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Osteochondral damage from trauma or osteoarthritis is a general joint disease that can

lead to an increased social and economic burden in the modern society. The inefficiency

of osteochondral defects is mainly due to the absence of suitable tissue-engineered

substrates promoting tissue regeneration and replacing damaged areas. The hydrogels

are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic

hydrogel microenvironment can be tightly controlled by modulating a number of

biophysical and biochemical properties, including matrix mechanics, degradation,

microstructure, cell adhesion, and intercellular interactions. In particular, advances in

stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral

repair. Herein, the aim of this review is to underpin the importance of stem cell-laden

hydrogels on promoting the development of osteochondral regeneration, especially in

the field of manipulation of biomimetic microenvironment and utilization growth factors

with various delivery methods.

Keywords: stem cell-laden hydrogels, microenvironment, extracellular matrix, osteochondral tissue engineering,

regenerative medicine

INTRODUCTION

Osteochondral interface defects generally involve lesions in articular cartilage and subchondral
cartilage. Cartilage is essentially avascular and less cellular, and lacks the ability to repair itself
(Abdel-Sayed and Pioletti, 2015). Meanwhile, if cartilage defects are not treated, joints will
gradually and irrevocably deteriorate, leading to severe osteoarthritis and eventually disability
(Chen et al., 2011). Current treatment strategies for osteochondral defects mainly include the
microfracture (bonemarrow stimulation) (Dasar et al., 2016), auto-transplantation and allografts of
osteochondral (VanTienderen et al., 2017), and autologous chondrocyte implantation (Beck et al.,
2018). Despite their widespread usage in the actual clinic, there are still obvious and inevitable
limitations and shortcomings. For example, microfracture treatment may cause the formation of
fibrocartilage with poor biological function (Steinwachs and Kreuz, 2007; Becher et al., 2019).
Autologous chondrocyte implantation has been applied for 20 years in clinic, but there are still
disadvantages like shortage source and long harvest time of chondrocyte, periosteal hypertrophy
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and ablation (Lohan et al., 2013), and low effectiveness for
elderly patients (Giannoni et al., 2005). Allografts are plagued by
limited supply, immune rejection, insufficient integration, and
low cell viability. Autologous transplantation lacks integration
and tissue sources, and requires additional surgery that may
induce the potential disease at the donor site (Bal et al.,
2010; Sartori et al., 2017). Compared to the above-mentioned
strategies, osteochondral tissue engineering has been proposed
and approved for more effective treatment, among which the
stem cell research has been of great importance in the biomedical
and tissue regenerations.

Tissue engineering, consisting of scaffolds, cells and favorable
growth factors, has evolved into the most promising therapeutic
strategy for cartilage tissue reconstruction (Huang et al., 2018;
Wang et al., 2018). In order to achieve perfect regeneration of
damaged cartilage, biodegradable scaffolds must be provided to
simulate local characteristics of specific tissues, transport growth
factors and tissue cells for newly formed tissues (Polo-Corrales
et al., 2014). In the best case, cartilage tissue-engineered scaffolds
should be characterized by porous, non-toxic, biodegradable,
biocompatible, and promoted cell differentiation and tissue
regeneration. In order to construct an ideal tissue-engineering
program, it is important to design a functional biomaterial
that essentially mimics the natural extracellular matrix (ECM)
component of cartilage. Traditional methods typically include
the precise incorporation of bioactive growth factors into target
tissue, the use of cell-free scaffold biomaterials, and mimic
natural ECM with the use of cell-laden building scaffolds,
especially for three-dimensional (3D) porous scaffolds, which
are the most commonly used biomaterials to facilitate cell
organization into ECM during reconstruction (Ansboro et al.,
2014; Du et al., 2014; Bernhard and Vunjak-Novakovic, 2016).

As a most promise of future tissue engineering and
regeneration, stem cells with multidirectional differentiation
potentials can be used to promote tissue growth, metabolism,
repair and microenvironmental stability. Stem cells are
characterized by their ability to self-renew and differentiate
into various mature cells, which have inspired the development
of biomedical science (Madl and Heilshorn, 2018), including
the applications of regenerative medicine methods, repair
or replacement of damaged tissues, disease modeling, and
pharmacology screening platforms. However, simulating the
unique biological functions of articular cartilage remains a
challenge, because the composition and regional structure of
these joints is highly complex. Tissue engineering methods offer
appropriate biomaterials as artificial ECM to promote stem cell
growth, proliferation and differentiation at defect sites, leaving
the regeneration of articular cartilage to the involved natural
biological processes that stem cells can interact with soluble
factors. Stem cells reside in a specialized microenvironment
in vivo, called the stem cell niche which is both dynamic and
complex (Li and Xie, 2005; McClenahan et al., 2016). Biophysical
and biochemical factors form the niche that guides the fate
of resident stem cells. Many of these factors are provided by
the microstructure, biochemical composition and mechanical
properties of the ECM. In the field of tissue engineering, it is
a popular strategy to control engineered niches by using the

characteristics of scaffold materials to guide the differentiation
and maturation of stem cells into functional tissue constructs.

Hydrogels are consisting of natural or synthetic hydrophilic
polymer chains connected to each other at the crosslinking point,
which have a unique 3D crosslinked polymer network covering
a wide range of chemical compositions and physical properties
(Paschos et al., 2015; Liu et al., 2016). The natural hydrophilicity
of polymer chains enables hydrogels to absorb a certain amount
of water and be applied in various technical biomaterials for drug
delivery and tissue regeneration. Especially, in situ hydrogels
have the advantages of simple drug preparation and strong
ability to deliver drugs, peptides and cells. Hydrogels have a
unique combination similar to natural ECM and are attractive
biomaterials for the osteochondral tissue engineering. The
hydrogel microenvironment can be strictly controlled through
the adjustment of many biophysical and biochemical properties,
such as the matrix mechanics, degradability, microstructure,
cell adhesion, and cell-cell interactions (Brown and Anseth,
2017; Jekhmane et al., 2019). These properties can be easily
manipulated to suit for a variety of biomedical applications
(Sun et al., 2018). Therefore, stem cell-hydrogel constructs could
be personalized for patients using the advanced technology.
Hydrogels that combine stem cells and growth factors have
great potential to challenge regeneration of osteochondral
defects. In the past decade, basic research on osteochondral
tissue engineering of stem cell-laden hydrogels systems with
biomimetic microenvironment has achieved remarkable success,
bringing promise for osteochondral tissue repair (Li et al., 2018;
Xu et al., 2019).

This review will focus on the importance and development of
biomimetic microenvironment using the engineering cell-laden
hydrogels on promotion of osteochondral tissue engineering
and regeneration medicine fields, mainly including extracellular
matrix, engineered matrix degradation, microarchitecture,
cell-adhesive ligands, and cell-cell interactions. We also
summarize the strategies for repairing cartilage defects by
stem cell-laden hydrogels and discuss how various growth
factors and delivery methods affect stemness maintenance and
differentiation to facilitate the chondrogenesis or osteogenesis
within the hydrogels. Finally, we provide some suggestions and
prospects on developing stem cell-laden hydrogels via tailoring
of their biomimetic microenvironment (e.g., physicochemical
and mechanical properties) for effective osteochondral tissue
engineering. Understanding medical needs and concurrently
lessening the difficulty of hydrogel construction should therefore
be the goal for future research in regeneration medicine fields.

EFFECTS OF BIOMIMETIC
MICROENVIRONMENT ON THE
ENGINEERING HYDROGELS

The stem cell niche consists of a myriad of interacting
ECM components, which can provide many biophysical and
biochemical inputs to regulate the stem cell functions such as
cell populations, self-recovery, quiescence, differentiation, etc.
(Xie and Spradling, 2000). The most important factors are the
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interactions among the stem cells, neighboring differentiated
cells and ECM (Morrison et al., 1997). Additionally, other
factors like oxygen level, ion concentration, growth factors, and
cytokines also play important roles (Drueke, 2006; Scadden, 2006;
Hsu andDrummond-Barbosa, 2009; Eliasson and Jonsson, 2010).
In this section, we will focus on the effects of matrix mechanics,
on-demand degradation, microstructure, cell-adhesive ligands
and cell-cell interactions for maintaining and regulating stem
cells in the engineering hydrogels (Fuchs et al., 2004).

Extracellular Mechanics
ECM, mainly including geometry, elasticity and mechanical
signals, provides the necessary stimuli to control the shape,
activity, and migration of stem cell (Lv et al., 2015). Especially,
mechanical forces from the ECM and subsequent alterations in
intracellular tension can regulate stem cell differentiation via
the cytoskeletal tension and RhoA-ROCK pathway activation
(Shah et al., 2014). As for the tissue engineering, extracellular
mechanics like stiffness and viscoelasticity play important roles
in the signal pathways between cells to tailor the stem cell
proliferation behaviors and regenerative qualities (Hoben et al.,
2008; Chang and Knothe Tate, 2011).

Extracellular Stiffness
Stiffness is typically described by an elastic or Young’s modulus,
which is defined as the ratio of applied stress (i.e., force per area)
to strain (i.e., relative deformation) for small perturbations. ECM
can be recognized as a cross-linked polymer network, possessing
the time-independent stiffness behavior. This mechano-sensing
ability can affect the fundamental cellular functions. With this
understanding, development of stiffness hydrogels is useful for
researching the mechanical interactions between stem cells and
extracellular environments. For example, Kim et al. developed a
linear stiffness gradient hydrogel via tailoring the polymerization

of gelatin methacryloyl (GelMA) with a gradient UV photomask
for stem cell mechano-sensation and differentiation abilities
(Figure 1; Kim et al., 2020). Furthermore, they also found
human adipose-derived stem cells (hADSCs) could increase
chondrogenic roles in vivo by controlling the stiffness of cell-free
and cell-embedded fibrin hydrogel; in this case, optimal scaffolds
could promote both cell survival and chondrogenic potential for
cartilage tissue engineering (Jung et al., 2010).

Extracellular Viscoelasticity
Besides for the commonly used elastic hydrogel systems to tailor
stem cell mechanobiology and activity, natural ECM components
are also viscoelastic materials with stress-relaxation behavior
(Levental et al., 2007; Geerligs et al., 2008). Hydrogels composed
of reconstituted ECM proteins like collagen and fibrin exhibit
stress relaxation in response to a constant load pressure (Isono
and Nishitake, 1995), because polymer chains within the network
can rearrange in order to dissipate the applied force from the
molecular level. Thus, recent efforts have been directed toward
designing hydrogels with tuneable viscoelasticity to recapitulate
the ECM and cell interactions (Haugh and Heilshorn, 2016).
Li et al. synthesized a kind of GG/PEGDA DN hydrogel
through the linkage of gellan gum (GG) with polyethylene
glycol diacrylate (PEGDA) to offer physical environment
for mesenchymal stem cells (MSCs) proliferation, spreading,
chondrogenic differentiation and cartilage tissue engineering
(Figure 2; Li et al., 2020). Xie et al. also found that viscoelasticity
played a significant role in expanding seed cells for articular
cartilage tissue engineering and regeneration (Xie et al., 2019).

Matrix Degradation
Matrix degradation of the ECM affects stem cell proliferation,
self-recovery, quiescence and differentiation through the
integrins (Daley et al., 2008), because the cell-secreted enzymes

FIGURE 1 | The fabrication and characterization of GelMA stiffness gradient hydrogel. (A) Schematic of UV polymerization. (B) Atomic force microscopy (AFM)

measurement. (C) Images from cryo-Scanning electron microscopy (SEM) showed an inverse correlation to stiffness. (D) Raman scanning does not show a significant

change in amide amount on the stiffness gradient. Reproduced with permission from Kim et al. (2020).
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FIGURE 2 | Schematic illustration of experimental approach of bone marrow-derived mesenchymal stem cells (BM-MSCs) encapsulated in GG/PEGDA DN hydrogels

and chondrogenic differentiation in vivo. Reproduced with permission from Li et al. (2020).

can degrade the native ECM to upgrade the cell spreading and
migration capacities through the matrix. By mimicking this
dynamic matrix degradation for 3D cell culture, engineered
hydrogel had been well-developed by passive hydrolysis of ester
crosslinkers for polyethylene glycol (PEG) hydrogels (Sawhney
et al., 1994; Bryant et al., 2004). In addition, introduction of
enzyme can significantly promote the degradation behaviors to
permit cell-mediated remodeling. Lutolf et al. prepared a kind of
PEG hydrogels with peptides susceptible to cleavage by matrix
metalloproteinases (MMPs). Altering the amino acid sequence of
peptide cause the various affinity of MMPs for the peptides, thus
controlling the hydrogel degradation kinetics (Park et al., 2004).
Kloxin et al. developed a photodegradable PEG hydrogel system
that possessed the selective degradation behavior with spatial
and temporal material resolution; in this case, mechanics, mesh
size and swelling property of hydrogels were necessarily tailored
similar to modulating 3D stiffness methods (Kloxin et al., 2009).

Microarchitecture
The innate hierarchical structure and composition distribution
of the musculoskeletal tissue interface is destroyed and replaced
by fibrotic tissue in the case of disease and degeneration.
The focus of the tissue-engineering strategy is to restore the
transitional complexity found at the junction of regenerative
medicine. For bio-mimicking the 3D contexts, strategies for
generating biomimetic fibrous topographies are urgently needed
by designing the substrates with well-defined engineered features
like grooves, pits and pillars with the order of hundreds of
nanometers to tens of micrometers (Lu et al., 2016). Common
techniques for producing macroporous hydrogels contain
microparticle template, freeze dry, and gas foam (Kuo and Ma,
2011), which represents a class of 3D materials with engineered
topographical variation. In addition, cross-linking of hydrogel
microribbons (Han et al., 2013) and self-assembly of microgels
(Griffin et al., 2015) have also been recognized as alternative
techniques to gain architecture hydrogels. Due to limitations

in material fabrication techniques, pore size is known as a key
factor for cells to interact with the implanted hydrogel materials,
thereby 3D architecture can modify the transport properties of
cellularmicroenvironments and endow an additional mechanism
to modulate the stem cell microenvironment (Wolf et al., 2014).
For example, Zhu et al. constructed an injectable continuous
stratified scaffold and designed multiple cell systems to enhance
the osteochondral regeneration. The biomimetic constructs of
structure and function not only stimulated the regeneration
of hyalcartilage and subchondral bone, but also promoted
integration of newly formed tissue with the host tissue (Zhu et al.,
2019).

Cell-Adhesive Ligands
Specific cell-matrix adhesion is required for cell spreading,
migration and mechano-sensing via cell surface receptors. In
particular, a class of heterodimeric receptors as integrins link
the intracellular cytoskeleton to the specific cell-adhesive ligands
on ECM proteins (Barczyk et al., 2010). Tripeptide arginine-
glycine-aspartic acid (RGD) is found in multiple ECM proteins
and binds to several different integrin dimers, which facilitates
cell spreading and migration (Cao et al., 2016) and has been
incorporated into hydrogel systems to construct the adhesion
of various cell types (Hersel et al., 2003; Cipriani et al., 2019).
Besides, combinations of other ligands with RGD are also
necessary to elicit the desired behaviors. In order to solve
the difficulty in the ligand interactions, ligand concentrations,
identity and nanoscale spacing of cell-adhesive ligands should be
optimized to regulate the cell activity (Jongpaiboonkit et al., 2008;
Lam et al., 2015). Therefore, strategies to pattern adhesive ligands
in hydrogels have been developed to control cellular access
to adhesive cues by cell-matrix adhesion (Luo and Shoichet,
2004; Ekerdt et al., 2013). An alternative strategy had been to
incorporate photocaged adhesive peptides into the hydrogels that
were initially inaccessible for cell binding (Wirkner et al., 2011).
In these systems, many photochemical approaches to hydrogel
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modification above have been employed to temporally control
ligand availability (Figure 3; Lee et al., 2015). Kloxin et al. used
the photoreactive methods to control the hydrogel degradation
for selectively releasing the RGD peptides and decreasing the
adhesivity after a defined culture interval (Kloxin et al., 2009).
Boekhoven et al. applied the host-guest interactions to display
RGD peptides from alginate surfaces. Surfaces initially presenting
cell-adhesive RGD peptides could be rendered non-adhesive by
addition of a control peptide with a stronger host-guest binding
partner (Boekhoven et al., 2013). Other self-assembly approaches
have also been employed complementary leucine zipper peptides
(Liu et al., 2010) and complementary DNA strands to achieve
dynamic control over ligand presentation dynamics (Zhang et al.,
2013).

Cell-Cell Interactions
Differentiated progeny and heterologous cells communicate with
direct cell-cell contact and the secretion of soluble factors, thus
continuously exchanging signals related to stem cell fate, activity
and differentiation. Among them, direct cell-cell contact was
usually achieved through three main types of cellular junctions:

gap junctions, tight junctions and adherent junctions (Figure 4A;
Paschos et al., 2015). Optimized co-culture of stem cells with
other cell types allows stem cells to remain pluripotent or trigger
differentiation into the desired lineage (Kaji et al., 2011; Paschos
et al., 2015).

The natural ECM components contain the binding motifs
of various soluble signals, for instance, the growth factors.
These natural interactions inspired the desired engineering
bioactivity of artificial stem cell niches. Earlier studies have shown
that growth factors immobilized on solid substrates kept the
biological activity of stem cells (Kaji et al., 2011) and more
effective than their soluble counterparts in some cases (Tamama
et al., 2006). It is more biomimetic for localizing cell-secreted
factors to incorporate charged polysaccharides to sequester
growth factors (Hortensius and Harley, 2013) or peptide
sequences binding the secreted ECM proteins (Cook et al., 2017).
Instead, growth factors are designed to increase the effectiveness
of these factors by increasing their longer-term interaction
with natural ECM (Martino et al., 2014). Many biological
processes, e.g., cell migration and tissuemorphogenesis, are more
sensitive to the concentration gradient of soluble factors than

FIGURE 3 | Transdermal activation of in vivo inflammatory cell adhesion. (A) Schematic representation of the time line for in vivo activation of cell adhesion using

transdermal UV light exposure. (B) Photographs of explanted hydrogels stained for adherent inflammatory cells (green, NIMP-R14 (neutrophil); magenta, CD68

(macrophage); blue, DAPI (DNA); scale bar = 80µm). Reproduced with permission from Lee et al. (2015). (C) Adherent cell density, box-whisker plot for 6–8 mice per

group, demonstrating light-based triggering of inflammatory cell adhesion to caged RGD-presenting implants. ANOVA p < 0.0001, ***p < 0.05 vs. UV-light-exposed

PEGDA,
†
p < 0.001 vs. no-UV-light caged RGD.
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FIGURE 4 | Examples of (A) direct co-culture system and (B) indirect co-culture system. Reproduced with permission from Paschos et al. (2015).

to their uniform expression. Various engineering strategies have
been applied to generate gradients in hydrogel systems, such
as microfluidic devices and spatial patterns of growth factor-
chelating molecules (Kim et al., 2014).

In addition, stem cells can interact with other niche cells
by the indirect cell-cell contact (Figure 4B; Paschos et al.,
2015). Cell adhesion molecules were immobilized to the surface
by fusing immunoglobulin Fc domain of the e-cadherin cell
outfield in the early engineering system experiments (Miki
et al., 2008). Recently, HAVDI peptides have been conjugated
to hyaluronic acid (HA) hydrogels through the mediation of n-
cadherin (Nagaoka et al., 2002). In addition to cadherin-mediated
contact, peptide sequences that simulate the activity of neural cell
adhesion molecule were incorporated into engineered elastin like
protein materials (You et al., 2015).

BIOLOGICAL REGULATORY FACTORS
FOR CHONDROGENESIS AND THEIR
DELIVERY METHODS OF MSCs-LADEN
HYDROGELS

Biological Regulatory Factors for
Chondrogenesis
The native ECMs could separate biological regulatory factors for
promoting cell proliferation and differentiation. These biological

regulatory factors include multiple signaling pathways, including
transforming growth factor beta (TGF-β)/bone morphogenic
proteins (BMPs), fibroblast growth factors (FGFs), hedgehog,
notch, Wnt/β-catenin, angiogenic, and hypoxia signaling
pathways. Many biomodulators of chondrogenesis provide
multiple methods to induce chondrogenic formation and
differentiation in MSCs (Figure 5; Green et al., 2015). Current
research indicates that TGF-β proteins were the most effective
inducers of chondrogenesis in human mesenchymal stem
cells (hMSCs) among regulatory factors involved in regulating
chondrogenesis (Stevens et al., 2004; Jin et al., 2007; Zhao and
Hantash, 2011).

Delivery of Biological Regulatory Factors
There are five ways to deliver biological regulators: freeform
in medium, physical mixing in hydrogel, microencapsulation,
covalent bond with hydrogel, and gene delivery.

Freeform in Medium
Free-form biomodulator delivery in culture medium is an
effective method for culture of engineered cell-laden hydrogel
osteochondral constructs in vitro. During the monolayer
expansion process before hydrogel encapsulation, it was found
that MSCs exposed to TGF-β3 in culture medium can form
chondrocyte populations of different maturities at 7 and 14
days (Lam et al., 2014). The specially designed two-chamber
well-provides both osteogenic and chondrogenic stimulation by
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FIGURE 5 | Currently identified regulators of chondrogenic differentiation from MSCs. Reproduced with permission from Green et al. (2015).

freeform biomodulator in medium to rabbit BM-MSCs located
in different areas of the scaffold (Chen et al., 2016). However, the
need for frequent administration to maintain the concentration
and biological activity of biological regulators in the medium is
not best for the long-term culture of tissue-engineering.

Physical Mixing in Hydrogel
Encapsulating biological regulatory factors into the hydrogels
is a simple and efficacious way for sustained release. BMP-2
can be delivered through MMP-based sensitive hydrogels to
promote osteochondral repair in vivo (Holloway et al., 2014).
Oligo [poly(ethylene glycol) fumarate] hydrogel composites
containing TGF-β1-loaded gelatin microparticles and MSCs
were implanted in osteochondral defects and facilitated
subchondral bone formation (Guo et al., 2010). α2β1 integrin-
specific peptide (GFOGER)-functionalized hydrogels with
MSCs can continuously release low doses of BMP-2 around the
periphery and enhance bone repair capabilities (Shekaran et al.,
2014). Delivering biological regulators through encapsulation
in hydrogels may require no multiple dosages and may keep
release for several weeks, which was beneficial for osteochondral
tissue engineering. And the delivery could apply to the formation
of cartilage in vivo. However, the efficiency of chondrogenic
inductionmay be limited by the fact that the amount of biological
regulator from hydrogels significantly decreases over time.

Microencapsulation
The controlled local delivery of growth factors is another
applicable strategy for cultivating engineered osteochondral
constructs by MSCs. For this purpose, chondrocyte cells
growth factors could be loaded into microencapsulation and
further embedded in different regions of the constructs
(Kim et al., 2016). In order to investigate the use of
transplantable constructs for cartilage repair, Bian et al.
studied the co-encapsulation of TGF-β3 containing alginate
microspheres and hMSCs in HA hydrogels. HA hydrogel

constructs inoculated with MSCs and microspheres containing
TGF-β3 had comparable mechanical properties and cartilage
matrix content compared to those continuously added TGF-β3 in
the medium, while those directly encapsulated in a gel containing
no microspheres had poor performance (Figure 6; Bian et al.,
2011). The constructs including TGF-β3 microspheres also
formed excellent cartilage matrix after implanted subcutaneously
in nude mice. Moshaverinia et al. develop a novel co-
delivery system based on TGF-β1 loaded RGD-coupled alginate
microspheres encapsulating dental MSCs. And ectopic cartilage
tissue regeneration has been observed inside and around the
transplanted microspheres in animal studies (Moshaverinia et al.,
2013). Although this approach is very useful to control release
speed and improve delivery efficiency, the process may add
complexity to the preparation and design of scaffolds.

Covalent Bond With Hydrogel
Hydrogel systems allow chelating biological regulatory factors
through covalent binding, which has advantages over other
delivery ways. Since the diffusion of small molecular weight
proteins in hydrogels is very rapid, the strategy of immobilizing
growth factors in the bioactive, physiologically related hydrogel-
microenvironment is an important step in guiding cells to
regenerate cartilage tissue. Benoit et al. first controlled the
induction of multiple hMSC lineages purely by interacting
with small molecular chemical functional groups bound to the
hydrogel materials (Benoit et al., 2008). The proliferation of
encapsulated cells and the production of cartilage ECM were
increased by immobilizing TGF-β1 to thiol-ene PEG hydrogel
by covalent bounds over a period of 28 day (Sridhar et al.,
2014), which levels exceeded those of cells in hydrogels in culture
medium with dosed TGF-β1 or untreated. Such growth factor
deliverymethods by simple chemistry to control high levels of cell
proliferation and differentiation would be particularly powerful
because they are simpler, cheaper and easier to control.
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FIGURE 6 | Microencapsulation preparation and in vitro culture. Photoencapsulation of alginate microspheres and MSCs into Methacrylated HA (MeHA) hydrogel

disks (A); fabricated HA hydrogel disk and fluorescent and bright field microscopic images of MSCs (membrane labeled with red dye) and alginate microspheres

(containing FITC-labeled protein) encapsulated in HA gels (B); release of encapsulated BSA-FITC from bare and coated alginate microspheres over 7 days in PBS (C),

scale bar = 50µm. Reproduced with permission from Bian et al. (2011).

Gene Delivery
Integrating therapeutic genes into biomaterials is a new method
of delivering regulatory factors that promote tissue regeneration.
Non-viral gene therapy may provide more physiological, long-
lasting and cost-effective alternatives (Meinel et al., 2006).
Compared with pre-synthesized recombinant proteins, the
expression of gene products guarantees true post-translational
modification, which reduced possible immunogenicity and
increased the biological activity. There are two kinds of gene
delivery vehicles: viral vectors and non-viral vectors. Viral
vectors have a highly evolved mechanism for delivering DNA
to cells, but could induce an effective immune response
in host cells (Franceschi et al., 2004). Non-viral vector
delivery is a promising gene therapy way, including cationic
polymers, cationic polypeptides, and cationic liposomes (Yang

et al., 2018). In tissue engineering applications, gene therapy
can be combined with biomaterials to extend, persist and
locally deliver the target protein in situ. Tomas et al. have
developed and identified a novel nanohydroxyapatite (nHA)-
mediated plasmid DNA (pDNA) encoding-activated alginate
hydrogel that can direct the fate of MSCS toward either a
chondrogenic or osteogenic phenotype by delivering TGF-β3
and/or BMP-2 (Gonzalez-Fernandez et al., 2016), which may
be important to the clinical treatment of osteochondral defects.
Non-viral dual delivery of VEGF and BMP2 in a collagen-
nanohydroxyapatite scaffold accelerates the bone regeneration
of MSCs in vitro and vascularization and bone repair by host
cells in vivo (Curtin et al., 2015). However, compared to viral
vectors, non-viral vectors are often disregarded due to their
relatively inefficient.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 March 2020 | Volume 8 | Article 247

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Xu et al. Stem Cell-Laden Hydrogels for Tissue-Engineering

CARTILAGE DEFECTS REPAIR OF STEM
CELL-LADEN HYDROGELS

The production of functional substitutes for autogenous cartilage
and the development of new therapeutic strategies for cartilage
defects are significant challenges that can be addressed through
the field of tissue engineering. MSCs have become the most
widely used stem cell in regenerative medicine due to their
abundant cell sources, low immunogenicity, no ethical issues
and minimal risk of teratomas (Wang et al., 2016). Cell therapy
and tissue engineering have been combined in the repair of
cartilage defects. MSC has the ability to multidirectionally
differentiate into a variety of cells, including the chondrogenesis.
Treatment combining MSCs and hydrogel are being applied
in cartilage tissue engineering. The “medical signaling cell”
properties associated with their immunomodulatory and anti-
inflammatory effects induce the establishment of regenerative
microenvironments in injured tissues. These nutritional effects,
along with the long-established cartilage generator capacity, can
be used for tissue-engineered constructs for articular cartilage
repair. This section will focus on the cell therapy and tissue
engineering of various MSCs for articular cartilage damage.

Bone Marrow-Derived Mesenchymal Stem
Cells (BM-MSCs)
BM-MSCs reside in bone marrow have been widely used
in animal models and some clinical cases to study their
chondrogenic potential for the treatment of OA (Zhang et al.,
2019). Erickson et al. studied that the pre-maturation of
MSC-seeded HA hydrogels in vitro could improve cartilage
repair (Erickson et al., 2012). Vishal et al. studied MSC-
seeded HA neocartilage and anatomic MSC-seeded HA
constructs crosslinked by ammonium persulfate and N,N,N’N’-
tetramethylethylenediamine for hMSC chondrogenesis in
chondral defects (Figure 7; Ansboro et al., 2014). Meng et al.
designed a composite scaffold combining affinity peptide-
modified demineralized bone matrix particles with chitosan
hydrogels for cartilage engineering, exhibiting appropriate
porosity and providing a microenvironment for cell adhesion
and proliferation. The functional composite of demineralized
bone matrix particles and chitosan hydrogels (DBM-E7/CS)
scaffold increased matrix production and improved the cartilage
differentiation ability of BM-MSCs in vitro, which was a choice
for repairing irregularly shaped cartilage defects (Meng et al.,
2015). In clinical cases, the use of BM-MSCs in cartilage

FIGURE 7 | Loading, viability, and release of TGF-β3 from hollow HA microspheres. (A) An illustration of an HA microsphere pellet culture system loading TGF-β3. (B)

Cumulative release profile of TGF-β3 from microspheres with/without hMSCs. (C) The release of TGF-β3 from HA microspheres cultured with hMSCs. (D) Viability of

chondrogenic pellets cultured for 21 d with (d–f) and without (a–c) microspheres loading TGF-β3. Scale bar = 100µm. Reproduced with permission from Ansboro

et al. (2014).
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repair circumvented limitations of autologous chondrocyte
implantation (ACI). BM-MSCs implantation for cure of
cartilage defects achieved the equivalent clinical results as the
first-generation ACI over a period of up to 10 years, with no
significant increased risk of tumor formation (Teo et al., 2019).

Adipose-Derived Stem Cells (ADSCs)
Adipose tissue as a rich source of MSCs has aroused great
interest in cartilage tissue engineering. ADSCs are easily obtained
in high yields through minimally invasive surgery (such as
liposuction) (Tapp et al., 2008). Popa et al. proposed κ-
carrageenan as a potential hydrogel that can be used for cell
transport and for further application in cartilage regeneration.
ADSCs encapsulated in κ-carrageenan hydrogel can still survive,
proliferate and differentiate into cartilage cells (Popa et al.,
2013). Rizk et al. evaluated that TGF-β1-fixed scaffolds prepared
by incorporating TGF-β1-loaded gelatin microspheres into the
poly(lactic-co-glycolic acid) (PLGA) framework enhanced the
differentiation of ADSCs into chondrocytes (Yin et al., 2015).
Furthermore, hADSCs can be mixed with sodium alginate
and gelatin, combination with 3D bioprinting technology, to
form a 3D bioprinted body of hADSCs-sodium alginate-gelatin
mixture, which had the ability of ectopic bone formation in
nude mice (Song et al., 2016). Huang et al. showed that
the biomimetic matrix from chitosan-HA provided a suitable
environment to support the differentiation of chondrocytes
from ADSCs to the cartilage matrix (Huang et al., 2019). Fan
et al. corroborated that an injectable bioorthogonal dextran-
based hydrogel can support the chondrogenesis of ADSCs
in vitro and in vivo, highlighting the role of bioorthogonal
hydrogels for stem cell-based cartilage regeneration (Fan et al.,
2018).

Umbilical Cord Blood-Derived
Mesenchymal Stem Cells (UCB-MSCs)
UCB-MSCs have attracted wide interest as a promising source of
regenerative medicine cells due to their non-invasive collection,
high expansion capacity, availability, and low immunogenicity.
These cells have been identified and found phenotypic similarities
to BM-MSCs and embryonic stem cells. Chung et al. explored
the feasibility and efficacy of repairing articular cartilage using
a composite of hUCB-MSCs and four different hydrogels in
a rat model. The results showed that group with 4% HA
hydrogel can significantly improve cartilage histologically and
achieved the cellular arrangement and collagen tissue pattern
mimicking adjacent undamaged articular cartilage (Figure 8;
Chung et al., 2014). Park et al. demonstrated that treatment
with undifferentiated vs. chondrogenic predifferentiated hUCB-
MSCs and 4% HA hydrogel resulted in more approving cartilage
repair than the control groups with chondro-MSCs in a rat model
(Park et al., 2019). From the clinical trial for safety and proof-of-
concept with 7 years of extended follow-up, Park et al. reported
that the hUCB-MSCs-based HA hydrogels appeared to be safe
and effective for cartilage regeneration in osteoarthritic patients
(Park et al., 2017).

Autologous Activated Peripheral Blood
Stem Cells (AAPBSCs)
AAPBSCs contain MSCs with chondrocyte precursor potential
to initiate hyaline cartilage remodeling (Duff et al., 2003;
Turajane et al., 2014). The clinical trial studied by Saw’s
groups showed that, arthroscopic cartilage can be regenerated
with arthroscopic subchondral drilling followed by injecting
autologous PBPCs and HA into postoperative intra-articularly
(IA) autologous (Saw et al., 2011). The combination of AAPBSC
and HA on the autologous cancellous bone scaffold initiated
the chondrocyte differentiation. And the addition of platelet-
rich plasma (PRP) and human granulocyte colony stimulating
factor (hG-CSF) further stimulated the proliferation of cells to
the chondrocyte phenotype with enhanced Sox9 transcription.
The above processes led to the continuous increase of col-
2 and aggrecan mRNA, which ultimately resulted in the
histologically confirmed proteoglycan and glycosaminoglycan
contents increase in newly formed in transparent cartilage
(Turajane et al., 2014). The combination of AAPBSCs with
growth factor addition/preservation with HA and arthroscopic
microdrilling MCSs can improve cartilage regeneration in early
knee disease that failed conservative treatment (Turajane et al.,
2013).

SUMMARY AND PERSPECTIVES

This paper reviews the latest progress in the design and
preparation of stem cell-laden hydrogel for osteochondral tissue
engineering applications in terms of engineering hydrogel
properties, biomimetic microenvironment, and growth factor
delivery. Stem cell-based therapies have recently opened up
new opportunities for clinical applications to treat diseases that
cannot be effectively treated with conventional chemotherapy.
MSCs are isolated from different tissues, such as bone marrow,
adipose tissue, placenta, umbilical cord blood, and peripheral
blood. Stem cells can sustainably release of therapeutic small
molecules that are important for cell survival and tissue
regeneration, which has been acknowledged as an essential
treatment for effective treatment of various diseases. Despite
the considerable potential of these stem cell therapies, the
reduced viability of transplanted stem cells after transplantation
often leads to unsatisfactory results in in vivo studies. The
microenvironment of damaged tissue, such as reactive oxygen
species and host immune responses, is unfavorable for growth of
stem cells. In addition, the absence of cell support signals around
damaged tissues can also result in the ultimate death of the
transplanted stem cells. Therefore, it is important for the research
focusing on the stem cell transplantation in combination with
substances supporting cell survival, inducing cell bioactivity, and
enhancing cell retention at managed sites. Especially, hydrogels
supplying a tissue-like environment have been widely studied as
a vehicle for delivering stem cells.

Hydrogel materials afford control over critical regulators of
stem cell fate, including matrix mechanics and biochemistry,
microscale structure, and cell-cell interactions. With the
development of tissue engineering and the regenerativemedicine,
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FIGURE 8 | Masson’s trichrome staining at 16 weeks post-transplantation. (A) Group A with/without hUCB-MSCs + 4% HA hydrogel composites; (B) Group B

with/without hUCB-MSCs + 3% alginate:30% pluronic (1:1, v/v) composites; (C) Group C with/without hUCB-MSCs + 4% HA: 3% alginate: 20% pluronic (2:1:1, v/v)

composites; (D) Group D with/without hUCB-MSCs + 4% HA: 3% alginate: 20% pluronic: chitosan (4:1:1:2, v/v); (E) Defect only and normal cartilage. Reproduced

with permission from Chung et al. (2014).

it is found that tissue regeneration and reconstruction require
a multifunctional scaffold to load and delivery tissue-specific
cells. In this sense, hydrogel scaffolds are recognized as
ideal biomaterials for the tissue engineering of cartilage,
bone, skin, heart valves, nerves, tendons, etc., due to their
composition, structure, morphology, function, and mechanics

are closely similar to the natural tissue extracellular matrix.
The hydrogels and 3D architecture scaffolds combined with
various bioactive molecules, genes and cells as well as
the tunable mechanical properties have capacity to guide
and promote the in vivo implantation and development
of multifunctional engineered tissues. Thus, these hydrogels
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scaffolds with customized morphologies and suitable mechanical
behaviors bring the prospect of cartilage tissue engineering
through the tailorable retention, and delivery abilities of cells and
growth factors in the injury site.

Chondrocytes can successfully repair focal cartilage, however,
the problems including the limited supply of them, long
expansion time, and may be differentiated into fibroblasts. On
the other hand, stem cells have more application prospects
due to their rich in source and potential to differentiate
into chondrocytes. Various types of stem cells encapsulated
in hydrogels can differentiate into chondrocytes or osteoblasts
under the induction of growth factors. Delivery of growth factors
via microencapsulation, covalent bond with hydrogel and gene
delivery is attractive for the localized release of inducers.

Even though, it should be noted that it is still a major challenge
to fully restore cartilage to its original composition, architecture,
mechanics, and biofunction. For example, simultaneous
achievement of integrating cartilage and subchondral bone
regeneration has been a critical challenge in tissue engineering.
The difference of structure and modulus in two distinct types
of tissues should be carefully considered for overcoming the
difficulties in simulating the structures and functions by the
hybrid or bi-phase hydrogel scaffolds. Wherein, the part of
cartilage repair exhibited highly elastic modulus to bear the
pressure and resist the friction to facilitate the extracellular
matrix, enhance the chondrogenesis of MSCs, inhibit the
hypertrophic differentiation, and contribute to the chondrocyte
mineralization. While another part of subchondral bone repair
could effectively contribute to the formation of blood vessel
network within the hydrogels to facilitate nutrient transports,
stimulate osteoblast proliferations and provide great supports
for regenerative cartilage. More importantly, integration of
the surrounding cartilage and the implants should possess
strong interfacial adhesion that can be significantly enhanced
for regenerated cartilage. Additionally, smart incorporations
of intelligence or self-guided features also played the essential
roles in the fabrication and development of a new kind of
cell-laden hydrogels to obtain the fully cartilage regeneration in
biomedical applications.

It should be also further noted that although there have
been some limited clinically approved tissue-engineered products
for the clinical trials status quo in recent years, a rapid
progress toward more advanced and targeted therapies is still
particularly noticed by promoting microfabrication techniques
and developing the cellular scaffold-based approaches. It
is concluded that an ideal stem cell-laden hydrogel for
achieving the cartilage tissue engineering should synchronously
possess the following characterizations: (1) biological activity
and biomimetic function; (2) mechanical reinforcement; (3)
integration of cartilage with bone tissue; and (4) transport of

drugs and growth factors. Therefore, the intelligent and hybrid
hydrogel scaffolds with complex architectures should be well-
fabricated for realizing the customized clinic treatments. And
the corresponding researches on the mechanical and biological
behaviors of hydrogel scaffolds should also be emphasized
to ensure the powerful tissue interactions, resorption and
hierarchical architecture for enabling the tissue engineering
implants. With this understanding, the future work should
forcefully focus on identifying the secondary, tertiary and higher
order architectures of the hybrid hydrogels, quantifying their
composition, morphology and function, characterizing their
binding pockets and interactions with cell surface receptors
and finally turning them into a clinically tissue engineering
biomaterial for effective cartilage tissue engineering. In this
sense, in the future we should establish such a methodology or
criteria on the design and development of final biological tissue
engineering products for regenerative medicine, which makes
the cell-laden hydrogel satisfy more advantages on adjustable
structure, better strength, adequate immune response, adhesive
interfacial binding force and good biodegradability for enabling
the real applications in human patients.

We are strongly convinced that with the help of continuous
developments of cell-laden hydrogels and exquisite adjustment
of their physicochemical and mechanical properties for effective
osteochondral tissue engineering, more advanced multi-
responsive histological engineering products with optimized
architectures and functions will be eventually created to obtain
the greater manipulation and higher availability for various
biomedical applications. The compositions, structures and
mechanical properties of newly responsive hydrogels are
hopefully to be continually developed, and thus we will further
obtain smart biomaterials with topological complexity for tissue
engineering of regenerative medicine.
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