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Abstract: This study reports an oven-controlled microelectromechanical systems oscillator
with integrated micro-evaporation trimming that achieves frequency stability over the
industrial temperature range and permanent frequency trimming after vacuum packaging.
The length-extensional-mode resonator is micro-oven controlled and doped degenerately with
phosphorous to achieve a frequency instability of ±2.6 parts per million (ppm) in a temperature
range of −40 to 85 ◦C. The micro-evaporators are bonded to the resonator, integrated face-to-face, and
encapsulated in vacuum. During trimming, the micro-evaporators are heated electrically, and the
aluminum layers on their surfaces are evaporated and deposited on the surface of the resonator that
trims the resonant frequency of the resonator permanently. The impact of the frequency trimming
on the temperature stability is very small. The temperature drift increases from ±2.6 ppm within
the industrial temperature range before trimming to ±3.3 ppm after a permanent trimming of
−426 ppm based on the local evaporation of Al. The trimming rate can be controlled by electric power.
A resonator is coarse-trimmed by approximately −807 ppm with an evaporation power of 960 mW for
0.5 h, and fine-trimmed by approximately −815 ppm with an evaporation power of 456 mW for 1 h.
Though the Q-factor decreases after trimming, a Q-factor of 304,240 is achieved after the trimming of
−1442 ppm.

Keywords: frequency trimming; integrated micro-evaporation trimming; oven-controlled MEMS
oscillator

1. Introduction

Microelectromechanical systems (MEMS) oscillators have been extensively researched as
replacements for quartz crystal oscillators in timing and communication applications [1–3]. Compared
with quartz crystal oscillators, MEMS oscillators are small-scale, low cost, and allow for high-volume
manufacturing and integration.

Oscillators must achieve frequency accuracy as well as temperature stability at the ppm level
in the applications of frequency reference sources. Frequency trimming is required for frequency
accuracy because frequency accuracy is limited by the tolerances of the MEMS processes, such as
deposition, lithography, and etching, that leads to frequency deviations spanning several hundred
ppm, even with design for manufacturability (DFM) [4,5]. In addition, temperature compensation
is required for temperature stability because the temperature coefficient of the resonant frequency
(TCF) of silicon is up to −30 ppm/◦C, which is more than 100 times larger than that of quartz crystal
oscillators. It was demonstrated that frequency accuracy at the ppm level and temperature stability
can be achieved with frequency synthesizer techniques, the drawback of which is the relatively high
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power. The power of the frequency synthesized MEMS oscillator is approximately 10 times larger than
those of quartz crystal oscillators of the same level owing to the increased powers of the phase-locked
loop (PLL) circuits, and limits its applications [6–12]. Low-power techniques are required for both
frequency tuning and temperature stabilization.

It is really a challenge to trim the MEMS resonators because the MEMS resonators must be
vacuum-packaged before measurements and trimmed after packaging. The traditional metal deposition
trimming technique verified in quartz crystal trimming is difficult to implement for frequency trimming
after vacuum packaging. Post-package pulsed-laser-deposition frequency trimming technologies have
been demonstrated for MEMS resonators [5]. However, the resonator frequency has not yet reached
the ppm level accuracy owing to the difficulty of controlling the geometry and the amount of the
materials deposited by laser. Another laser trimming method was based on the material removal
trimmed resonator from an initial frequency error to 21 ppm [13,14]. However, the resonators were
not packaged so that the resonator frequency would shift after the packaging. Furthermore, laser
frequency trimming technologies can only be employed by the oscillators with transparent packages.
Samarao et al. proposed a frequency trimming method based on electric heating that changed the
equivalent stiffness by heating the metal into the resonator at the cost of Q-factor reductions [15].
Integrated micro-evaporation trimming (IMET) has been proposed by the authors to achieve coarse
and fine frequency tuning with Al evaporation by integrated micro-evaporators [16]. The permanent
frequency trimming can be performed during the testing processes of the oscillators after vacuum
packaging, which is promising for the low-power MEMS oscillators.

Low-power temperature stability at the ppm level can also be achieved with the use of micro-oven
control combined with degenerate phosphorous doping [17–23]. It has been demonstrated that
the TCF of the [100]-oriented silicon resonators is nonlinear, and there is a turnover temperature
point [24,25] at which the TCF is equal to zero. The turnover point can be tuned by the doping level [26].
The oven-controlled N++ [100] length-extensional mode silicon resonator has been previously reported
by the authors [21–23]. Owing to the very low TCF near the turnover temperature point of the N++

structure, a lookup table-based control algorithm was sufficiently accurate to achieve temperature
stability at the ppm level from −40 to 85 ◦C.

This study introduces a MEMS oscillator with IMET technology for frequency trimming and
micro-oven-control for temperature stabilization. The oven-controlled N++ [100] silicon resonator
in [21,22] is adopted in this investigation. Evaporation trimming is used in this study to adjust the
resonant frequency of the oven-controlled MEMS oscillator (OCMO). Before trimming, the frequency
stability is less than ±2.6 ppm over the entire temperature range, and it increase to ±3.3 ppm after a
permanent trimming of −426 ppm. This study demonstrates that the effect of evaporation trimming
on the frequency temperature stability of the OCMO over the entire temperature range is less than
1.5 ppm after a frequency trimming of −426 ppm.

2. Principle and Design

2.1. Principle of the IMET

Because the masses of MEMS resonators are extremely small, the resonant frequencies can be
trimmed significantly with trace amounts of material deposition. When a small amount of material,
∆m, is deposited on the resonator, the resonant frequency is trimmed down, and ∆f 0 is determined
using the following equation:

∆ f0
f0

= −
∆m

2me f f
(1)

where meff is the effective mass of the resonator, which was as low as 1.84 × 10−8 g in this study.
Theoretically, a permanent frequency trimming of approximately −1000 ppm can be achieved with
36.8 pg of material deposited on the I2-BAR resonator used in this study.
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Owing to the small thermal capacity, the suspended MEMS structures, such as beam-mass
structures, can be locally heated to reach several hundred degrees Centigrade with electrical heating in
vacuum. Small amounts of the metal material on top of the suspended structures can be evaporated to
trim the oscillator permanently. The evaporation can be estimated with the Hertz–Knudsen formula
owing to its simple form, particularly in practical application cases. The mass flux of pure metal can be
approximated as follows [27]:

E = αp

√
M

2πRTeva
(2)

where α is the evaporation coefficient which has a value equal to one in the ideal evaporation state
when all the metal evaporated from the surface of the metal source condenses on the resonator. M and
p are the molecular weight and standard vapor pressure of the evaporating material, R is the universal
gas constant, and Teva is the temperature at the evaporating surface. According to the Equation (2),
the materials with high vapor pressure at a relatively low temperature are preferred. Aluminum is
selected in this design, because it has good adhesion to silicon and the standard vapor pressure of
Al is ~6.44 × 10−4 Pa at 850 ◦C and ~2.6 × 10−3 Pa at 900 ◦C [28]. Estimation based on Equation (2),
the mass fluxes of pure aluminum are 4.37 × 10−7 kg/(m2

·s) and 1.71 × 10−6 kg/(m2
·s) at 850 and 900 ◦C,

respectively. The standard vapor pressure of pure aluminum Al can be approximated as follows [29]:

lgpAl = −
16380
Teva

+ 14.445− lgTeva (3)

According to Equations (1)–(3), the relationship between the evaporation temperature and rate is
built theoretically in the ideal evaporation state, as shown in Figure 1. When the size of the aluminum
source is 20 µm × 38 µm, as used in this study, the trimming rate of the resonant frequency is estimated
to be approximately −541 ppm/min in the ideal evaporation state when the aluminum source is heated
to 850 ◦C. It takes approximately 2 min to trim more than −1000 ppm that can be achieved during the
testing processes of the oscillators after vacuum packaging.
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Figure 1. Relationship between evaporation temperature and rate constructed theoretically in the
evaporation ideal state according to Equations (1)–(3).

Two evaporator boats supported by two silicon heating beams are employed to heat the evaporating
material. During operation, electric power is applied to the heating beams, and the evaporator boat is
heated by Joule heating at the evaporation temperature. At this temperature, the aluminum atoms
escape from the source material and reach the micromechanical resonator surface. When the distance
between the evaporator boat and the resonator after bonding (about 40 µm) is less the mean free path
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of aluminum (about 176 µm when aluminum is heated to 866 ◦C in 500 Pa vacuum chamber), the
collision of aluminum atoms with the residual molecules in the vacuum chamber can be ignored.
According to Fourier’s law, the temperature of the evaporator boat can be approximated as follows,

Teva =
PL

2khb
+ Ta (4)

where P is the Joule heating power for evaporation, k is thermal conductivity of a single crystal silicon,
Ta is the ambient temperature, and L, b, and h, are the length, width, and thickness of the heating beam,
respectively. When a heating power of 108 mW is applied, the evaporator boat can be heated to 854 ◦C
based on Equation (4).

2.2. Design of the OCMO with IMET

The structure of the OCMO with IMET is shown in Figure 2. The IMET chip is bonded to the
OCMO chip face-to-face.
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Figure 2. Schematic view of the integrated micro-evaporation trimming (IMET) chip directly bonded
to the oven-controlled microelectromechanical system (MEMS) oscillator (OCMO) chip face-to-face.

The [100] length-extensional (LE) mode silicon resonator was doped degenerately with
phosphorous to tune the turnover temperature to approximately 110 ◦C, at which the temperature
coefficient of frequency (TCF) was close to zero and the turnover temperature was marginally higher
than the upper limit of the operating temperature range. The I2-BAR structure silicon resonator was
suspended with a pair of heating beams to decrease the thermal conductance. The beams also served
as electrical leads. The resonator was excited electrostatically and sensed based on piezoresistance.
During operation, a voltage was applied across the heating beams to heat the resonator at the turnover
temperature. A thermoresistor was included on the chip to monitor the ambient temperature. Fewer
leads will result in less power dissipation because the leads are the main routes of thermal dissipation
in a vacuum. The temperature of the silicon resonator is not monitored to avoid any additional leads.
A lookup-table-based algorithm is used to control the temperature of the resonator. Given that the
TCF near the turnover temperature is low, the algorithm is sufficiently accurate, even though the
temperature of the resonator is not monitored. The details of the oven-controlled MEMS oscillator can
be found in [21–23].

Two evaporator boats are included in the micro-evaporator chip to deposit Al to the two far
ends of the resonator to facilitate permanent trimming, as shown in Figure 2. The local evaporation
trimming has a minor influence on the Q-factor because the far ends of the resonators are less stressed,
and the stiffness of the resonator is slightly affected. Trace amount of aluminum will not cause a short
circuit between the device and electrode because the resonator is released from the substrate and there
are oxide layers undercuts under the driving electrodes. Each evaporator boat was covered with a
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low-stress silicon nitride layer and an aluminum layer on top. The aluminum layer served as the source
material for evaporation, whose area and thickness were 20 µm × 38 µm and 0.6 µm, respectively.
If 10% of the aluminum layer evaporated on the surface of the resonator, the frequency can be trimmed
by ~3346 ppm. The SiNx layer serves as the barrier layer, thus preventing aluminum from forming an
alloy with the silicon evaporation boat at high temperatures.

Only two hearing beams are used to suspend the evaporation boat, the power consumption
for heating can be minimized, and the evaporator boats may be heated at a high temperature with
relatively low power owing to their small volumes. Simulation results using COMSOL revealed that
the temperature of the evaporator boat may reach 866 ◦C when 108 mW of evaporation power is
applied without considering the heat of fusion and evaporation, as shown in Figure 3. The simulation
results are very close to the theoretically calculated results.
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Figure 3. Temperature of the evaporator boat based on simulation is found to be 866 ◦C when an
evaporation power of 108 mW is applied.

3. Fabrication

The IMET chip and OCMO chip were fabricated separately with the use of Silicon-on-Insulator
(SOI) MEMS processes, and were bonded together with a flip-chip machine, as shown in Figure 4.
The processes of the IMET chip are described as follows:

1. The SOI layers are 5 µm thick and heavily boron-doped in the range of 0.001–0.002 Ω·cm. A layer
of low-stress silicon nitride with a thickness of 300 nm is deposited using low-pressure chemical
vapor deposition (LPCVD) and a layer of 600 nm aluminum is sputtered. Both layers are patterned.
The aluminum layer serves as the source material of evaporation and the low-stress silicon nitride
serves as the barrier layer.

2. After deposition and patterning of the Cr/Pt/Au electrode, the structures of the micro-evaporators
are patterned by deep reactive ion etching (DRIE) and released by HF vapor etching.
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together using a flip-chip machine.

The processes used for the silicon resonators are almost the same except that no low-stress silicon
nitride and aluminum layers are deposited. The details of the resonator processes can be found
in [21,22].

After the Au stud bumps are fabricated on the IMET chip with the wire bonding machine,
the IMET chip and the OCMO chip are bonded face-to-face via thermal compression bonding with the
flip-chip machine.

Figure 5 shows scanning electron microscopy (SEM) images of the chips. The device is then
vacuum-packaged in a ceramic carrier. The pressure in the ceramic carrier was estimated to be
approximately 500 Pa in other experiments [22].
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4. Results and Discussion

4.1. Results

The experimental setup used for measuring the output frequency is shown in Figure 6.
The resonator is electrostatically actuated and piezoresistively sensed with a discrete resistor Rr
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connected in series to form a Wheatstone half-bridge. A bridge voltage was applied to the Wheatstone
half-bridge to sense and heat the resonator at the turnover temperature, at which the TCF of the
resonator is close to zero. The thermoresistor on the chip was used to monitor the change of the
temperature in the temperature chamber. The gain of the amplifier on the output of the resonator was
approximately 40. The data were transmitted to the computer through the general purpose interface
bus (GPIB), and the sampling period is 10 s.
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Figure 6. Experimental setup: (a) diagram of measurement setup and (b) photograph of the actual
measurement setup.

Before trimming, the resonant frequency of the device that was vacuum-packaged in a ceramic
carrier was measured to be 10.493244 MHz at 30 ◦C, and the Q-factor was 141,945 (Figure 7). The OCMO
was characterized in the temperature chamber to obtain the turnover bridge voltage (the bridge voltage
heating the resonator to the turnover temperature) at different ambient temperatures, as shown in
Figure 8. Use of a piecewise linear fitting method based on the calibration data, a look-up table that
contained the turning voltage at any temperature was built. The frequency stability of the resonator
was measured with the use of the look-up table in the temperature chamber for 18 h, in which
the temperature varies in the industrial temperature range of −40 to 85 ◦C, as shown in Figure 9a.
The temperature drift of the resonant frequency was measured to be less than ±2.6 ppm, over the entire
aforementioned temperature range.Sensors 2020, 20, x FOR PEER REVIEW 8 of 15 
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Figure 9. Relationship between the temperature drift of the frequency and ambient temperature over
18 h. (a) Before trimming, the temperature drift of the resonant frequency is less than ±2.6 ppm, over
the temperature range of −40 to 85 ◦C. (b) The temperature drift drops slightly to ±2.4 ppm after a fine
trimming of −8.5 ppm. (c) The temperature drift increases slightly to ±3.0 ppm after a coarse trimming
of −400 ppm. (d) The maximum temperature drift increases to ±3.3 ppm after a trimming of −426 ppm.

The resonator is trimmed by the integrated micro-evaporator several times, as shown in Figure 10.
The resonant frequency of the resonator is trimmed to approximately −8.5 ppm with a 1.45 W
evaporation power for 1 h, and trimmed to approximately −400 ppm with a 1.77 W evaporation power
for 3 h and approximately −426 ppm with an evaporative power of 1.77 W for 10 min. The fine- and
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coarse-trimming for frequency of the OCMO can be achieved by adjusting the evaporation power
and time.
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Figure 10. Magnitude–frequency curve of the MEMS resonator, before and after trimming. Before
trimming, the resonant frequency is measured to be 10.493244 MHz. The resonant frequency is trimmed
to −8.5 ppm with an evaporative power of 1.45 W for 1 h, and trimmed to approximately −400 ppm
with an evaporative power of 1.77 W for 3 h, and approximately −426 ppm with an evaporative power
of 1.77 W for 10 min.

After each trimming, the oscillator is fully characterized to obtain the turnover bridge voltage at
different ambient temperatures, as shown in Figure 8, which shows the effect of the trimming on the
bridge voltage. After a trimming of 8.5 ppm, no change in the bridge voltage was observed. After a
trimming of 426 ppm, the bridge voltage increased by 0.02–0.03 V at different ambient temperatures,
which is equivalent to 1.0–2.7%.

After each trimming, the stability of the resonator is measured by the method described above.
After a trimming of −8.5 ppm, the temperature drift of the resonant frequency is less than ±2.4 ppm,
as shown in Figure 9b, and it is less than ±3.0 ppm when a coarse trimming of −400 ppm is achieved,
as shown in Figure 9c. The maximum temperature drift is less than ±3.3 ppm after −426 ppm trimming,
as shown in Figure 9d. The effect of evaporative trimming on frequency stability over the entire
temperature range is less than 1.5 ppm. The decrease of frequency stability after trimming is caused by
the rise of TCF of the resonator after trimming. Because the TCF of aluminum does not equal to 0 at
the turnover temperature, the deposition of aluminum on the resonator surface will inevitably increase
TCF of the resonator at the turnover point, which will cause the decrease of frequency stability.

The Q-factor decreases along with trimming slightly, as shown in Figure 10. After −8.5 ppm
trimming, the Q-factor drops slightly to 141,917 and it drops by 24% to 107,986 after a trimming
of −426 ppm. Because the pressure in the ceramic carriers cannot be controlled precisely in our
experiments, the Q-factors deviate obviously from different devices. Much higher Q-factors can be
achieved after trimming, as described in the next part.

To study the maximum trimming range and the effect of trimming on the Q-factor, another device
was tested and trimmed in a vacuum chamber, as shown in Figure 11. The resonant frequency of the
resonator was measured to be 10.487538 MHz before trimming. This frequency was coarse-trimmed
to approximately −807 ppm with an evaporation power of 960 mW for 0.5 h, and fine-trimmed
to approximately −815 ppm with an an evaporation power of 456 mW for 1 h. The frequency is
coarse-trimmed to −1040 ppm and −1442 ppm successively, with evaporation powers of 666 mW and
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846 mW applied respectively for 1 h. The Q-factor decreases with trimming, as shown in Figure 11.
The Q-factor is approximately 379,900 without trimming. After a trimming of −807 ppm, it drops by
~4.1%, to 364,280. It continues to drop by ~0.46% to 362,610 after a trimming of −815 ppm. When the
original frequency is trimmed to −1040 and −1442 ppm, it drops to 349,180 and 304,240, respectively,
but it is adequately high for a MEMS oscillator, and the value of f · Q is 3.2 × 1012, which is comparable
to the bulk mode silicon oscillator reported by others [1]. Finally, the oscillator is further trimmed to
−2851 ppm with an evaporation power of 955 mW for 1 h to explore the extreme adjustment ability of
IMET. After a trimming of −2851 ppm, the Q-factor drops by 88.4% to 44,097.Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 
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Figure 11. Resonant frequency of the MEMS resonator, before and after trimming. Before trimming, the
resonant frequency is measured to be 10.487538 MHz. This frequency is coarse-trimmed at approximately
−807 ppm using 960 mW of evaporation power for 0.5 h, and fine-trimmed to approximately −815 ppm
using 456 mW of evaporation power for 1 h. The frequency is coarse-trimmed to −1040, −1442 and
−2851 ppm, successively, with evaporation powers of 666, 846 and 955 mW, applied respectively for 1 h.

After trimming, the device was destructed to observe the surface of the resonator. As shown in
Figure 12, the color region corresponding to the aluminum evaporation region can be observed on
the surface of the resonator. Although the center of the evaporation area deviates from the resonant
structure owing to the alignment error of the flip chip welding, the evaporation region covers part of
the bar-beam. Because no alignment mark has been made on the chips, the alignment is carried out by
means of graphic alignment which introduces a large alignment error (>5 µm). If the alignment is
carried out by aligning the marks, theoretically, the alignment error can be controlled at about 1 µm.
In addition, if the accuracy of flip chip is improved, the rate of trimming can also be increased.
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Figure 12. Resonator photograph after trimming: (a) optical microscopy image at a magnification of
10×, (b) SEM image of the evaporation area.

4.2. Discussion

To verify the existence of aluminum in the evaporation area, an energy-dispersive X-ray
spectroscopy (EDX) analysis was employed. As shown in Figure 13a, the evaporation area is
characterized and the content of aluminum is approximately 0.9%. For comparison, the non-evaporated
area was also characterized. As shown in Figure 13b, no aluminum is present. Because the content of
aluminum is so small that it reaches the characterization limit of the EDX, quantitative measurements
cannot be performed.
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Figure 13. Energy-dispersive X-ray spectroscopic analysis of the content of aluminum: (a) the
content of aluminum is approximately 0.9% in the evaporation area; (b) there is no aluminum in the
non-evaporation area.

Figure 14 shows the relationship between the trimming power and the rate for actual measurements.
When the trimming power is less than 846 mW, the power is approximately linearly related with the
rate, and the rate increases abruptly when the power is higher than 846 mW. The actual trimming rate
measured in the experiment is much lower than the theoretical value estimated by Equations (2)–(4)
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owing to several reasons. Firstly, because the micro-evaporator is bonded to the resonator through Au
bumps which are more than 40 µm high, the evaporation coefficient α is much lower than one. In the
theoretical estimation, the temperature drop of aluminum source caused by heat dissipation during
evaporation is not considered, and the effect of dense native oxide layer on the evaporation rate of
aluminum source is not considered. As a matter of fact, aluminum is very susceptible to oxidation at
high temperature in the sealed cavity with pressure of 500 Pa. The dense oxide layer might play a
significant role in decreasing the measured deposition rate, which is much lower than the theoretical
results as shown in Figure 14. In addition, because the HF vapor corrodes the chromium adhesion
layer of the electrode pad in our lab, the buried oxide under the evaporation boat is not released.
Accordingly, this greatly increases the heat dissipation through the substrate.Sensors 2020, 20, x FOR PEER REVIEW 13 of 15 
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Figure 14. Relationship between trimming power and rate for actual measurements, and the temperature
of the evaporation boat simulated by finite element method for each trimming.

According to the heating power measured, the temperature of the evaporation boat is simulated
by finite element method, as shown in Figure 14. Compared with the theoretical results in Figure 1,
the simulated temperature is much higher than the theoretical temperature at the same evaporation
rate, which is caused by the reasons analyzed above, including the heat dissipation during evaporation,
oxidation of aluminum and the misalignment issue.

5. Conclusions

This study reports an IMET technology to permanently trim the frequency of an OCMO. Because
the various parts of the MEMS oscillator are extremely small, the resonant frequencies can be trimmed
significantly with trace amounts of material deposition. Theoretically, 36.8 pg of deposited material
can achieve approximately a permanent frequency trimming of −1000 ppm. The micro-evaporators
suspended by heating beams were designed and heated electrically, and the aluminum layers on the
surface of the evaporator were evaporated and deposited on the surface of the resonator. When the
evaporator was heated at 850 ◦C, the resonant frequency could be theoretically trimmed by more than
−1000 ppm within 2 min in vaccum. The micro-evaporators were bonded to the OCMO integrated
face-to-face and encapsulated in vacuum. During trimming, the micro-evaporators were heated
electrically, and the aluminum layer on the surface was evaporated and deposited on the surface of
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the resonator that trimmed the resonant frequency of the oscillator permanently. The effect of IMET
trimming on the frequency stability of OCMO was minor. The temperature drift of the resonant
frequency was measured to be less than ±2.6 ppm over the ambient temperature range from −40 to
85 ◦C without trimming, and the maximum temperature drift increased slightly to ±3.3 ppm after
a permanent trimming of −426 ppm. The trimming rate can be controlled by the electric power
of evaporation. A resonator was coarse-trimmed by approximately −807 ppm with the use of an
evaporation power of 960 mW for 0.5 h, and was fine-trimmed by approximately −815 ppm with the
use of an evaporation power of 456 mW for 1 h. Even though the Q-factor decreased after trimming,
a Q-factor of 304,240 was achieved after a trimming of −1442 ppm which is adequately high for the
oscillator. An energy-dispersive X-ray spectroscopic analysis was employed to verify the existence
of aluminum in the evaporation area. It is demonstrated that the OCMO with IMET can achieve
the required frequency stability over the industrial temperature range and the necessary permanent
frequency trimming after vacuum packaging.
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