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Neuropsychiatric disorders, such as depression, bipolar disorder, schizophrenia, 
obsessive-compulsive disorder, and neurodevelopmental disorders such as autism 
spectrum disorder, are associated with significant illness burden. Accumulating evidence 
supports  an association between these disorders and inflammation. Consequently, 
anti-inflammatory agents, such as the cyclooxygenase-2 inhibitors, represent a novel 
avenue to prevent and treat neuropsychiatric illness. In  this paper, we first review the 
role of inflammation in psychiatric pathophysiology including inflammatory cytokines’ 
influence on neurotransmitters,  the hypothalamic–pituitary–adrenal axis,  and  microglial 
mechanisms. We then discuss how cyclooxygenase-2-inhibitors influence these pathways 
with potential therapeutic benefit, with a focus on celecoxib, due to its superior safety 
profile. A search was conducted in PubMed, Embase, and PsychINFO databases, in 
addition to Clinicaltrials.gov and the Stanley Medical Research Institute trial registries. The 
results were presented as a narrative review. Currently available outcomes for randomized 
controlled trials up to November 2017 are also discussed. The evidence reviewed here 
suggests cyclooxygenase-2 inhibitors, and in particular celecoxib, may indeed assist in 
treating the symptoms of neuropsychiatric disorders; however, further studies are required 
to assess appropriate illness stage-related indication.

Keywords: depression, bipolar disorder, schizophrenia, obsessive compulsive disorder, autism spectrum disorder, 
psychiatry, inflammation, cyclooxygenase-2 inhibitors

INTRODUCTION

The immune system involves a complex array of cells, tissues, and organs working in concert to 
protect the body from foreign molecules at both the intracellular and extracellular level (1). 
Pro-inflammatory and anti-inflammatory cytokines, along with other mechanisms, balance the 
inflammatory response (1). External causes of inflammation include microbial or viral infections, 
cigarette smoking, poor dietary composition, air pollution, and trauma (both physical and 
psychological), among others (2). Internal causes may include ischemic events or malignancy (1). 
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In instances where inflammatory mediators are unable to inhibit 
the pro-inflammatory immune reaction, a chronic inflammatory 
state may ensue. Chronic activation of this system can lower the 
allostatic load threshold, contributing to the development of 
neuropsychiatric disorders (2).

While monoaminergic dysregulation remains a prevailing 
hypothesis regarding neuropsychiatric disorders, refractory 
illnesses remain a significant challenge in addition to a relative 
paucity of novel treatment options (3). In recent years, the 
inflammatory model has been revisited due to the fragmented 
efficacy of the current management approaches. As a result, more 
attention is being paid to pharmacotherapies that lay outside the 
traditional vault of psychotropic agents such as antidepressants 
and antipsychotics. Cyclooxygenase-2 inhibitors, best known 
for their role in acute pain management, are a potent example of 
this pharmacological appropriation. Celecoxib and rofecoxib—
selective cyclooxygenase-2 inhibitors—have been investigated 
for their efficacy as both stand-alone therapies and augmentation 
agents in psychiatry.

The purpose of this paper is twofold: first, to review the 
relationship between inflammation and neuropsychiatric 
illnesses, and second, to provide a review of randomized control 
trials (RCTs) that investigate the use of cyclooxygenase-2 
inhibitors for the treatment of select neuropsychiatric illnesses.

METHODS

A Boolean search was conducted for literature published up 
to November 19, 2017. We searched PubMed, Embase, and 
PsychINFO databases, and the Clinicaltrials.gov and The Stanley 
Medical Research Institute trial registries. Search terms included 
are attached in Appendix A. Articles were selected for human, 
randomized clinical trials and treatment efficacy. The search was 
augmented by manually searching the references of key papers 
and related literature. We adhered to PRISMA guidelines and 
flowsheet attached in Appendix A. Table 1 contains a summary 
chart of the results. The results were presented as a narrative 
review format.

The Link Between Inflammatory System, 
the Brain, and Mental Illness
In 1927, Julius Wagner-Jauregg became the first and the only 
psychiatrist thus far to win a Nobel Prize in Medicine. His 
impactful discovery involved the association with inflammation 
via malaria inoculation to cure neuropsychiatric symptoms of 
syphilis (22). Unfortunately, this inflammatory etiological theory 
was set aside during the advent of the psychotropic revolution (23). 
While support for the monoamine hypothesis in neuropsychiatric 
disorders continued to gain traction in subsequent decades, a 
residual group of patients exhibited persistent treatment-refractory 
illnesses and chronic debilitating symptoms suggestive of alternate 
hypotheses for neuropsychiatric conditions (3).

Innate and Adaptive Immunity
Immune system responses are typically classified as either innate 
or adaptive. The innate immune system features elements that are 
both genetically heritable and evolutionarily ancient, found in all 
multicellular organisms (24, 25). The innate system’s principal 
phagocytes include neutrophils, monocytes, and macrophages, 
which work in synergy to establish the first-line barrier of 
immunity (26). This line of defense is supplemented by the adaptive 
immune system, which includes specialized cells, B-lymphocytes 
and T-lymphocytes. Both response sectors produce a composite 
operation of moderating immunotransmitters, defined by cytokines. 
These immunomodulatory cytokines are typically categorized 
as pro-inflammatory or anti-inflammatory on the basis of their 
general effects. Pro-inflammatory cytokines such as tumor 
necrosis factor alpha (TNFα), interferon gamma (IFNγ), and 
interleukin (IL)-1 and IL-6 are primarily secreted by monocytes 
and macrophages, promoting additional complex inflammatory 
response systems, discussed in detail elsewhere [e.g., Ref. (27)]. 
Anti-inflammatory cytokines include IL-4, IL-10, IL-11, and IL-13 
(26, 28). In simplistic terms, imbalanced pro-inflammatory over 
anti-inflammatory cytokine load will preferentially increase the 
throughput of pathological cellular pathways.

Central Nervous System Immunity
The blood–brain barrier is the brain’s primary defense against 
chemical insult. During peripheral inflammatory activation, 
there is increased permeability of the blood–brain barrier (29, 
30). Such increases in blood–brain permeability may exacerbate 
or possibly even initiate neuropsychiatric and neurological 
disorders [see Ref. (31) for a review]. Furthermore, recent 
identification of lymphatic vessels within the central nervous 
system (CNS) reveals an alternate route of communication with 
the immune system to the brain (32). Once activated, a host of 
cellular and chemical pathways within the brain can result in 
significant structural change.

Microglia are specialized macrophages localized to the CNS 
that also play an important regulatory role in inflammatory 
response. They secrete neurotrophic factors important for cellular 
repair and signal recruitment for immune cells (26, 33, 34). The 
role microglia play in inflammation-driven neuronal damage 
and degeneration is also well established (35). Microglia have 
been shown to express different phenotypes or polarizations, 

Abbreviations: 3MS-E, Modified Mini-Mental State Exam; AA, arachidonic acid; 
ABC-C, autism behavior checklist community edition; ACTH, adrenocorticotropic 
hormone; ASD, autism spectrum disorder; BDNF, brain derived neurotrophic 
factor; CCL2, C-C motif chemokine ligand 2; CGI-I, Clinical Global Impression: 
Improvement; CGI-S, Clinical Global Impression: Severity; CNS, central nervous 
system; COX, cyclooxygenase; CSF, cerebrospinal fluid; cPLA2, cytoplasmic 
phospholipase A2; CRH, corticotrophin releasing hormone; CRP, C-reactive 
protein; ECT, electroconvulsive therapy; ESRS, Extrapyramidal Symptoms Rating 
Scale; GDS, Geriatric Depression Scale; HAM-A, Hamilton Anxiety Rating Scale; 
HAM-D, Hamilton Depression Rating Scale; HDRS, Hamilton Depression Rating 
Scale; IDO, indolamine 2,3 dioxygenase; IL, interleukin; IL-1ra, interleukin-1 
receptor antagonist; IFNα, interferon alpha; IFN-γ, interferon gamma; KA, 
kainic acid; LPS, lipopolysaccharide; MDD, major depressive disorder; mRNA, 
microribonucleic acid; NMDA, N-methyl-D-aspartate; NF, nuclear factor; OCD, 
obsessive compulsive disorder; PANS, pediatric acute-onset neuropsychiatric 
syndrome; PANDAS, pediatric autoimmune neuropsychiatric disorders associated 
with streptococcal; PANSS, Positive and Negative Syndrome Scale; PHQ-9, Patient 
Health Questionnaire-9; PGE2, prostaglandin E2; QUIN, quinolinic acid; RCT, 
randomized control trial; SANS, Scale for the Assessment of Negative Symptoms; 
SAS, Simpson–Angus Rating Scale of EPS; TAU, treatment as usual; TDO, 
tryptophan 2,3-dioxygenase; TNFα, tumor necrosis factor alpha
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TABLE 1 | Clinical trials investigating celecoxib in neuropsychiatric disorders.

Study Sample Study Design Intervention and Dosage Outcome Measures Findings

Muller et al. (4) Depression,
n = 40

Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg + 
Reboxetine
VS Placebo + Reboxetine 

HAM-D Favor of adjuvant 
celecoxib

Akhondzadeh 
et al. (5)

Depression,
n = 40

Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg + fluoxetine
VS Placebo + fluoxetine

HRDS Favor of adjuvant 
celecoxib

Fields et al. (6) Depression,
n = 2,528
Elderly cohort

Double-blind,
Multicenter, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg VS 
Naproxen 440 mg VS
Placebo 

GDS,
Modified Mini-Mental 
State Exam (3MS-E)

Not in favor 
of celecoxib 
monotherapy

Abbasi et al. (7) Depression,
n = 40

Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg + sertraline
VS Placebo + sertraline

HAM-D Favor of adjuvant 
celecoxib

Majd et al. (8) Depression,
n = 30

Double-blind, randomized, 
placebo-controlled add-on trial
8 weeks

Celecoxib 200 mg + sertraline
VS Placebo + sertraline

HAM-D, HAM-A Not in favor of 
celecoxib

Jafari et al. (9) Depression,
n = 40
Comorbid brucellosis

Double-blind, randomized, 
placebo-controlled add-on trial
8 weeks

Celecoxib 200 mg + 
antibiotics
VS Placebo + antibiotics

HDRS Favor of adjuvant 
celecoxib

Mohammad 
et al. (10)

Depression,
n = 52
Comorbid breast cancer

Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg VS 
diclofenac 100 mg

HDRS Favor of celecoxib 
monotherapy

Alamdarsaravi 
et al. (11)

Depression,
n = 40
Comorbid colorectal 
cancer

Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg
VS Placebo

HDRS Favor of celecoxib 
monotherapy

Nery et al. (12) Bipolar disorder–
depression or mixed 
episode,
n = 28

Double-blind, randomized, 
placebo-controlled add-on trial,
6 weeks

Celecoxib 400 mg + TAU
VS Placebo + TAU

HDRS Favor of adjuvant 
celecoxib

Kargar et al. (13) Bipolar disorder–mania,
n = 35

Double-blind, randomized, 
placebo-controlled add-on trial,

Celecoxib 400 mg + ECT
VS Placebo + ECT

YMRS, BDNF serum 
levels

Not in favor of 
celecoxib

Arabzadeh et al. 
(14)

Bipolar 
disorder – mania,
n = 46

Double-blind, randomized, 
placebo-controlled add-on trial,
6 weeks

Celecoxib 400 mg + Sodium 
Valproate
VS Placebo + Sodium Valproate

YMRS, HDRS Favor of adjuvant 
celecoxib

Shalbafan et al. 
(15)

OCD,
n = 54

Double-blind, randomized, 
placebo-controlled add-on trial
10 weeks

Celecoxib 400 mg + 
Fluvoxamine 200 mg VS 
Placebo + Fluvoxamine 200 mg

Y-BOCS Favor of adjuvant 
celecoxib

Sayyah et al. 
(16)

OCD, n = 56 Double-blind, randomized, 
placebo-controlled add-on trial
8 weeks

Celecoxib 400 mg + 
Fluoxetine VS Placebo + 
Fluoxetine

Y-BOCS Favor of adjuvant 
celecoxib

Muller et al. (17) Schizophrenia,
n = 50

Double-blind, randomized, 
placebo-controlled add-on trial
5 weeks

Celecoxib 400 mg + 
Risperidone VS Placebo + 
Risperidone

PANSS,
Simpson-Angus Rating 
Scale of EPS (SAS)

Favor of adjuvant 
celecoxib

Rapaport et al. 
(18)

Schizophrenia,
n = 38

Double-blind, randomized, 
placebo-controlled add-on trial
9 weeks

Celecoxib 400 mg + TAU
VS Placebo + TAU

PANSS, Scale for the 
Assessment of Negative 
Symptoms (SANS),
CGI-S,
Clinical Global Impression: 
Improvement (CGI-I), 
HAM-A

Not in favor of 
celecoxib

Akhondzadeh 
et al. (19)

Schizophrenia,
n = 60

Double-blind, randomized, 
placebo-controlled add-on trial
8 weeks

Celecoxib 400 mg + 
Risperidone
VS Placebo + Risperidone

PANSS,
ESRS

Favor of adjuvant 
celecoxib

Muller et al. (20) Schizophrenia, n = 49 Double-blind, randomized, 
placebo-controlled add-on trial
6 weeks

Celecoxib 400 mg+ 
Amisulpride 200–1,000 mg
VS Placebo + Amisulpride 
200–1,000 mg

PANSS, CGI Favor of adjuvant 
celecoxib

Muller
Trial ID: 01T-418
(yet to publish)

Schizophrenia,
n = 40

Double-blind, randomized, 
placebo-controlled add-on trial
8 weeks

Celecoxib 400 mg + 
Risperidone VS Placebo + 
Risperidone

PANSS, SANS, CBI, 
ESRS, Barnes Akathisia
QOL

Not in favor of 
celecoxib

(Continued)
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classified as M1 and M2. M1 polarization is influenced by the 
pro-inflammatory state and acts in neuronal apoptosis, while 
the M2 polarization, in contrast, promotes neurogenesis (32, 
36–39). Interferon alpha (IFNα) has been shown to induce a 
pro-inflammatory shift in microglial phenotype, from M2 to M1, 
resulting in depressive symptoms in mice (40, 41).

Inflammation and Neuropsychiatric Symptoms
When anti-inflammatory regulators are unable to balance pro-
inflammatory reactions, inflammation can persist, in conjunction 
with sub-threshold neuropsychiatric symptoms (42). The 
following mechanisms describe the cytokine communication 
with neuropsychiatric symptoms and thus support the 
inflammatory hypothesis.

Pro-inflammatory markers have been associated with the 
development of neuropsychiatric symptoms (43). IL-6 activates the 
type 2 immune response, prompting the B-cell maturation pathway, 
consequently producing antibodies directed against extracellular 
pathogens. In addition, IL-6 activates the release of C-reactive 
protein (CRP) from the liver. Elevated levels of CRP and IL-6 in 
childhood were associated with an increased risk of developing 
depressive and psychotic symptoms in the future (44). Consistent 
with this, a significant association has been reported between CRP 
and several neuropsychiatric disorders, including depression, 
anxiety, and schizophrenia (45, 46). CRP is a well-established 
biomarker for an active inflammatory process and is a significant 
independent predictor of coronary heart disease risk (47–53). 
Furthermore, elevated CRP and IL-6 levels have also been associated 
with cognitive dysfunction (54). Studies have shown that biomarkers 
such as CRP and IL-6 may shed light on subtyping depression (55, 
56). Several meta-analyses have demonstrated significant evidence 
of elevated pro-inflammatory cytokines in patients with depressive 
symptoms (43, 57, 58), bipolar disorder (58–60), schizophrenia 
(58, 61), obsessive compulsive disorder (OCD) (62), and autism 
spectrum disorders (ASDs) (63). These pro-inflammatory markers 
include CRP, IL-6, TNFα, and the IL-1 receptor antagonist (IL-1Ra) 
(43, 57–63). In addition, pro-inflammatory cytokines have been 
shown to trend toward normalization with symptom improvement 
indicating treatment response (64). Participation from microglia 
and peripheral macrophages are identified in activated 
inflammatory networks (65). An exaggerated immune response 
can be responsible for neuronal damage and decreased brain 
derived neurotrophic factor (BDNF), a protein integral to neuronal 
growth, plasticity, and survival (66–70). Excessive activation of 

the immune system may exacerbate mental illness in a subgroup 
of vulnerable individuals (71, 72). The inflammatory hypothesis 
suggests that hyperactivation of the immune system may produce 
nitro-oxidative stress and alterations of the kynurenine pathway, 
subsequently dysregulating monoamine levels and activating the 
glutamatergic system (2, 15, 73).

The evidence for cytokine-induced neuropsychiatric 
symptoms in healthy participants favors the inflammatory 
model. For example, healthy participants received an infusion 
of endotoxin to induce an inflammatory response, with resultant 
mood symptoms (74). Similarly, healthy individuals who 
received exogenous cytokines (IL-2, IFNα, and TNFα) also 
developed neuropsychiatric symptoms, including depression, 
mania, emotional dysregulation, cognitive impairment, and/or 
avolition (75). Elevated serum pro-inflammatory markers, TNFα, 
IL-6, and cortisol levels were observed by Salmonella abortus 
equi endotoxin injections (76). Subsequently, the subjects also 
exhibited neuropsychiatric symptoms of appetite changes, mood 
and anxiety symptoms, and cognitive decline without physical 
sickness symptoms (77). These findings were replicated with 
other vaccinations of healthy individuals (74, 78). Preclinical 
research has yielded similar findings, wherein lipopolysaccharide 
(LPS) and IL-1 injections in mice were found to result in sickness 
behavior, an analog to depressive symptoms (79).

Notably, pro-inflammatory agents such as recombinant  IFNα 
and IL-2 have been used in the treatment of hepatitis C and 
carcinomas, respectively (80, 81). Interestingly, while effective 
for treating the targeted indication, IFNα was found to induce 
significant neuropsychiatric side effects with up to 80% of patients 
endorsing mild to moderate depressive symptoms (82–84). Grigoleit 
et al. (85) identified a positive dose-dependent association in IL-6, 
IL-10, TNFα, cortisol, and norepinephrine with neuropsychiatric 
symptoms. While some studies have reported that serum IL-6 and 
TNFα also appeared elevated in OCD patients compared to healthy 
controls [e.g., Ref. (86)], it should be noted that an earlier meta-
analysis of OCD patients revealed no significant difference in TNFα 
or IL-6 (62). However, these authors did note a reduced level of pro-
inflammatory IL-1β in OCD patients (62).

Autoimmune Conditions and Neuropsychiatric 
Disorders
Autoimmune and infectious conditions such as rheumatoid 
arthritis (87), type 1 diabetes (88), systemic lupus erythematosus 
(89), hepatitis, and sepsis (90) increase the risk of neuropsychiatric 

TABLE 1 | Continued

Study Sample Study Design Intervention and Dosage Outcome Measures Findings

Zhang
Trial ID: 03T-459
(yet to publish)

Schizophrenia,
n = 250

Double-blind, randomized, 
placebo-controlled add-on trial
12 weeks

Celecoxib 400 mg + 
Risperidone
VS Placebo + Risperidone

PANSS, BPRS, SANS, 
ICG, WCST, N-back 
Test, WMS-R, CPT, 
WAIS-R, FSIQ, SAS, 
AIMS, MANOVAs

Favor of adjuvant 
celecoxib

Asadabadi et al. 
(21)

Autism,
n = 40

Double-blind, randomized, 
placebo-controlled add-on trial

Celecoxib 300 mg BID + 
Risperidone VS Placebo + 
Risperidone

Autism Behaviour 
Checklist Community 
Edition (ABC-C)Rating 
Scale
(Irritability subsection)

Favor of adjuvant 
celecoxib
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symptoms. An extensive Danish-based study found a 62% increased 
risk of mood disorders after infection-related hospitalizations (90). 
In patients who suffer from both Crohn’s disease and depression, 
exacerbations of both physical and mental illnesses tend to occur 
at the same time (91). Patients experiencing psoriasis and anxiety 
symptoms were shown to benefit from treatment with cytokine 
inhibitors (92–94). In addition, a greater prevalence of autoimmune 
conditions such as pemphigus in bipolar disorder is observed 
(95). In a large epidemiological study, multiple infections and 
autoimmune disorders were associated with the increased lifetime 
prevalence of schizophrenia spectrum disorders (96).

In summary, multiple studies have indicated a positive 
association between inflammation and neuropsychiatric 
symptoms. Elevated pro-inflammatory markers are consistently 
associated with neuropsychiatric symptoms and reveal a 
bidirectional relationship.

Cyclooxygenase-2 (COX-2) Inhibitors
The COX pathway involves the precursor substrate of 
arachidonic acid (AA) to produce thromboxane, prostacyclin, 
and prostaglandins (PG) D2, E2, F2, and I2. AA is extracted 
from cell membranes by phospholipases, predominately 
cytoplasmic phospholipase A2 (cPLA2), and metabolized by the 
COX enzymes. The two rate-limiting enzymes within the COX 
pathways are COX-1 and COX-2. COX-1 is constitutionally 

expressed, and thus responsible for baseline prostaglandin 
levels, whereas COX-2 is inducible and expressed exclusively in 
the CNS, kidney, thymus, GI tract, and possibly in the female 
reproductive system (97–100). However, during inflammatory 
processes, COX-2 expression is promoted by and regulated by 
inflammatory stimuli, including lipopolysaccharide (LPS), IL-1, 
IL-6, TNF, IFNγ, and AA (101–108). The variability of isotype 
expressions COX-1 and COX-2 might be explained by the target 
tissue and type of insult (109, 110). The COX-2 enzyme produces 
prostaglandins, thromboxanes, prostacyclins, and leukotrienes 
downstream, which are suspected to be culprits for inflammation 
and neoplastic growth, in particular PGE2 (111). Furthermore, 
COX-2 expression is supported by microglia (112) and is auto-
regulated via its by-products, PGE2 and PGF2α, perpetuating the 
inflammation process (113, 114). Additionally, PGE2 promotes 
IL-6 production (115), subsequently reinforcing this positive 
inflammatory feedback loop (Figure 1). Notably, in COX-2 gene 
knockout mice, a decrease in PGE2 and nuclear factor (NF)-κB 
activity was observed (114, 116, 117).

In 1995, the first generation of selective COX-2 inhibitors, 
celecoxib and rofecoxib, entered clinical trials (118). Over the next 
4 years, numerous trials demonstrated selective COX-2 inhibitors 
could reduce pain and inflammation (119). From 2000 to 2004, 
larger trials such as CLASS, VIGOR, and TARGET identified the 
reduced gastrointestinal risks associated with COX-2 inhibitors, 
however, highlighted the increased cardiovascular risks leading 

FIGURE 1 | COX-2 contributes to inflammation through PGE2 and IL-6 and is selectively inhibited by celecoxib and rofecoxib. Activated by inflammatory cytokines 
including PGE2 and IL-6, AA (the precursor substrate of the COX-2 pathway) is extracted from phospholipid membranes by phospholipases such as cPLA2. 
COX-2 then drives production of prostaglandins including prostaglandin H2 (PGH2), which in turn is converted to PGE2 via PGE synthase. An accumulation of 
PGE2 leads to increased IL-6 (along with other cytokines) contributing to the inflammatory milieu, further potentiation of the pathway and neurotoxicity contributing 
to psychopathology. Celecoxib and rofecoxib exert selective inhibition of COX-2 reducing this pathway’s contribution to inflammation mediated neurotoxicity 
(→ = activates/increases, ⊥ = inhibits).
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to rofecoxib being pulled from the market (120–123). In 2005, 
valdecoxib was also withdrawn from the market for similar 
concerns by the Food and Drug Administration (FDA). In 2011, 
celecoxib was withdrawn from the market for the indication of 
cancer prevention while still being indicated for rheumatoid arthritis, 
osteoarthritis, and acute pain. Subsequently, this led to cautious 
prescribing due to concerns of cardiovascular side effects (124).

Preclinical trials have shown that rofecoxib can increase 
serotonin levels in the frontal and temporoparietal cortex 
(125). In addition, celecoxib was shown to potentiate the effects 
of reboxetine and fluoxetine on cortical noradrenaline and 
serotonin output (126).

Although ubiquitously expressed, COX-1 is typically described 
as gastro-protective and neuroprotective (127, 128), and pre-
clinical data reveal some contradictory evidence regarding the 
inflammatory classifications of the COX isoforms. COX-2 may 
have anti-inflammatory and neuroprotective properties, aiding 
in neurotransmitter release, long-term potentiation, blood flow 
regulation, and memory consolidation (129). It was reported that 
COX-2 gene knockout mice were susceptible to inflammation 
compared to healthy mice (130, 131). Deletion of the COX-2 gene 
causes increased permeability of the blood–brain barrier and 
leukocyte infiltration (132). Another study showed that maximal 
COX-2 expression coincided with inflammatory resolution and 
was associated with minimal PGE2 synthesis (133).

Nevertheless, COX-2 inhibitors have proven to be beneficial 
in glutamate-mediated death prevention and suppression of 
pro-inflammatory cytokines (134, 135). Kainic acid (KA), a 
potent neurotoxin, elicits excitatory effects on N-methyl-D-
aspartate (NMDA) receptors resulting in status epilepticus, 
neurodegeneration, and memory loss (134–138). KA has also been 
shown to increase COX-2 expression in the CNS (139); therefore, 
COX-2 inhibitors have been shown to prevent KA-induced 
neuronal death (140). There appears to be mounting evidence of 
therapeutic effect of COX-2 inhibitors in mediating glutamatergic 
processes (141–143). As well, there seems to be appropriate 
evidence for COX pathway in neuropsychiatric disorders.

Pathophysiology of Neuropsychiatric 
Disorders and the Efficacy of 
Cyclooxygenase-2 Inhibitors
We have now established there is substantive evidence for 
inflammation being a driver of neuropsychiatric symptoms 
by negatively impacting on neuronal proliferation, survival, 
and differentiation (144, 145). Furthermore, the COX pathway 
potentiates the inflammatory process and may exacerbate 
inflammation mediated neurodegeneration. COX-2 inhibition 
reduces this inflammatory load and thus the impact of these 
pathways on the brain.

In this section, we address the proposed mechanisms by 
which inflammatory states influence central monoamine 
effects, the hypothalamic–pituitary–adrenal (HPA) axis, and 
microglial activation, pathways at the center of neuropsychiatric 
pathogenesis. Discussion will focus on specific conditions 
including depression, bipolar disorder, schizophrenia, ASD, and 
OCD. Herein, a number of clinical trials investigating the efficacy 

of the cyclooxygenase-2 inhibitors for neuropsychiatric disorders 
are discussed, summarized in Table 1. Particular attention is 
being paid to the operative inflammatory pathways inherent to 
these conditions and the potential role for COX-2 inhibitors in 
their management.

Neurotransmitter Dysregulation Hypothesis
The dysregulation of the neurotransmitters such as serotonin, 
norepinephrine, dopamine, acetylcholine, and glutamate has been 
the foci of the biochemical etiology of neuropsychiatric illnesses. 
While treatment with antidepressants and neuroleptics aims to 
modulate monoamine signaling, there is a wealth of evidence 
supporting secondary mechanisms of action including effects 
on inflammatory pathways (27, 146). During inflammation, the 
pro-inflammatory cytokines IL-2 and IFNα have been shown 
to directly increase enzyme activity of the indoleamine-pyrrole 
2,3-dioxygenase (IDO) enzyme of the kynurenine pathway, which 
promotes conversion of tryptophan to kynurenine, consequently 
depleting the antecedent supply to serotonin (147), in addition 
to direct catabolism of serotonin by IL-6 and IFNα (148, 149). 
This evidence supports the monoamine hypothesis regarding 
the hypoactive serotonin state featured in mood disorders (150–
152). IFNα administration led to inflammation by increasing 
the concentration of kynurenine pathway metabolites in the 
CSF, namely kynurenine, kynurenic acid, and quinolinic acid 
(QUIN) (153). These metabolites have been presented as 
inducers of depressive and anxiety symptoms (154). Notably, 
QUIN can selectively activate NMDA receptors (155, 156) 
and has been associated with numerous neurological diseases, 
including: Alzheimer’s disease, anxiety, depression, epilepsy, 
human immunodeficiency virus-associated neurocognitive 
disorders, and Huntington’s disease (155, 157–161). QUIN 
has also been shown to cause neurodegeneration via multiple 
models (159).

HPA Axis Dysregulation
During a stress response, the HPA axis is activated (162). The 
hypothalamus secretes two hormones, corticotrophin releasing 
hormone (CRH) and arginine vasopressin, which act on the 
pituitary gland to increase adrenocorticotropic hormone 
(ACTH) release, subsequently accelerating the production of 
cortisol to aid in the homeostasis feedback loop (163). Studies 
have demonstrated an elevated inflammation state perpetuating 
cytokines such as IL-1, IL-6, TNFα, and IFNα; these in turn 
activate the HPA axis elevating levels of CRH, ACTH, and 
cortisol (162, 164–167). This relationship furthermore supports 
the feedback loop maintaining a hyperactive HPA system (163). 
Chronic elevation of endogenous glucocorticoids results in mood 
symptoms (163, 167). Additionally, it is proposed that cortisol 
increases the catabolizing enzyme tryptophan 2,3-dioxygenase 
(TDO) to deplete the precursor to serotonin implicating an 
association with the serotonin dysregulation (168, 169).

Contrary to advantageous effects of steroids in managing 
infections, there is evidence that glucocorticoid treatment 
duration for acute infections versus chronic infections results in 
changes of glucocorticoid receptor function and concentrations 
(170, 171). This subsequently influences HPA axis hyperactivity, 
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which elevates cortisol and results in decreased function and 
quantity of glucocorticoid receptors resulting in impaired 
feedback and glucocorticoid resistance (170). Glucocorticoid 
resistance that is seen in depressed patients may also be a result 
of changes in expressed glucocorticoid receptors ratio via cellular 
phosphorylation (172–174). Patients with neuropsychiatric 
illnesses also exhibited heightened plasma, urine, and 
cerebrospinal fluid (CSF) levels of cortisol and anatomical changes 
in the pituitary and adrenal glands (175–178). Pavon et al. (179) 
reported elevated cortisol levels in depressed patients associated 
with elevated TNFα, in addition to decreased levels of IL-1β, 
suggesting that increased cortisol may influence inflammatory 
cytokines. However, it is important to bear in mind that while some 
subtypes of depression (namely melancholic or endogenous) are 
associated with hyperactive HPA axis, glucocorticoid resistance, 
and increased circulating cortisol levels, atypical and seasonal 
depression has been consistently reported to have normal or 
hypoactive HPA axis function (180, 181). Therefore, the hypothesis 
is supported regarding the impairment of the HPA axis through 
cellular mechanisms and dysfunctional feedback leading to HPA 
axis dysfunction, one of the most consistent findings in biological 
psychiatry, which is exhibited by patients with depression, bipolar 
disorder, and schizophrenia (169, 182).

Microglial Hyperactivation Hypothesis
Microglia function as macrophages of the CNS by clearing foreign 
particles and promoting healing after traumatic brain injury 
(183). They are also involved in the pruning process of neurons 
by tagging unutilized synapses for degradation to rebuild more 
active neurons during the maturation process (184). Pathological 
synaptic pruning may also contribute to prodromal, remittent 
and relapsing, and chronic stages of neuropsychiatric disorders 
(185–187). Prolonged microglial activation induces synaptic 
pruning subsequent to the accumulation of two pro-inflammatory 
cytokines, specifically TNFα and IL-1β, leading to neuronal 
apoptosis (188, 189). The subsequent dysfunctional neuronal 
pathways may be compensated by adaptive systems, which 
may resultantly produce and preserve maladaptive behaviors 
(190, 191). Individuals at an ultra-high risk for developing 
schizophrenia also appear to have significantly elevated activity 
of microglia (192). Histological changes in activated microglia 
have been observed in patients with schizophrenia who had 
committed suicide during an acute episode of psychosis (193). In 
contrast, conflicting data derived from post-mortem studies have 
reported reductions in microglial density and activation (194). 
These findings may indicate a difference of microglial activation 
depending on the stage of illness among other factors (194). 
Aberrant microglial activation is seen in other neuropsychiatric 
disorders including Alzheimer’s dementia, Parkinson’s disease, 
multiple sclerosis, herpes encephalitis, traumatic brain injury, 
and stroke (195, 196). Alterations in brain morphology have been 
described across the spectrum on neuropsychiatric conditions 
(197–201). Duration of mental illnesses also has evidence of 
significant brain morphologic changes (201). Mechanisms that 
may encourage these anatomical reductions include oxidative 
and nitrosative stress through activation of microglia (202).

Depression
Major depressive disorder (MDD) is highly prevalent throughout 
the world, and the prevalence has increased over time (73). 
The estimated lifetime prevalence of major depression and 
persistent depressive disorder in adults is 12% (203). In unipolar 
depression, inflammation and depressive symptoms share a 
bidirectional relationship. Immunological markers such as CRP, 
and cytokines IL-1, IL-6, and TNFα, are elevated in patients with 
depression (1, 204, 205). A recent meta-analysis comprised of 
3,212 participants noted elevations in the concentrations of IL-6, 
TNFα, IL-10, the soluble IL-2 receptor, C-C chemokine ligand 2, 
IL-13, IL-18, IL-12, IL-1 receptor antagonist, and the soluble TNF 
receptor 2 in depression patients (1). Several groups of authors 
have reported that IL-6 may be a useful biomarker for predicting 
treatment response (115, 204–207). A prospective study revealed 
a correlation with elevated serum IL-6, as those with higher 
levels were more likely to be depressed by 18 years of age than 
individuals on the lower end levels (208). Pro-inflammatory 
cytokines have been shown to trend toward normalization with 
symptom improvement indicating treatment response (64).

Studies have shown biomarkers such as CRP and IL-6 may 
shed light on depression subtypes (55, 56). An interesting larger 
scale study, The Netherlands Study of Depression and Anxiety 
(NESDA), extrapolated gender variance while evaluating CRP 
and IL-6 (181). The authors described an increased level of 
CRP and IL-6 with normal levels of TNFα in male patients 
with depressive symptoms; however, there were no associations 
with the cytokines in women with depressive symptoms (209). 
Additionally, they noted a differential role of the HPA function, 
inflammatory markers, and metabolic variables between 
melancholic and atypical depression subtypes (181).

Elevated levels of kynurenine pathway toxic metabolites such 
as QUIN are also observed in patients with depression (210). 
Interestingly, in a 6-week RCT, Krause et al. (211) noted a correlation 
with kynurenine/tryptophan ratios that was predictive of celecoxib 
response to significant improvements in the Hamilton Depression 
Scale (HAMD-17) scores. Subsequently, the kynurenine/tryptophan 
ratio shows some promise as a potential biomarker for predicting 
response to COX-2 inhibitors.

Gałecki et al. (212) reported an increase of non-coding micro 
ribonucleic acid (mRNA) expression of the COX-2 enzyme in 
recurrent depression. COX-2 inhibitors decrease IDO activity, 
subsequently decreasing glutamatergic-active by-products such 
as QUIN, which may add in neuro-stabilizing effects (4, 213, 
214). Higher concentrations of QUIN and 3-hydroxykynurenine 
have been reported in depression (210). Preclinical studies have 
shown that celecoxib administration in rats was associated 
with reductions in PGE2 levels and a reversal of stress-induced 
depressive-like behaviors (215, 216). PGE2 had been shown 
to contribute to monoamine imbalance with decreased 
norepinephrine central neuronal release and dysregulation of the 
HPA axis (217). Consequently, this alters cortisol synthesis and 
subsequently suppresses serotonin (215, 218–220). Consistent 
with this assertion, an animal-based model of depression in rats 
demonstrated that celecoxib independently enhances the release 
of serotonin in the brain (126).
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Celecoxib has also been shown to attenuate pro-inflammatory 
cytokines IL-1β and TNFα and significantly increase IL-10 levels 
in animal models (109, 221). IL-1β has been identified as a 
modulator of BDNF (144). Some evidence exists indicating that 
elevated levels of IL-6 results in a reduction in BDNF, implicating 
in imbalanced neurogenesis, resulting in neural circuitry 
dysfunction in depressive symptomology (144). In a preclinical 
study with rats with a depression-like phenotype, augmentation 
with acetylsalicylic acid, a non-selective COX inhibitor, enhanced 
the efficacy of fluoxetine (222).

To date, several reviews have suggested that celecoxib may 
be efficacious for the management of depressive symptoms 
(1,  223,  224); however, some have suggested it is clinically 
inadequate (225). Abbasi et al. assigned adjuvant celecoxib to 
MDD patients on sertraline and measured IL-6 levels in samples 
of their serum. They reported a correlation between decreasing 
IL-6 concentrations and improvement in the Hamilton 
Depression Rating Scale (HDRS) scores as outlined in Table 1, 
along with the key findings of all clinical trials assessing celecoxib 
in neuropsychiatric disorders appearing in this review. In another 
RCT (8) assessing celecoxib augmentation with sertraline in the 
treatment of drug-naïve women with depression, the authors 
reported an improvement in HDRS and Hamilton Anxiety Rating 
Scale (HAM-A) scores compared to the placebo group after 4 
weeks of treatment. However, there were no significant differences 
between both groups at the end of the 8-week trial. Interestingly, 
the remission rates in the celecoxib group were statistically higher 
in comparison to the placebo group. Subsequently, Akhondzadeh 
et al. assessed the HDRS in 40 individuals in a 6-week RCT 
receiving fluoxetine plus celecoxib versus fluoxetine alone. 
They demonstrated significant improvements in depressive 
symptoms, and response and remission rates in the celecoxib 
group (5). Another RCT found more significant improvements 
in depressive symptoms in the adjuvant celecoxib group with 
reboxetine compared to reboxetine alone (4). However, Fields 
commented that there were no significant changes in late-life 
depressive symptoms in patients prescribed either placebo, 
celecoxib, or naproxen (6). These discrepancies in the efficacy 
of COX-2 inhibitors for this indication might be explained by 
methodological heterogeneity and variance in target sample 
characteristics. For example, the Geriatric Depression Scale 
(GDS) was used for the geriatric patients with a yearly frequency, 
which may not be a specific tool for detecting variations in 
depression diagnosis (226). However, the study did have strength 
in having a large sample size and median follow-up of 2 years 
with patients.

Inflammation may be the primary mechanism of 
pathogenesis in brucellosis (227, 228). Therefore, Jafari et al. 
assessed 40 individuals with celecoxib for treatment of mild to 
moderate depression due to acute brucellosis. They reported an 
improvement of the HDRS in the 8-week trial with the celecoxib 
with antibiotics group than placebo with antibiotics (9).

In patients with comorbid osteoarthritis, pooled data from 
five post-approval trials, each at 6 weeks in length, participants 
were randomized in placebo, ibuprofen or naproxen, or celecoxib 
groups while assessing the Patient Health Questionnaire-9 (PHQ-
9). The authors report a trend toward a reduction in PHQ-9 

depression scores. However, this lack of robust data is possibly 
due to the lack of efficacious dosing of celecoxib of 200 mg (229).

Interestingly, celecoxib may exhibit benefits in patients with 
colorectal cancer. Investigations have illustrated that celecoxib 
initiation in the head, neck, and gastrointestinal cancer population 
is associated with improvements in biological symptoms of 
depression, including an increase in appetite, body mass index, 
and quality of life (230, 231). A 6-week RCT included 40 colon 
cancer participants randomly assigned to either celecoxib 
monotherapy or a placebo group, which resulted in significant 
improvements in the HDRS among the former group, starting as 
early as week 2 and was sustained until the end of the trial (11).

Another cancer trial consisted of 52 outpatients with breast 
cancer undergoing 6 weeks of treatment with either celecoxib 
or diclofenac for mild to moderate depression. The outcome 
measures were scored using the HDRS to compare the COX-2 
inhibitor with an indiscriminate COX-inhibitor. They reported 
significant improvements in depressive symptoms in both groups 
by week 3 and significantly more considerable improvements 
with the celecoxib group compared to diclofenac by week 6. 
None of the participants experienced remission HDRS less 
than or equal to 7 (10). A meta-analysis demonstrated with 
150 participants showed that the adjunctive celecoxib cohort 
had better response rates and remissions compared to placebo 
(224). In summary, interactions between the immune system and 
neurotransmitters, the tryptophan/kynurenine system, and the 
glutamatergic system provide links between the immune system 
and depression; furthermore, data are suggestive of a role for 
celecoxib in treatment of depressive symptoms (115).

Bipolar Disorder
The estimated lifetime prevalence of bipolar disorder among adults 
worldwide is 1% to 3% (232). For many, bipolar disorder is a chronic 
and debilitating illness, with patients often experiencing poor inter-
episodic remission (233, 234). Pro-inflammatory markers, such as 
IL-4, TNFα, IL-1β, and CCL2 cytokine, which have an established 
role of inflammation in neuronal damage and degeneration, have 
been observed to be elevated in patients with bipolar disorder (35, 
59, 233–236). Elevated CRP levels were also identified in a meta-
analysis of 730 patients with bipolar disorder (237).

Interestingly, during the euthymic phase of bipolar disorder, 
IL-4 has been shown to return to baseline levels; this apparent 
relationship between inflammatory and mood states provides 
an avenue for prospective biomarker investigations (65, 238). 
Furthermore, accumulating evidence is suggestive of chronic 
low-grade inflammation in bipolar patients (239, 240). Scans 
employing positron emission tomography (PET) have supported 
neuroanatomical changes and hyperactive microglial state in 
bipolar disorder (241–244). Gray matter reduction was observed 
in the anterior limbic region (197, 198) including ventricular 
enlargement (245). Lithium, a well-established mood stabilizer, 
has been shown to reduce IL-2, IL-6, IL-10, and IFNα levels after 
long-term use, possibly inferring its nebulous mechanism of 
action through anti-inflammatory processes (246). In addition, 
lithium has some potential in neurogenesis, which may be 
linked with particular anti-inflammatory mechanisms (202). 
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Preclinical data also suggest that these mood stabilizing effects 
may downregulate the AA cascade, therefore decreasing COX-2 
and prostaglandin levels (247–253).

A clinical trial investigated the efficacy of celecoxib in 
bipolar depression or mixed episode and found lower HAM-D 
scores initially after 1 week; however, no statistically significant 
difference was found at the end of the 6-week trial (12). In 
another study, celecoxib augmentation was trialed in individuals 
with acute mania without psychotic features alongside treatment-
as-usual. This 6-week RCT demonstrated that adjuvant celecoxib 
with valproate was significantly effective for treatment in acute 
mania compared to valproate and placebo (14). The difference 
in trial outcomes may suggest greater inflammatory impact and 
therefore COX-2 inhibitor efficacy during the manic phase of 
illness, as opposed to the depressive phase; this is also supported 
by the relative increase in inflammatory markers in the former 
illness phase (66).

Electroconvulsive therapy (ECT) is an effective treatment 
modality for various phases of illness in bipolar disorder (254). 
ECT is reported to affect monoamines, hormones, in addition to 
the immune system, cytokines, ACTH, and cortisol (255–257). 
Immunomodulatory effects have also been reported, for example, 
effects on the kynurenine pathway via the decrease of QUIN 
concentrations in unipolar and bipolar depression (258, 259).

Kargar et al. (260) assessed cytokine and CRP changes in 
patients receiving both ECT and celecoxib, reporting a reduction 
in TNFα, but no significant changes in other inflammatory 
markers, such as IL-1β, IL-6, and CRP. However, they noted 
greater clinical improvement of depressive symptoms in 
the first week of celecoxib intervention but no persisting 
differences thereafter (260). Notably, the authors hypothesized 
that immunomodulatory effects associated with ECT might 
explain the baseline return of TNFα concentrations; however, 
no significant cytokine changes were observed. This may also 
be due to the post-ECT acute induction of cytokines hindering 
statistical significance (255, 261). Another RCT with 35 
ECT participants with focus on BDNF levels in patients with 
mania concluded no statistical difference in BDNF levels or 
treatment efficacy with adjuvant celecoxib (13). The authors 
of this study suggested these effects were nearing statistical 
significance, and that their BDNF sampling protocol may have 
been a confounding factor (13). A longer multicenter trial has 
been proposed to assess augmentation with celecoxib and/or 
minocycline alongside treatment as usual (TAU) in bipolar I 
or bipolar II patients in depressive state; however, these results 
are yet to be published (262). Bipolar disorder has significant 
associations with inflammatory modulation resulting in aberrant 
brain changes that warrant further investigation of the roles of 
anti-inflammatory agents. In particular, celecoxib shows some 
promise requiring further investigation, particularly during a set 
phase of the bipolar illness.

Schizophrenia
Schizophrenia is a severe, chronic, and among the most disabling 
and economically catastrophic medical disorders. The World 
Health Organization ranks schizophrenia as one of the top 10 

illnesses contributing to the global burden of disease (263). 
The dysregulation of dopamine and glutamatergic pathways in 
various brain regions are implicated in the positive, negative, 
and cognitive symptom domains of schizophrenia (264). Pro-
inflammatory cytokines such as IL-1β and IL-6 can influence 
neuronal development, specifically on the dopaminergic and 
serotonergic systems (265–268). IL-1β administration after 
birth can influence the dopamine system in adulthood, which 
has been associated in dopaminergic and serotonergic neuronal 
moderation in rat models (266). In schizophrenia, elevated serum 
and CSF concentrations of kynurenine were reported (269). 
Developing findings are suggesting that infectious exposure 
during the prenatal period may contribute to the pathogenesis 
of schizophrenia (270). Raised maternal levels of IL-8 during 
pregnancy are associated with an increased risk for schizophrenia 
in offspring, in addition to decreased brain volumes, independent 
of the inflammatory etiology (271). Maternal immune activation 
in animal models generated oxidative stress in the fetus (264). 
Observed infectious agents including Toxoplasma gondii, 
Chlamydia, bornavirus cytomegalovirus, and influenza seem 
to increase the risk of schizophrenia. This may, however, occur 
as a result of the immune response rather than an infectious 
etiology (270). Several epidemiological studies have observed 
an elevated prevalence of schizophrenia in cohorts born during 
influenza epidemics (272) and significant association with 
immunological disorders (273). There is a higher prevalence 
of schizophrenia in individuals with celiac disease, bullous 
pemphigoid, interstitial cystitis, thyrotoxicosis, and acquired 
hemolytic anemia (273, 274). Surprisingly, rheumatoid arthritis 
reveals lower rates of co-morbid schizophrenia compared to the 
general population (275).

Post-mortem brain studies from schizophrenia patients have 
revealed significant inflammatory processes (276). In addition, 
PET imaging has signified microglial activation resulting in 
brain morphological changes in first-episode and chronic 
psychosis (277–280). These morphological changes have been 
expressed during prodromal phases of first-episode psychosis 
(281–283), suggestive of neurotoxic processes resulting in poor 
prognosis (281, 284). Moreover, some authors have shown a 
relationship between brain volume, IL-1, and IL-6 (285–287). 
Collectin inflammatory markers have also been implicated in 
patients with schizophrenia, C4A in particular, whose role is 
to influence microglial hyperactivity, neurodegeneration, and 
subsequent brain cortical volume reductions (288, 289). These 
microglial changes may derive from established elevations in 
serum pro-inflammatory factors, such as PGE2, CRP, IL-1β, IL- 
6, IL-8, and TNFα (290–292). In addition, cytokines have shown 
some correlation with negative symptoms, cognitive deficits, and 
psychomotor retardation (293–295).

Positive correlations with cognitive severity and inflammatory 
markers have also been highlighted (296–298). In the first-
episode and acutely relapsed patients with psychosis, an elevated 
level of pro-inflammatory cytokines, IL-6, TNFα, TGF-β, and 
IFNγ, was observed (61). In addition, IL-10 concentrations were 
decreased in acutely relapsed patients compared to controls (61). 
Cytokine concentrations at different stages of the disease and 
variable treatment agents may alter neuroprogression (115, 299).
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Further support is provided from studies suggesting 
antipsychotics may exhibit immune-modulatory properties 
(264); however, there remains evidence that is contrary to this 
notion (300, 301). Patients undergoing long-term treatment with 
antipsychotics exhibit reduced pro-inflammatory cytokine levels 
(IL-1β, IL-6, sIL-6R, and TNFα) (302–304) and elevated anti-
inflammatory markers (sIL-1RA, sIL-2R, and IL-10) (305–307). 
Second-generation antipsychotics may elicit more potent anti-
inflammatory effects than to first-generation agents (303, 308).

Dysregulation of the tryptophan metabolism has been 
implicated with notable elevations of kynurenic acid in patients 
with schizophrenia (309). Furthermore, long-term antipsychotic 
treatments have an impact on kynurenic acid concentrations 
in rodent models (310). Preclinical studies suggest that COX-2 
inhibitors protect against glutamate-mediated neurotoxicity, 
which may highlight an application to mediate neurodegeneration 
in kynurenine system (18, 135, 311).

One of the first RCTs evaluating the use of COX inhibitors 
for schizophrenia indication consisted of 50 patients with acute 
exacerbation of psychosis who were admitted and treated with 
risperidone with one group augmented with celecoxib versus 
placebo for 5 weeks (17). The celecoxib group revealed significant 
positive effects on the Positive and Negative Syndrome Scale 
(PANSS) (17). Post hoc analyses indicated an improvement 
in cognition parameters with augmentation of celecoxib in 
schizophrenia in this trial (312).

In contrast, Rapaport and colleagues assessed outpatients with 
schizophrenia on stable psychotropic regimens of olanzapine 
or risperidone, finding no significant changes with celecoxib 
augmentation in several of the psychometric parameters (18). 
This finding could be explained by differences in the study 
cohorts, given the participants in Müller’s study were acutely 
psychotic, whereas Rapaport’s sample consisted of patients in 
more stabilized psychotic states.

During an 8-week RCT, the treatment of 60 acutely 
psychotic patients was augmented with celecoxib (19). The 
risperidone and celecoxib combination was superior in the 
improvement of PANSS total scores over risperidone alone 
(19). Also, the Extrapyramidal Symptoms Rating Scale (ESRS) 
scores for the placebo group were higher than in the celecoxib 
group over the trial but not statistically significant (18). 
Müller et al. (20) completed a 6-week, RCT of 49 patients 
during their first-episode of schizophrenia. They were treated 
with amisulpride with random assignment of celecoxib or 
placebo (20). There was an improvement in the PANSS in 
the adjunct celecoxib group compared to the placebo group 
(20). The adjunct celecoxib group in this study also showed 
a significant improvement on the clinical global impression 
(CGI) scale (20). Overall, a superior therapeutic effect with 
augmentation with celecoxib was found, in particular a trend 
for improvement in negative symptoms.

A recent meta-analysis, including the above RCTs in addition 
to two inaccessible RCTs, revealed that adjunctive celecoxib did 
not prove efficacy over placebo in overall samples (313). However, 
with the sub-analysis, they discovered superior efficacy with 
celecoxib to placebo in first-episode patients (313). This may be 
explained by data from preclinical studies suggesting celecoxib’s 

effects on cytokines and behavioral symptoms are dependent on 
the stage of illness and time of intervention (217).

It is important to note the comorbid conditions that may 
contribute to inflammation and confound interpretation 
of outcomes, including trauma, stress, smoking, metabolic 
syndrome, diet, exercise, and poor dental hygiene (2). Nonetheless, 
there is an apparent association between inflammation and 
schizophrenia, with celecoxib demonstrating promise possibly 
during early disease onset.

Autism Spectrum Disorder
ASD is a neurodevelopmental disorder defined by impairments 
in two domains: 1) shortages in social communication and social 
interaction and 2) restricted repetitive patterns of behavior, 
interests, and activities (314). The prevalence of ASD in Western 
countries appears to have increased, possibly as a result of 
definition changes and heightened awareness. The pathogenesis 
of ASD remains idiopathic, although the consensus points to 
altered brain development leading to impairment in social and 
communication maturation, therefore resulting in restricted 
interests and repetitive behaviors (315). These brain morphologic 
aberrations appear to be a result of neural pruning processes and 
neuroinflammation (316–319).

An association with ASD and inflammatory response through 
the measles, mumps, and rubella (MMR) vaccine and enterocolitis 
were reported first in 1998 (320) and subsequently retracted. 
However, controversy still exists among these allegations in 
select groups, despite it being established that there is no causal 
association between MMR vaccine and ASD (320–324).

Similar to discussions in Schizophrenia section with respect to 
schizophrenia, prenatal infections during early development may also 
be associated with the development of ASD (325–327). Moreover, 
there seem to be shared immune-related genetic abnormalities 
between the two disorders (325, 328). Aberrant activity of the 
glutamatergic system might play a role in neurotoxicity of both 
disorders. Kynurenine pathway abnormalities may also be linked to 
16p11.2 mutations in ASD resulting in glutamatergic activity (329).

Associations with changes in the immunomodulatory 
system of ASD patients have been identified. Disruption in 
immunomodulatory proponents such as T-cells and monocytes 
have been noted (316, 330), in addition to changes in the 
concentration of immunoglobulins (331) and autoantibodies 
production (332). Furthermore, polymorphisms identified in 
macrophage migration inhibitory factor (MIF), seen in ASD-
related abnormalities, seem to also activate the COX-2 system in 
microglia (333, 334).

Post-mortem studies revealed greater microglial densities in the 
visual cortex, cerebellum, anterior cingulate gyri, and dorsolateral 
prefrontal cortex (DLPFC) of ASD patients (335–338). Some 
studies have also shown elevated TNFα, IFNγ, IL-1, IL-6, IL-8, 
IL-12, CCL2, CCL5, and CCL11 in plasma and CSF of autistic 
subjects (317, 318, 338–340).

A study showed that repurposed anti-inflammatory agents 
such as pioglitazone resulted in moderation of irritability, 
lethargy, stereotypy, and hyperactivity symptoms in ASD (341). 
The pioglitazone class of drugs has been shown to inhibit COX-2 
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in LPS-stimulated microglia and neurons (342, 343). Celecoxib 
in the rat model has shown to also inhibit LPS-induced neuronal 
toxicity (344).

Our search yielded only one randomized, double-blind 
placebo-controlled trial of celecoxib combination with 
risperidone. Asadabadi et al. (21) assessed 40 patients diagnosed 
with ASD in a 10-week trial with the aberrant behavior checklist-
community edition (ABC-C), which showed superior efficacy of 
adjuvant celecoxib with risperidone in the domains of irritability, 
social withdrawal, and stereotypy in children with ASD.

Paucity of evidence is opportune for further investigations 
with COX-2 inhibitors in neurodevelopmental disorders such as 
ASD as seen by preclinical and limited clinical data.

Obsessive-Compulsive Disorder
Obsessive-compulsive disorder (OCD) is a relatively common 
neuropsychiatric disorder with a reported lifetime prevalence 
of 1–3% in the general population (345, 346). At least one-third 
of individuals with OCD fail to adequately respond to current 
pharmacological treatment (347, 348). The cortico-striatal-
thalamo-cortical (CSTC) circuit dysfunction is implicated in the 
pathophysiology of OCD (349).

There is evidence of early childhood infections, pediatric 
acute-onset neuropsychiatric syndrome (PANS), which 
encompasses pediatric autoimmune neuropsychiatric disorders 
associated with streptococcal (PANDAS), evoking OCD-
like neuropsychiatric symptoms (15). This is suggestive of an 
inflammatory etiology to a subsect of this illness. Furthermore, 
immunomodulation treatment resulted in improvement of 
OCD-like neuropsychiatric symptoms (350).

Although the minority of cases of OCD results from PANS, it 
is speculated that the active inflammatory model may be relevant 
for the progression of OCD. As well, brain morphological 
changes have also been noted in OCD indicating progression in 
the neurodegenerative process (351). Rodent models exposed 
to LPS-induced inflammation exhibited increased anxiety 
with reduced exploration in the open field test (352, 353). The 
inducible chemokine, CXCL12, resulted in anxiety-like features 
in rat models (353), further supporting the role of inflammation 
in neuropsychiatric symptoms in anxiety disorders.

Animal models are suggestive of alternative microglial 
phenotypes, resulting in OCD-like behavior (354). Translocator 
protein distribution volume, a marker of increased microglial 
activation and thus neuroinflammation (355–358), was 
investigated after a prior study found increased expression in 
PANDAS patients (359). Kumar et al. discovered an increased 
translocator protein density in the CSTC circuit compared to 
healthy controls. Interestingly, this circuit involves multiple 
neuropsychiatric disorders aforementioned such as Huntington 
disease, cerebral vascular disease, Tourette disorders, and 
Sydenham chorea (360, 361). Repurposed microglial modulators 
such as minocycline have shown a reduction in the Yale-Brown 
Obsessive-Compulsive Scale (Y-BOCS) scores in a recent RCT in 
combination with fluvoxamine (362).

Most recently, Konuk et al. (86) reported significantly elevated 
levels of both IL-6 and TNFα in OCD patients compared to 

healthy controls. Furthermore, a correlation between elevated 
TNFα and onset with minimal association between IL-6 levels and 
duration of illness (86). A meta-analysis revealed no significant 
findings in TNFα and IL-6 plasma levels in OCD patients relative 
to controls; however, the authors did note reduced IL-1β in OCD 
patients (62). As celecoxib is shown to reduce levels of both IL-6 
and TNFα, support for improving clinical symptoms of OCD is 
plausible (6).

Sayyah et al. (16) noted an improvement in the Y-BOCS 
for OCD patients with the augmentation of celecoxib with 
fluoxetine compared to fluoxetine alone. In addition, another 
recent RCT utilizing fluvoxamine with celecoxib augmentation 
compared to fluvoxamine alone noted an improvement in the 
celecoxib group (15). It is proposed that the notable efficacy in 
OCD, in addition to the microglial mechanisms, results from 
increased monoamines such as norepinephrine and serotonin 
via inhibition of prostaglandin synthesis by celecoxib (5, 306). 
However, further studies with larger sample sizes, longer 
duration, and measurements of pro-inflammatory markers may 
provide more robust evidence.

CONCLUSION

Evidence for the inflammatory hypothesis and the role of 
anti-inflammatory agents continues to accumulate suggesting 
etiological impact on the development of neuropsychiatric 
conditions, such as depression, bipolar disorder, schizophrenia, 
ASD, and OCD. A promising body of evidence suggests a role 
for COX-2 inhibition, in particular celecoxib, for phase-related 
interventions in bipolar disorder, schizophrenia, and possibly 
depression, ASD, and OCD. Despite the paucity of  data for 
COX-2 inhibitors and investigated agents, including aspirin, 
minocycline, and statins, with purported pleiotropic anti-
inflammatory mechanisms, further research is necessary to clarify 
the role of immunomodulation therapies and their comparative 
efficacies for integration of the psychiatric professions’ current 
paradigm of treatment modalities (146, 363).
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