G-rich, G-quartet forming DNA aptamer AS1411

binds and reduces nucleolin activity [43,55], we hypothesized that

AS1411 would inhibit COUP-TFII-stimulated RARB2 expression.

AS1411 inhibited the COUP-TFII-induced increase in RARB2,

while CRO (negative control) had no effect (Fig. 3C). Although

nucleolin did not affect basal RARB2 expression, nucleolin

abrogated the inhibition of RARB2 transcription by AS1411

(Fig. 3C). COUP-TFII also increased luciferase activity from

a RARB gene promoter-reporter and AS1411 abrogated luciferase

induction (Fig. 3D).

To be sure that any effect of AS1411 on RARB2 is not cell-line

specific, MCF-7 and T47D cells with similar nucleolin expression

(Fig. S6) were tested. T47D has ,40% lower COUP-TFII than

MCF-7 (Fig. S6). Both atRA and 9cRA increased RARB2

expression in MCF-7 and T47D cells, with greater induction in

T47D, and increased NR2F2 (COUP-TFII) expression in T47D

(Fig. 4A–B).

Pretreatment of MCF-7 cells with AS1411, but not negative

control CRO, reduced atRA-induced RARB2 expression (Fig. 4C).

Transfection of MCF-7 cells with a nucleolin expression vector

increased basal RARB2 except in AS1411-treated cells. Nucleolin

and atRA additively increased RARB2 expression in MCF-7 cells

and AS1411, but not CRO, reduced RARB2 induction. Nucleolin

significantly abrogated the inhibition of RARB2 expression by

AS1411. COUP-TFII mRNA levels were not significantly reduced

by AS1411 (Fig. S7). Neither ER antagonists ICI 182,780 nor 4-

OHT blocked atRA-induced RARB2 expression, indicating that

ER is not involved in COUP-TFII-activated RARB2 expression

(Fig. 4C). ICI and 4-OHT increased basal RARB2 in MCF-7, in

agreement with RARB-luciferase reporter activation in transfected

MCF-7 cells [56].

Pretreatment of T47D cells with AS1411, but not CRO,

reduced atRA-induced RARB2 expression and co-transfection with

an expression vector for nucleolin significantly abrogated the

inhibition of RARB2 expression by AS1411 (Fig.4D). AS1411 had

no effect on MCF-7 cell viability for the treatment times used in

these experiments (Fig. S8), commensurate with previous findings

that MCF-7 viability is inhibited only after 6 d of AS1411

treatment [55].

RARB2 expression is inhibited by nucleolin or COUP-TFII
knockdown
siNucleolin reduced nucleolin (NCL) mRNA by 37–58% and

protein by 22–35% (Fig. 5A) in MCF-7 cells. In parallel, basal

RARB2 was reduced 32–56% (Fig. 5A). To determine if nucleolin

knockdown inhibited atRA-induced RARB2, T47D cells were

transfected with siNucleolin and untreated or treated with atRA

(Fig. 5B). atRA had no effect on nucleolin knockdown (Fig. 5B).

Analogous to the MCF-7 cells, siNucleolin reduced RARB2

Figure 3. COUP-TFII increases RARb2 transcription in MCF-7 cells. A, ChIP of COUP-TFII-FLAG to the RARB2 promoter in MCF-7 cells
transfected with empty vector (EV) or COUP-TFII (CII) and treated with EtOH or 1 mM atRA for 6 h. * P,0.05 versus E control, { P,0.05 versus CII-EtOH.
B-C, Cells were transfected with parental or expression plasmids for COUP-TFII or nucleolin for 24 h and were treated with EtOH, 10 mM CRO or
AS1411 for 24 h post-transfection. For C, cells were transfected with 0.5 mg and 1 mg of nucleolin and COUP-TFII expression vector, respectively. Q-
PCR was performed to determine RARB2 expression. Values are the average of 6 separate experiments 6 SEM. D, Cells were transfected with pcDNA
or pcCOUP-TFII and treated with 10 mM RO or AS1411 for 24 h. Dual luciferase activity was expressed relative to the pcDNA-transfected, no-treatment
control. Values are mean 6 S.E.M. of two separate experiments. For B–D, * P,0.05 versus vector control, ** COUP-TFII alone, or m between the
indicated values.
doi:10.1371/journal.pone.0038278.g003
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mRNA (Fig. 5B). siNucleolin inhibited the atRA induction of

RARB2 ,36%. Taken together, results from AS1411 and

siNucleolin studies indicate a functional role for nucleolin as

a coactivator of COUP-TFII-regulated atRA-induced RARB2

expression in T47D and MCF-7 cells.

siCOUP-TFII reduced COUP-TFII protein and, consequently,

RARB2 transcription and protein (Fig. 5C). RARb2 stimulates

retinoic acid receptor-induced gene 1 (RRIG1) transcription [57].

siCOUP-TFII reduced basal and atRA-induced RRIG1 expres-

sion. Transfection with COUP-TFII increased RRIG1. These data

substantiate COUP-TFII’s regulation of functional RARb2.

Effects of AS1411 on nucleolin-COUP-TFII nuclear
interaction
AS1411 reduced the nuclear/cytoplasmic ratio of the nucleolin-

interacting protein PRMT5 (Protein Arginine Methyltransferase 5)

in DU145 prostate cancer cells [38]. AS1411 or CRO did not

change nuclear COUP-TFII or nucleolin or cytosolic nucleolin in

MCF-7 cells (Fig. 6A–B). There was no change in relative COUP-

TFII-nucleolin interaction in MCF-7 cells treated with AS1411

(Fig. 6C–D).

Discussion

COUP-TFII plays an undefined role in breast cancer [13]. In

this report, we identify nucleolin as a new functional partner for

COUP-TFII. We have demonstrated for the first time that

COUP-TFII binds nucleolin in vitro and in vivo. In breast tumors,

nuclear nucleolin correlates with ERa and cell proliferation

[58,59]. Here IHC staining revealed a correlation between nuclear

COUP-TFII and nucleolin staining in invasive ductal carcinoma,

a finding that reflects a previous report showing overexpression of

COUP-TFII in A549 lung adenocarcinoma cells increased in vitro

tumorigenicity and migration [60]. We demonstrate that nucleolin

acts as a coactivator of endogenous COUP-TFII transcriptional

activity for RARB2 in breast cancer cells. Similarly, nucleolin acted

as a coregulator by interacting with c-Jun and Sp1 and increasing

cytosolic phospholipase A2 (cPLA2) gene transcription [47].

We report a positive correlation between COUP-TFII and

ERa, SRC-1, Pea3, MMP2, and phospho-Src expression, an

inverse correlation of COUP-TFII with tumor grade and reduced

COUP-TFII in ERa-positive, invasive ductal carcinomas with

increased TNM stage within tumor grades II and III and HER2

positivity. These data are in agreement with Oncomine analysis

demonstrating NR2F2 is higher in ERa+ tumors and lower in

Figure 4. Regulation of RARb2 transcription. A and B, Q-PCR for RARB2 (B RARb2) and NR2F2 (C COUP-TFII) in MCF-7 or T47D cells treated with
EtOH, 1 mM atRA, or 1 mM 9-cis-RA for 24 h. Values are the average of 3–5 separate experiments. * P,0.05 versus EtOH. C, MCF-7 and D, T47D cells
were transfected with 2 mg pCMV-tag2 (2) or pCMV-tag2-nucleolin (+) for 24 h prior to 24 h treatment with EtOH, 10 mM CRO, or 10 mM AS1411.
Where indicated, cells were treated with 1 mM atRA, 100 nM 4-OHT, or 100 nM ICI 182,780 for 6 h. Q-PCR for RARB2 expression. Values are the
average of 6 (MCF-7) and 4–10 (T47D) separate experiments 6 SEM. * P,0.05 versus EtOH or ** between the indicated values.
doi:10.1371/journal.pone.0038278.g004
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metastatic breast tumors in microarray data [61] (Fig. S9). These

observations indicate that COUP TFII may play a role in

‘‘phenotype maintenance’’ and that its function may be restricted

to the luminal breast cancer subtypes. We speculate that the

precise role of COUP-TFII in breast cancer depends on cellular

context, which is consistent with the role of other nuclear receptors

in breast cancer [62], and remains to be fully elucidated.

Other COUP-TFII-interacting proteins identified here include

PARP-1, which also interacts with nucleolin [63], TOPOIIb,
involved in transcriptional activation by NRs [64,65], and DNA

topoisomerase I (TopoI), which localizes to active transcription

sites [66]. Reflecting its NR chaperone role and interaction with

COUP-TFI [26], Hsp70 interacted with COUP-TFII. Other

COUP-TFII-interacting proteins including hnRNP A2/B1,

RPS20, RPL15, and RPL21 were also identified as binding with

nucleolin to a c-myc G-quadruplex affinity column [67].

Nucleolin is a key target of the anticancer aptamer AS1411,

although AS1411 interacts with other proteins, e.g., NEMO to

inhibit NFkB activation and PARP-1 [43]. AS1411 has pleiotropic

effects on nucleolin, e.g., inhibiting nucleolin binding to the AU-

rich element in the 39 UTR of BCL2 in MCF-7 cells causing

apoptosis [68] and stimulating macropinocytosis [42]. AS1411 is

used to functionally inhibit nucleolin [69]. Here, AS1411 and

siNucleolin reduced COUP-TFII-induced RARB2 expression in

MCF-7 and T47D cells and cotransfection with nucleolin reduced

AS1411-inhibition. AS1411 did not alter nuclear COUP-TFII-

nucleolin interaction, indicating that the mechanism for AS1411

inhibition of RARB2 expression is independent of reducing nuclear

COUP-TFII protein, a result different from AS1411 reducing

nuclear PRMT5 in DU145 cells [38]. The inhibition of atRA- and

COUP-TFII- regulated RARB2 expression by AS1411 may also be

independent of its effect on nucleolin and may indicate a potential

adverse ‘side effect’ of AS1411 that may be a concern if this drug is

used for breast cancer therapy.

In conclusion, COUP-TFII interacting proteins were identified

in MCF-7 breast cancer cells. Endogenous COUP-TFII and

nucleolin interact in both MCF-7 and T47D luminal breast cancer

cells. A coregulatory role for nucleolin in COUP-TFII-mediated

RARB2 transcription was described (Fig. 7). Retinoids, e.g. 9cRA

and atRA, and RARb have long been associated with tumor

suppressive properties such as reduced cell proliferation, in-

flammation, and solid tumor formation, as well as enhanced

apoptosis (reviewed in [70]). RARb2 expression is reduced in

breast tumors and restoration of RARb2 expression increases

Figure 5. Reduction of COUP-TFII or nucleolin decreases RARb2 transcription in MCF-7 cells.MCF-7 (A) and T47D (B) cells were transfected
with control siRNA or an siRNA targeting nucleolin for 48 h. T47D cells were treated with EtOH or 1 mM atRA for 24 h. Q-PCR for nucleolin (NCL) and
RARB2. Values are the average of triplicates. C, Western blot showing COUP-TFII and RARb2 expression after transfection with siCOUP-TFII. Values are
relative to b-actin. MCF-7 were transfected with siControl or siCOUP-TFII for 48 h and treated with 1 mM atRA for 6 h. Q-PCR was also performed for
RRIG1. P,0.001 * versus control or ** versus atRA.
doi:10.1371/journal.pone.0038278.g005
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sensitivity to tumor growth inhibition by retinoids [71]. Ours is the

first demonstration that atRA increased COUP-TFII-RARb2
promoter interaction by ChIP. Since serum carotenoids levels

are inversely associated with breast cancer risk in women with high

mammographic density [72], the increase in RARB2 in response to

COUP-TFII-nucleolin interaction is consistent with a role for

COUP-TFII in phenotype maintenance. In agreement with

a previous report [31], we observed a much higher induction of

RARB2 in T47D in response to atRA compared to MCF-7 despite,

as newly reported here, lower COUP-TFII expression. These data

indicate that other mechanisms are also involved. COUP-TFII

protein staining in TMAs correlates with ERa expression and an

inverse correlation of COUP-TFII with tumor grade in ERa-
positive, invasive ductal carcinomas was detected, a finding that

correlates with reduced COUP-TFII expression in endocrine-

resistant breast cancer cells [13]. Together, these data suggest that

COUP-TFII may be important in differentiated ERa-expressing,
retinoid-responsive, epithelial breast cancer cells and that reduced

COUP-TFII leads to tumor advancement, including endocrine

resistance.

Supporting Information

Figure S1 Nuclear localization of COUP-TFII in trans-
fected MCF-7 cells. A, MCF-7 cells were either non-transfected

(control) or transfected with pCOUP-TFII-FLAG for 48 h.

Immunofluorescence staining was performed for FLAG as

described in Methods S1. Cells were counterstained with DAPI

(blue) to image nuclei. The bar is 20 mm. Overlap images indicate

localization of COUP-TFII-FLAG in the nucleus. B, Western

blots of CE (30 mg) or NE (10 mg) from untransfected MCF-7 cells

(control) or transfected with pIRES-GFP-1a parental vector, or

pCOUP-TFII-FLAG with FLAG or ERa (AER320, Thermo-

Fisher) antibodies. C, Ponceau S staining shows protein levels.

(PDF)

Figure 6. Effects of AS1411 on nuclear nucleolin-COUP-TFII interaction. A, Representative western blots of CE and NE (30 mg) from MCF-7
cells: untreated (untx) or treated with 10 mM CRO or AS1411 for 24 h were probed for nucleolin or COUP-TFII, then stripped and reprobed for HDAC1
and a-tubulin. B, Relative nucleolin and COUP-TFII expression (normalized to respective loading controls and untreated sample protein ratios were set
to 1 for NE and CE). Bars are the mean 6 SEM of 4–8 separate experiments. C, NE or CE (200 mg) from MCF-7 cells treated as above were IPed with
COUP-TFII antibody or rabbit IgG. The Ab-no NE lane was a negative control: COUP-TFII antibody incubated with beads and buffer without NE. D, The
ratio of nuclear nucleolin/COUP-TFII is the mean 6 SEM of 3 experiments.
doi:10.1371/journal.pone.0038278.g006

Figure 7. Model of nucleolin-COUP-TFII interaction and
upregulation of RARB2 expression. COUP-TFII binds its response
elements as either a homodimer or as a heterodimer with RXR [1].
Previous reports demonstrated that 1) 9cisRA and atRA bind COUP-TFII
and increase COUP-TFII transcriptional activity [4]; 2) Nucleolin acts as
a transcriptional coregulator by interacting with cJun and Sp1 [47]; 3)
COUP-TFI and COUP-TFII increase RARB2 expression in cooperation with
RARa and CBP [31]. Here we demonstrated that 1) nucleolin interacts
directly with nuclear COUP-TFII; 2) atRA and 9-cisRA increased RARB2
mRNA; 3) AS1411, used as a functional inhibitor of nucleolin [43,69],
inhibited COUP-TFII-upregulation of RARB2 gene transcription; 4) siRNA
knockdown of nucleolin reduces induction of RARB2 and reduced
RARb2 protein.
doi:10.1371/journal.pone.0038278.g007
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Figure S2 Overexpression of COUP-TFII-FLAG in MCF-
7 cells and immunocapture of COUP-TF-FLAG by the
anti-FLAG agarose affinity resin. A, Briefly, MCF-7 cells

were transiently transfected with C-terminal FLAG-tagged

COUP-TFII or empty vector for 24 h as described in Materials

and Methods. WCEs were prepared and incubated with EZ

viewTM Red ANTI-FLAGHM2 Affinity gel (Sigma) for 16 h. After

rinsing, proteins were eluted with serial glycine elutions: 1) 15 min

at room temperature (RT) for proteins associating with immobi-

lized COUP-TFII-FLAG with moderate affinity and 2) 5 min at

95uC to elute proteins bound to the immobilized COUP-TFII-

FLAG with high affinity. Immunoprecipitating proteins were

analyzed by MudPIT. Non-specific proteins were subtracted from

the total interacting proteins to identify proteins specifically

interacting with COUP-TFII-FLAG. B, 30 mg of WCE from

LCC9, MCF-7 and MCF-7 cells transiently transfected with

pCOUP-TFII-FLAG were separated by SDS-PAGE and western

blots were performed for COUP-TFII, FLAG and b-actin.
Quantitation of the COUP-TFII/b-actin in lanes 2 and 3 indicate

a 2-fold increase COUP-TFII in the transfected cells. TAM-R

LCC9 cells served as a negative control, as we reported lower

COUP-TFII in LCC9 cells compared to parental MCF-7 cells

(Riggs et al Cancer Res. 66: 10188–98, 2006). Note FLAG signal

was only detected in the transfected cells (lane 2), indicating

specificity. C, 1 mg of protein in WCE from COUP-TFII-FLAG

over-expressing MCF-7 cells were immunocaptured on anti-

FLAG agarose affinity beads. COUP-TFII and interacting

proteins were eluted with 6 M urea. 30 mg of WCE were

separated by SDS-PAGE in parallel to 30 mg unbound IP

supernatant and 30 mg eluted protein. COUP-TFII-FLAG affinity

bead binding is confirmed by decreased FLAG in the Supernatant

(flow-thru = unbound proteins) and enriched FLAG in the eluted

samples.

(PDF)

Figure S3 Testing elution methods for retrieval of
COUPTFII-FLAG. ,1 mg of WCE from MCF-7 cells trans-

fected with pCOUP-TFII-FLAG was immunocaptured on the

anti-FLAG affinity resin and eluted with sequential glycine

elutions: 1) 10 or 15 min room temperature (lanes 2 and 4 in

Experiments A and B, respectively) or 5 min. at 95uC (lanes 3 and

5) in two different experiments: Exp. A or B, as indicated (lanes 2–

5). Samples of the indicated eluates were separated by SDS-PAGE

and immunoblotted using anti-FLAG antibody. 20 mg of the IP

supernatant, containing unbound COUP-TFII-FLAG, was run in

parallel as a control (lane 1). As seen in lane 5, incubation with

glycine for 15 min. followed by a 5 min. incubation of fresh

glycine at 95uC (Exp. B) eluted the most intact COUP-TFII-

FLAG (,50 kDa). The increased temperature and incubation

time of glycine in Exp. B resulted in a FLAG-tagged degradation

product(s) of ,20 kDa (lanes 3–5).

(PDF)

Figure S4 Endogenous nuclear nucleolin-COUP-TFII
interaction in MCF-7 cells. A, Equal amounts (100 mg) of
protein of CE and NE from MCF-7 cells were immunoprecipi-

tated with nucleolin mAB (lanes 3 and 4), mouse (m) IgG (negative

control for mAB, lanes 5 and 6), COUP-TFII antisera (lanes 7 and

8), or rabbit (r) IgG (negative control for IPs using COUP-TFII

polyclonal antiserum, lanes 9 and 10), followed by western blot for

nucleolin and COUPTFII. 20% (20 mg) input NE and CE serve as

loading controls (lanes 1 and 2). B, The relative amount of

nucleolin and COUP-TFII in the nucleolin IP was plotted relative

to expression of each protein in the input (set to 100). COUPTFII

in rabbit IgG IPs was not graphed because of the contamination of

the heavy IgG chain (lanes 7 and 8, COUP-TFII blot). Western

blots demonstrate that: 1) nucleolin interacts with COUP-TFII in

the NE of MCF-7 cells (lane 7); 2) nucleolin is not IP’ed with rabbit

IgG (lanes 9 and 10); 3) more COUP-TFII interacts with nucleolin

in NE IP’ed with nucleolin antibody than with mouse IgG (lane 3

versus lane 5). C, MCF-7 cells were treated with EtOH, 10 nM

E2, or 100 nM 4-OHT for 1 h prior to separation of NE and CE.

200 mg of NE or CE were IP’ed with polyclonal COUP-TFII

antibody and immunoblotted with a monoclonal antibody (mAB)

against nucleolin. The blot was stripped and reprobed with mAB

against COUP-TFII. D, 10% input for NE and CE used in IP in

part C.

(PDF)

Figure S5 ChIP of COUP-TFII-FLAG on the RARB2
promoter in MCF-7 cells. A, Chromatin immunoprecipitation

was performed in MCF-7 cells transfected with pIRES-COUP-

TFII-FLAG or empty vector, serum starved for 48 h, and treated

with 1 mM atRA for 1 h. Following Q-PCR using primers to the

RARB2 promoter as described in Materials and Methods,

duplicate samples were run on a 2% agarose gel. B, Only EV –

EtOH set to 1. atRA increased COUP-TFIIFLAG binding to the

RARB2 promoter 32%. Significantly different p,0.05: * to EV –

EtOH, ** to EV – atRA, { to CII – EtOH.

(PDF)

Figure S6 Expression of COUP-TFII and nucleolin in
T47D and MCF-7 cells. A, WCE (50 mg) were Western blotted

for COUP-TFII and nucleolin expression. The blot was stripped

and re-probed for b-actin. B, The ratio of nucleolin/b-actin and

COUP-TFII/b-actin for each cell lines was plotted. These data

are the average of 3 separate experiments. The lower COUP-TFII

expression in T47D agrees with the higher CT values for NR2F2

in T47D.

(PDF)

Figure S7 Effect of cell treatments on NR2F2 (COUP-
TFII) expression in MCF-7 cells. A, Schematic diagram of

transfection and treatment of MCF-7 cells. MCF-7 cells were

transfected with equal amounts of pTAG2 control vector or

pCMV-nucleolin for 24 h., treated with 10 mM CRO or AS1411,

as indicted for 24 h, and 1 mM atRA was added for the last 6 h.

RNA was harvested and Q-PCR performed. NR2F2 (B) values

were normalized to GAPDH. Values are the average of 6 separate

experiments 6 SEM. * significantly different, p,0.05 in one way

ANOVA followed by Bonferroni multiple comparison test. Note

that there was no statistical difference between the pTAG+AS1411
versus Nucl+AS1411 or AS1411 sample measurements of NR2F2.

(PDF)

Figure S8 Neither AS1411 nor CRO inhibit MCF-7 cell
viability after 4 d. MCF-7 cells were treated with the indicated

concentrations of AS1411 or CRO and cell viability was measured

by an MTT assay (A490 nm, Promega CellTitre assay). Values are

the average of 4 determinations 6 SEM.

(PDF)

Figure S9 Oncomine examination of NR2F2 expression
in breast tumors. Data mining in Oncomine microarray data

sets for NR2F2 in breast cancer identified that: A, NR2F2

expression is significantly higher in ERa+ breast tumors

(p,0.007). B. NR2F2 is significantly lower in metastatic breast

tumors (p,0.05). Data are from (van de Vijver MJ, He YD, van’t

Veer LJ, et al. A gene-expression signature as a predictor of

survival in breast cancer. N Engl J Med 2002; 347: 1999–2009).

(PDF)
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Table S1 Identification of proteins in MCF-7 WCE that
non-specifically (NS) interact with the anti-FLAG-affin-
ity resin. 5 mg protein in WCE from EMPTY-FLAG vector-

transfected MCF-7 cells was incubated with anti-FLAG affinity gel

(right side of Supplemental Figure 1), eluted with 0.1 M glycine,

pH 3.5 for 15 min. at RT, and subjected to MudPIT peptide

identification. Matched number (No) indicates the number of

sequenced peptides that match the full length protein. Coverage

indicates the % of the total protein matched.

(DOC)

Table S2 Identification of proteins ‘moderately’ asso-
ciated with COUP-TFII in MCF-7 cells. 5 mg protein in

WCE from pCOUP-TFII-FLAG transfected, EtOH-treated

MCF-7 cells was incubated with anti-FLAG affinity gel (left side

of Supplemental Figure 1), eluted with 0.1 M glycine, pH 3.5 for

15 h at RT, and subjected to MudPIT peptide identification.

Matched number (No) indicates the number of sequenced peptides

that match the full length protein. Coverage indicates the % of the

total protein matched. This table excludes proteins that were

nonspecifically associated with the anti-FLAG affinity gel as

summarized in Supplemental Tables 1.

(DOC)

Methods S1

(DOC)
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