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Cell surface hydrophobicity (CSH) plays a crucial role in the attachment to, or detachment
from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and
abiotic surfaces in medicine as well as in bioremediation and fermentation industry has
both negative and positive aspects. Hydrophobic microorganisms cause the damage of
surfaces by biofilm formation; on the other hand, they can readily accumulate on organic
pollutants and decompose them. Hydrophilic microorganisms also play a considerable role
in removing organic wastes from the environment because of their high resistance to
hydrophobic chemicals. Despite the many studies on the environmental and metabolic
factors affecting CSH, the knowledge of this subject is still scanty and is in most cases
limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation.
The future of research seems to lie in finding a way to managing the microbial adhesion
process, perhaps by steering cell hydrophobicity.
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INTRODUCTION
In the environment, microorganisms rarely live as planktonic
cells and prefer growing as aggregates (named sometimes micro-
bial granules Liu et al., 2004) which are often adsorbed at
the air/liquid, air/solid and liquid/liquid interfacial surfaces.
In aquatic or soil systems, microorganisms participate in self-
immobilization processes (Wu et al., 2012) an important param-
eter of which is cell surface hydrophobicity (CSH). High CSH
enables microorganisms to attach to hydrocarbon droplets on the
surface or cells and to move from water to organic, hydrocar-
bon phase, where biosurfactants and enzymes decompose wastes
(Kaczorek et al., 2008).

The rapid change of environmental conditions forces an adap-
tive modification in the microorganism which enhances its ability
to survive. One of the many mechanisms involved in this process
is the release of outer membrane vesicles (MV) in Gram-negative
bacteria causing a significant increase in cell surface hydropho-
bicity, and an enhanced tendency to form biofilms (Baumgarten
et al., 2012a). Pseudomonas putida strain DOT-T1E released MV
within 10 min in the presence of toxic concentrations of long-
chain alcohols, under osmotic stress caused by NaCl, in the pres-
ence of EDTA, and after heat shock (Baumgarten et al., 2012b).
The release of bioactive MVs from cell surface is conserved across
microbial life in bacteria, archea and fungi (Deatherage and
Cookson, 2012) and these vesicular structures are used during
interaction with host cells and tissues (Silverman et al., 2010).

The hydrophobic properties of microbial surfaces are con-
ducive to adhesion to abiotic and biotic surfaces and to penetra-
tion of host tissues (Goulter et al., 2009; Rodrigues and Elimelech,
2009; Heilmann, 2011). Adequate hydrophobic/hydrophilic prop-
erties of microorganisms can contribute to useful processes such

as degradation of hydrocarbons or biodegradable polyesters and
during milk fermentation (Obuekwe et al., 2009). The develop-
ment of specific adaptive mechanisms to the toxicity and low
bioavailability of these substrates allows many bacteria to mod-
ify their cell surfaces regarding its hydrophobicity to permit
direct hydrophobic-hydrophobic interactions with the substrates
(Heipieper et al., 2010). On the other hand, some Gram-positive
bacteria such as Bacillus licheniformis reduce the cell surface
hydrophobicity in the presence of organic solvents and exhibit lit-
tle affinity toward toxic organic compounds (Torres et al., 2011).
Other Gram-positive bacteria such as Mycobacterium frederiksber-
gense can grow in the presence of anthracene (Wick et al., 2002;
Yamashita et al., 2007). Mycobacterium sp. and Rhodococcus ery-
thropolis have hydrophobic envelopes and show co-aggregation;
this contributes to their being solvent-tolerant (de Carvalho et al.,
2004).

Although adhesion can increase degradation of hydrocarbons,
biodegradation does not necessarily require cell adhesion to the
hydrocarbon phase (Abbasnezhad et al., 2011).

Unfortunately, in many instances microbial adhesion, aggre-
gation and biofilm formation cause serious damage and diseases
(Knobben et al., 2007; Auger et al., 2009; Ferreira and Zumbuehl,
2009).

ARE HYDROPHOBIC MICROORGANISMS MORE
PATHOGENIC?
The attachment of microbial cells to surfaces depends on a num-
ber of factors including, e.g., Brownian movement, van der Waals
attraction, gravitational forces and surface electrostatic charges.
One of the important factors is the hydrophobicity of the cells
(Van Loosdrecht et al., 1990). Depending on the type of surface,
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hydrophobicity of cells can increase the propensity of microor-
ganisms to adhesion. The more hydrophobic cells adhere more
strongly to hydrophobic surfaces, while hydrophilic cells strongly
adhere to hydrophilic surfaces (Kochkodan et al., 2008; Giaouris
et al., 2009). However, one should take into consideration also
the heterogeneity of microbial population. In the culture with
planktonic, freely living microorganisms it is possible to observe
the presence of both hydrophilic and hydrophobic cells, hence
only part of them participate in the adhesion. Another important
tenet is that microorganisms can switch between hydrophobic
and hydrophilic phenotypes in response to changes in environ-
mental conditions (temperature, composition of nutrients, etc.)
and growth phases (Borecka-Melkusova and Bujdakova, 2008;
Bujdakova et al., 2013).

Considering that medical implants such as catheters, mechan-
ical heart valves or pacemakers are constructed from hydropho-
bic materials (silicon, stainless steel, teflon, etc.), hydrophobic
microorganisms are relatively easily adhering to them. One of
the solutions of this problem is using implants from anti-biofilm
materials that can delay or completely avoid the adhesion of
microorganisms. For example, the use of polymeric nanofibers
on polystyrene surface significantly delayed bacterial and fun-
gal biofilm formation (Arciola et al., 2012; Kargar et al., 2012).
Natural macromolecules (e.g., gluten, silk fibroin, and fibrino-
gen) can be more resistant to the bacterial or fungal colonization
due to their lower hydrophobicity and can be used with success
in tissue engineering (Ma, 2008). Another strategy of prevent-
ing surfaces from bacterial colonization is the modification of
surfaces by coating them with noble metals, i.e., silver nanopar-
ticles (Menno et al., 2011). The silver nanoparticles can be either
deposited directly on the surface of medical devices, or applied in
a polymeric surface coating. The exact mechanism of antimicro-
bial action of silver is still not completely known (Menno et al.,
2011).

Biofilm formation on tissues is another medical problem
because of the strong resistance of these microbial structures to
drugs (Palmer et al., 2007; Murzyn et al., 2010; Archer et al.,
2011). Adhesion is the first step to colonization of tissues and the
prevention of this process seems to be a good strategy for keeping

good health. CSH is an important feature of the adhesion (Hazen,
2004); hence considering the possibility of regulating this element
of pathogenesis is worth the commitment.

Microorganisms in suspension may form co-aggregates which
then adhere to surfaces (Bos et al., 1999). Gibbons and Nygaard
(1970) observed that certain pairs of planktonic oral microor-
ganisms underwent fast and extensive co-aggregation whereas
others did not. Other investigators have demonstrated that each
microbial strain or species has its own specific co-aggregation
partner (Kolenbrander, 1989). This co-aggregation process is
mediated by stereo-chemical interactions between specific surface
components and the interacting microbial cell surfaces, such as
lectin-carbohydrate interactions (Cisar et al., 1979; Kolenbrander,
1989; Kolenbrander and London, 1992).

Despite individual cell hydrophobicity determinants charac-
teristic for each species, several compounds such as lipoteichoic
acid, outer membrane proteins and lipids, surface fibrils, various
fimbriae or core oligosaccharides are suggested to be common
bacterial CSH features (Table 1).

In enteric bacteria, adhesion to host cells is often promoted
by a lectin found on surface-localized fimbriae (Isberg and
Barnes, 2002) that have been found to contain a high pro-
portion of hydrophobic amino acid residues (Rosenberg and
Kjelleberg, 1986). Fimbriae play a role in cell surface hydropho-
bicity and attachment, probably by overcoming the initial elec-
trostatic repulsion barrier that exists between the cell and the
surface (Corpe, 1980). Gram-positive microorganisms and their
strategies for establishing adhesive contact with the endothe-
lium involve extracellular matrix proteins which act as colo-
nization bridges with host cells (John et al., 1999). Recently,
Gram-positive fimbriae have started to be uncovered (Ton-That
and Schneewind, 2004) and, as in Gram-negative pathogens,
Gram-positive fimbriae seem to play an important role in
the adhesion of bacteria to host surfaces (Pizarro-Cerda and
Cossart, 2006). Besides fimbriae, different bacterial nonpoly-
meric adhesins exist which recognize many different elements
of host-cell surfaces (collagens, laminins, elastin, proteoglycans).
Adhesive glycoproteins such as vitronectin, fibrinogen, and spe-
cially fibronectin, which can be secreted or associated with plasma

Table 1 | Factors involved in CSH and adhesion of bacteria and fungi.

Factor Bacteria/fungi References

S-layer Bacillus, Lactobacillus Sidhu and Olsen, 1997; Auger et al., 2009

Lipoteichoic acid Streptococcus, Staphylococcus Morath, 2005; Xia et al., 2010

Outer membrane protein Pseudomonas, Escherichia Akama et al., 2004; Tokuda and Matsuyama, 2004

Surface fibrils Streptococcus, Streptomyces, Candida Hazen and Hazen, 1993; McNab et al., 1999;
Claessen et al., 2003

Oligosaccharides Enterobacteriaceae: Legionella, Escherichia, Salmonella Zähringer et al., 1995; Heinrichs et al., 1998; Frirdich
and Whitfield, 2005

Hydrophobins Filamentous fungi: Aspergillus, Candida Linder, 2009

Volatile organic compounds Fusarium Vergara-Fernández et al., 2006; Minerdi et al., 2009

β-(1,3)-D-glucans Candida Fukazawa and Kagaya, 1997

Adhesins Candida, Escherichia, Streptococcus Brauner et al., 1990; Higashi et al., 1998; Dea et al.,
2000; Rauceo et al., 2004

Frontiers in Cellular and Infection Microbiology www.frontiersin.org August 2014 | Volume 4 | Article 112 | 2

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Krasowska and Sigler Hydrophobicity of microorganisms

membrane, are recognized by many different species of bacterial
pathogens. The example is Staphylococcus aureus which expresses
fibronectin-binding proteins that present mechano-functional
properties (Schwarz-Linek et al., 2003).

In contrast to factors governing bacterial adhesion, the fac-
tors responsible for adhesion of cells of fungal mycelia are still
poorly known. Some important factors connected with patho-
genesis, adhesion of and colonization by indoor molds include β

(1,3)-D-glucans, outer cell wall fungal hydrophobins and volatile
organic compounds such as aldehydes, aromatic compounds
and amines (McGinnis, 2004; Pieckova, 2012). The function of
hydrophobins is the coordination of adherence between hyphae
and macroorganism (Linder, 2009). Hydrophobicity is also due
to other proteins functioning as repellents, which were detected
in pathogenic fungi (Feofilova, 2010). More detailed information
is available about hydrophobicity, adhesion and infections caused
by the opportunistic yeast pathogen Candida albicans (Sanglard
et al., 2009; Fortuna et al., 2012). Hydrophilic cells have an elon-
gated acid-labile mannan fraction in the cell wall and the length
of this structure affects the folding of cell wall fibrils and the cell
surface hydrophobicity (Netea et al., 2008) (Table 1).

There are several proteins closely connected with CSH that
affect adhesion of C. albicans to surfaces. The first described
hydrophobic protein in the surface of C. albicans was CSH1p,
and Csh gene deletion resulted in 75% reduction of surface
hydrophobicity and reduction in adhesion to the extracellular
matrix protein fibronectin (Singleton et al., 2005). Other results
suggest that CSH1p phenotype has a pleiotropic nature and its
contribution to pathogenesis (e.g., adhesion to fibronectin) is
independent of reduced cell surface hydrophobicity (Singleton
et al., 2005).

Several cell surface adhesins such as those belonging to the
agglutinin-like sequence (ALS) family increase yeast aggregation
and adhesion to epithelia (Dranginis et al., 2007; Aoki et al.,
2012). Beaussart et al. (2012) postulated that the hydrophobicity
of hyphae depends on enhanced exposure of Als3 protein on the
surface and causes stronger C. albicans adhesion to hydrophobic
substrata (Table 1).

If hydrophobic cells can more easily and faster capture new
places for living and nutrient uptake, why do hydrophilic cells
also coexist? This question is especially justified for hydrophilic
microorganisms living on inner or outer human body surfaces,
which have mostly hydrophobic character (Gilbert et al., 1991;
Feingold, 2007; Linden et al., 2008).

It should be first noted that the attachment to surfaces depends
not only on the hydrophobicity of cells; factors responsible for this
process include also Brownian movement, Van der Waals attrac-
tion, gravitational forces and surface electrostatic charges (Van
Loosdrecht et al., 1987).

In general, two physico-chemical approaches describe micro-
bial adhesive interactions. The thermodynamic approach is based
on the assumption that microbial surfaces physically contact each
other under conditions of thermodynamic equilibrium (Absolom
et al., 1983; Busscher et al., 1984). This thermodynamic approach
takes into account the role of surface free energies but does
not include the role of electrostatic interactions. An alternative
approach is the classical DLVO (Derjaguin and Landau, Verwey,

and Overbeek) theory which describes the interaction energies
between the interacting surfaces and uses Lifshitz-van der Waals
and electrostatic interactions and their decay with separation
distance (Rutter and Vincent, 1980; Tadros, 1980).

One of explanation of the role of hydrophilic cells invokes as
interaction between hydrophilic and hydrophobic surfaces in spe-
cific conditions. In pure water, repulsive forces are often observed
between hydrophobic polystyrene and hydrophilic surfaces. By
contrast, Thormann et al. (2008) found a typically DLVO-like
interaction between hydrophobic polystyrene particles and a
hydrophilic surface that was regulated by an addition of salt. In
its presence, secondary adhesion processes were observed and the
loosely bound polystyrene molecules were bridging to the surface
(Cerca et al., 2005). Accordingly, when the concentration of NaCl
increased, the Debye lengths decreased (Cerca et al., 2005).

Thus, though the primary adhesion of a hydrophobic particle
to the hydrophilic surface is weak, the bridging polymers give rise
to long-range attraction which will effectively anchor the particle
to the surface.

Microbial adhesion to surfaces involves also physico-chemical
phenomena, which can effectively mask the influence of CSH as
a biological factor. The notions about the lack of direct relation-
ship between CSH and the ability to adhere to either a hydrophilic
or hydrophobic substrate were explored in, e.g., Staphylococcus
epidermidis (Cerca et al., 2005). Another pathogenic bacterium,
Staphyloccocus aureus, was found to attach to both hydrophobic
indium tin oxide (ITO)-coated glass and hydrophilic glass sur-
faces, with stronger adhesion to hydrophobic surface (Zmantar
et al., 2011). As documented by the adhesion of Brukholderia
strains to n-hexadecane, the microorganisms can be able to adapt
to the presence of hydrocarbon by modifying their cell surface
composition to increase or decrease adhesion (Chakarborty et al.,
2010).

Despite the development of various methods of recognition of
hydrophobic properties of microorganisms, the above examples
indicate that the knowledge about the processes of adhesion in
microbiology is still insufficient. Cell surface properties have been
difficult to study at the subcellular level, especially on hydrated,
live cells such as tissues.

The ability to regulate the CSH allows microorganisms to
either promote or hinder attachment (Rosenberg and Kjelleberg,
1986); hence hydrophilic microorganisms can be hypothetically
considered as transitional forms on their move through water
environment to places of colonization and pathogenesis.

SHOULD WE VALUE AND USE MICROBIAL
HYDROPHOBICITY?
On the one hand, hydrophobic microorganisms are more
invasive and cause diseases difficult to treat (Doyle, 2000).
On the other hand, the positive role of hydrophobic cells
can be utilized in cleaning up the environment from aro-
matic and xenobiotic organic compounds. Various environ-
mental contaminants, such as toluene, are highly hydrophobic
and toxic for cells by causing disruption of the plasma mem-
brane. Hydrophobic microorganisms tend to accumulate on such
pollution compounds and decompose them (Kobayashi et al.,
1999). On the other hand, hydrophilic microbes are often more
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resistant to the toxic effects of solvents due to the modifica-
tion of the lipopolysaccharides in the bacterial outer cell mem-
brane, which protects them from the attachment of organic
molecules (Kobayashi et al., 1999). Solvent-resistant microorgan-
isms are also capable of mineralization of toluene (Heipieper
et al., 2007). For these reasons, their use could be considered
to prevail over the hydrophobic microorganisms. In a study of
migration through soil, hydrophobic bacteria were found to be
slower compared to hydrophilic bacteria (Stevik et al., 2004).
In bioremediation processes, the fast dispersion of inoculated
microorganisms is desirable and hydrophilic strains with low
tendency to adhesion are therefore advantageous (Obuekwe et al.,
2009).

Several bacteria with low cell surface hydrophobicity develop
resistance to solvents by undergoing modification of the
lipopolysaccharide or porines of the outer membrane. The
solvent-tolerant microorganisms are the first to colonize and
become active in the removal of pollutants (Megharaj et al., 2011).
The application of solvent-tolerant bacteria or modification of
these bacteria with an appropriate catabolic potential can provide
advantages in bioremediation programs.

Biological wastewater treatment is among the most impor-
tant biotechnological applications. CSH plays an indispensable
role also in wastewater treatment in microbial granular reac-
tors, where microorganisms aggregate in aerobic and anaerobic
granules. The formation and structure of biogranules are asso-
ciated very closely with cell hydrophobicity. With increasing cell
hydrophobicity, cell-to-cell adhesion and aggregation is observed
to grow (Liu et al., 2009) and degradation of wastes such as
phenol, pyridine and its derivatives, nitrogen and phosphorus
compounds or heavy metals via various metabolic pathways
occurs (Adav et al., 2008). One of the problems is the slow forma-
tion of the granules, which takes many weeks. Some researchers
indicated that application of cultures of microorganisms with
high CSH accelerates the formation of the granules (Adav et al.,
2005). Though the search for the universal strain(s) for micro-
bial granulation is often directed at finding the most hydrophobic
microorganisms present in the experimental biomass, experi-
ments proved that an enrichment of microbial granules with
selected, strongly hydrophobic strains was insufficient and other
properties of microorganisms are also important in wastewa-
ter treatment (Ivanov et al., 2006). Amyloid proteins (fimbriae
or other microbial surface-associated structures) are expressed
by many types of bacteria in biofilms from various habitats
(Larsen et al., 2008). Amyloid proteins play an important role
in activated sludge wastewater treatment plants. A broad range
of phylogenetically distant species in the phyla Proteobacteria,
Bacteroidetes, Chloroflexi, Firmicutes, and Actinobacteria produce
amyloids in the sluge (Larsen et al., 2007). The function of
amyloid fibrils is assumed to be related to enhanced adhe-
sion to surfaces and biofilm formation (Prigent-Combaret et al.,
2000). Several filamentous bacteria in Danish wastewater treat-
ment plants such as Meganema perideroedes, Gordona amarae
and Skermania piniformis are known to be highly hydrophobic
(Iwahori et al., 2001; Nielsen et al., 2001; Kragelund et al., 2006),
which might be a consequence of the presence of amyloid-like
material.

In the food industry, typical materials which are used in instal-
lations are stainless steel, rubber and polytetrafluoro-ethylene
(PTFE). Sinde and Carballo (2000) demonstrated that hydropho-
bic pathogens such as Salmonella spp. and Listeria monocyto-
genes easily attach to these materials. Microbiological contami-
nation costs the food industry many millions of dollars annually
(Brooks and Flint, 2008) and the research into the processes of
microbial adhesion is therefore extremely important. However,
many researchers who conduct investigations on the relationships
between hydrophobicity of microbial surfaces and adhesion to
different materials conclude that it is very difficult to evaluate
the results, since many parameters are involved in these pro-
cesses in interfacial systems (Brooks and Flint, 2008). Like in the
case of medical implants, surfaces of materials used in the food
industry can be modified. For instance, ions lowering surface
energy can be implanted to stainless steel, bioactive surfaces with
immobilized enzymes can be generated or antimicrobial chem-
icals can be used in the coating of surfaces (Yazdankhah et al.,
2006; Zhao and Liu, 2006; Srinivasan and Swain, 2007; Tabak
et al., 2007).

Microbial hydrophobicity plays an important role in pro-
cesses such as food production, spoilage, etc. due to interactions
between microorganisms and food components such as lipids
and proteins. For example, species of lactic acid bacteria such as
Lactococcus lactis subsp. lactis biov. diacetylactis, which have a key
role in the production of yogurts, cheese or sausages, could influ-
ence and change the stability of food emulsions. Bacteria with
more hydrophobic surfaces have a higher affinity for milk fat and
aroma compounds. Ly et al. (2008) observed that lactic acid bac-
teria led to the adsorption on lipid droplets but did not cause
a destabilization of the emulsion, but when the bacterial sur-
face charge was opposite to the one of the emulsion, the droplets
the emulsions made with ionic surface-active compounds were
unstable (Ly et al., 2006).

CONCLUDING REMARKS
Hydrophobicity of microorganims seems to have a consider-
able function in many fields of human activities and health.
Hydrophobic cells play a key role in the formation of biofilms
or removing contaminants from soil and water, but some results
indicate that hydrophilic microorganisms also have an impor-
tant role in these processes. Despite the many studies on the
environmental and metabolic factors affecting CSH, the knowl-
edge of this subject is still scanty and is in most cases limited
to observing the impact of hydrophobicity on adhesion, aggre-
gation or flocculation. The future of research lies in the deter-
mination of microbial strains and constructing the hydropho-
bic/hydrophilic profile of populations in bioremediated envi-
ronments. On the other hand, in the prevention of micro-
bial adhesion to implants or tissue one should pay attention
to hydrophilic cells moving to the surfaces for their settle-
ment, and control their quantity in the body using suitable
drugs.
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