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Abstract

Focal epilepsy originates within networks in one hemisphere. However, previous

studies have investigated network topologies for the entire brain. In this study, mag-

netoencephalography (MEG) was used to investigate functional intra-hemispheric

networks of healthy controls (HCs) and patients with left- or right-hemispheric tem-

poral lobe or temporal plus extra-temporal lobe epilepsy. 22 HCs, 25 left patients

(LPs), and 16 right patients (RPs) were enrolled. The debiased weighted phase lag

index was used to calculate functional connectivity between 246 brain regions in six

frequency bands. Global efficiency, characteristic path length, and transitivity were

computed for left and right intra-hemispheric networks. The right global graph mea-

sures (GGMs) in the theta band were significantly different (p < .005) between RPs

and both LPs and HCs. Right and left GGMs in higher frequency bands were signifi-

cantly different (p < .05) between HCs and the patients. Right GGMs were used as

input features of a Naïve-Bayes classifier to classify LPs and RPs (78.0% accuracy)

and all three groups (75.5% accuracy). The complete theta band brain networks were

compared between LPs and RPs with network-based statistics (NBS) and with the

clustering coefficient (CC), nodal efficiency (NE), betweenness centrality (BC), and

eigenvector centrality (EVC). NBS identified a subnetwork primarily composed of

right intra-hemispheric connections. Significantly different (p < .05) nodes were pri-

marily in the right hemisphere for the CC and NE and primarily in the left hemisphere

for the BC and EVC. These results indicate that intra-hemispheric MEG networks

may be incorporated in the diagnosis and lateralization of focal epilepsy.
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1 | INTRODUCTION

Epilepsy is a chronic brain disorder characterized by recurrent, transient

interruptions of normal brain function in the form of hypersynchronous

neuronal activity (Fisher et al., 2005). These interruptions, called seizures,

can be classified as focal onset seizures (previously known as partial sei-

zures), or generalized onset seizures (Berg et al., 2010). Focal onset sei-

zures originate within networks limited to one cerebral hemisphere

whereas generalized onset seizures originate within and rapidly engage

bilaterally distributed networks (Berg et al., 2010). Because epilepsy is a
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disorder characterized by abnormal brain networks (Engel Jr. et al.,

2013), various studies over the past decade have used both global and

local graph measures to characterize these abnormal networks in

patients with epilepsy. Brain networks are often constructed using func-

tional connectivity (FC) or effective connectivity analysis based on inter-

ictal or ictal data from functional magnetic resonance imaging (fMRI),

electroencephalography (EEG), magnetoencephalography (MEG), and

intracranial EEG (iEEG).

Global graph measures characterize the integration, segregation,

and integrity of networks as a whole whereas local graph measures

characterize the properties of individual nodes and their influence on

the network (Rubinov & Sporns, 2010). Global graph measures have

been used to compare the functional networks of healthy controls

(HCs) and patients with epilepsy with iEEG (Vega-Zelaya, Pastor, de

Sola, & Ortega, 2014), EEG (Douw et al., 2010; Horstmann et al.,

2010; Quraan, McCormick, Cohn, Valiante, & McAndrews, 2013; van

Diessen, Otte, Stam, Braun, & Jansen, 2016), fMRI (Doucet et al.,

2015; Garcia-Ramos, Song, Hermann, & Prabhakaran, 2016), and

MEG (Chavez, Valencia, Navarro, Latora, & Martinerie, 2010;

Horstmann et al., 2010; Niso et al., 2015). Global graph measures

have also been used with MEG data to compare the functional net-

works of patients with epilepsy before and after resection surgery

(van Dellen et al., 2014). Many studies have investigated a potential

application of local graph measures, particularly those that denote the

hub status of a node such as betweenness centrality (BC), in localizing

the seizure onset and epileptogenic zones of patients with focal epi-

lepsy to improve outcomes after epilepsy surgery. These localization

studies have been performed using effective connectivity analysis

with ictal and interictal iEEG (Ren et al., 2019; Wilke, Worrell, & He,

2011) and FC analysis with interictal EEG (Coito et al., 2019) and

MEG (Juarez-Martinez et al., 2018; Nissen et al., 2017; Nissen

et al., 2018).

The aforementioned studies investigating the brain networks of

patients with epilepsy have used global graph measures to character-

ize the network of the entire brain. Few studies have used global

graph measures to investigate subnetworks that include only parts of

the brain. These studies include using fMRI FC analysis to compare

the inter- and intra-hemispheric brain networks of patients with epi-

lepsy before and after total callosotomy (Hung et al., 2019), using

fMRI FC analysis to compare the default mode network of HCs and

patients with temporal lobe epilepsy (TLE) that were seizure-free and

not seizure-free after resection surgery (Ofer et al., 2019), and using

EEG FC analysis to compare the intra-hemispheric frontotemporal

networks of HCs and patients with right or left frontotemporal epi-

lepsy (Vecchio et al., 2015). Because focal onset seizures originate

within networks limited to one hemisphere (Berg et al., 2010), global

graph measures based on intra-hemispheric networks may be able to

reveal information about the brain networks of patients with focal

epilepsy that global graph measures based on the network of the

entire brain may not be able to.

In the current study, global graph measures based on FC analysis

with resting-state MEG (rs-MEG) data were used to compare the

intra-hemispheric brain networks of HCs, patients with focal

epilepsy originating from the left hemisphere (LPs), and patients with

focal epilepsy originating from the right hemisphere (RPs). Machine

learning was used to evaluate how well these global graph measures

could be used to classify the three groups. Our hypothesis was that

HCs, LPs, and RPs would have different intra-hemispheric brain net-

work topologies and that this difference could be demonstrated

using FC analysis with rs-MEG data. Network-based statistics (NBS)

was used to identify other subnetworks that may be different

between LPs and RPs while local graph measures were used to iden-

tify brain regions that may have different network properties for LPs

and RPs.

2 | METHODS

2.1 | Subjects

Approximately 1,000 patients with epilepsy underwent MEG data

collection between 2007 and 2018 as part of the epilepsy evalua-

tion process during their inpatient stay in the Epilepsy Monitoring

Unit (EMU) at Le Bonheur Children's Hospital. From these patients,

41 patients with focal epilepsy (25 LPs, 16 RPs) were retrospec-

tively selected for inclusion in this study. The inclusion criteria

were patients: (a) who were diagnosed with TLE or temporal plus

extra-temporal lobe epilepsy (TELE) originating from either the left

or right hemisphere, (b) for whom both anatomical MRI and rs-

MEG data were available, and (c) whose MEG data were not con-

taminated with artifacts generated by vagus nerve stimulation

implantation, sedation, orthodontic devices, ventriculoperitoneal

(VP) shunts, and/or environmental noise. About 80% of the

patients did not meet the inclusion criteria due to the diagnosis of

generalized epilepsy, the occurrence of bilateral discharges, lack of

anatomical MRI or rs-MEG data, and/or the presence of artifacts.

The diagnosis of focal epilepsy was based on clinical information,

seizure semiology, potential lesions in anatomical MRI data, and

localization of seizures or interictal epileptiform discharges (IEDs)

from video-EEG monitoring, MEG data, and/or single-photon emis-

sion computerized tomography (SPECT) data. To promote homoge-

neity in the two patient groups and ensure correct lateralization of

focal epilepsy, patients in the remaining 20% were included only if

there was successful localization of epileptiform discharges to the

left or right temporal lobe and the results were conclusive across

all the modalities. The study was approved by the Institutional

Review Board (IRB) of the University of Tennessee Health Science

Center. Demographic and clinical data for the patients are shown

in Table 1.

A total of 22 HCs (25.8 ± 5.1 [mean ± SD] years; 10 females) who

voluntarily participated for anatomical MRI and rs-MEG data collection

at Le Bonheur Children's Hospital between 2017 and 2018 were also

included in this study. Most of the HCs were left hemisphere dominant

for language (10 left, 6 right, 6 bilateral). The HCs were free from MRI-

detected lesions and any significant neurodevelopmental (e.g., autism),

neuropsychiatric (e.g., depression), or neurologic (e.g., epilepsy) disorders.
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2.2 | Software note

The FieldTrip toolbox v20180905 (Oostenveld, Fries, Maris, &

Schoffelen, 2011) was used to preprocess the MEG data, co-register

the MEG data with the anatomical MRI, perform beamformer virtual

electrode (VE) reconstruction, and perform FC analysis. The Brain

Connectivity Toolbox v20170115 (Rubinov & Sporns, 2010) and

Network-Based Statistic toolbox v1.2 (Zalesky, Fornito, & Bullmore,

2010) were used to perform network analysis. The BrainNet Viewer

toolbox v20150123 (Xia, Wang, & He, 2013) was used to visualize the

brain networks. The Statistics and Machine Learning Toolbox of

MATLAB (MathWorks Inc., Natick, MA) was used to perform machine

learning. All analyses were performed using MATLAB R2018b.

2.3 | Data acquisition and preprocessing

A whole-head 248-magnetometer MAGNES 3600 MEG system

(4D Neuroimaging, San Diego, CA) housed in a magnetically shielded

room at Le Bonheur Children's Hospital was used to collect resting-

state MEG data from all subjects in a supine position (eyes-open for

the HCs and eyes-closed for the patients). A 1017.25 Hz sampling

rate (with no online filter) was used for all HCs, a 678.17 Hz sampling

rate (with no online filter) was used for 27 patients, and a 508.63 Hz

sampling rate (with an online 0.1 Hz highpass filter) was used for

14 patients. Five head position indicator (HPI) coils, three of which

were anchored to three anatomical landmarks (i.e., the per-auricular

points and nasion) and two on the forehead, were used to determine

the head's position during the data collection. The scalp outline

(i.e., head shape) and HPI coil positions were digitized using a 3D digi-

tizer (Fastrak, Polhemus, Colchester, VT). A 3T Siemens Verio scanner

(Siemens AG, Munich, DE) or a 3T Signa HDxt scanner (General Elec-

tric Healthcare, Milwaukee, WI) at Le Bonheur Children's Hospital

was used to obtain high-resolution T1-weighted anatomical MRI

images, which were co-registered with the MEG data using surface-

matching software. The anatomical landmarks and scalp outline were

used to guide co-registration of the MRI data with the MEG data. The

co-registered MRI was segmented, and the brain surface from the

segmented MRI was used to compute a realistic single-shell volume

conductor model (Nolte, 2003) for calculation of the lead-fields.

The MEG data were 0.1–150 Hz bandpass filtered, 60 and

120 Hz bandstop filtered, and segmented into 3-s trials. Trials and

sensors containing artifacts and epileptiform activity were removed

via visual inspection according to temporal variance, z-score, and kur-

tosis outliers. Trials with epileptiform activity were removed according

to conventional practice, as seen in previous studies (Chavez et al.,

2010; Juarez-Martinez et al., 2018; Niso et al., 2015; Nissen et al.,

2017; van Diessen et al., 2016). Removed sensors were reconstructed

via spherical spline interpolation (Perrin, Pernier, Bertrand, & Echallier,

1989). Due to technical problems, three channels were discarded from

the analysis for some of the patients. For FC analysis in the delta

band, consecutive 3-s trials were placed together to form 12-s trials.

After artifact rejection, the MEG data of all the subjects contained

from 73 to 190 3-s trials (3.65 to 9.5 min) and from 16 to 46 12-s tri-

als (3.2 to 9.2 min). An overview of the analyses performed on the

MEG data is shown in Figure 1.

2.4 | Beamformer VE reconstruction for regions of
interest

The pre-processed MEG data were projected through beamformer

weights to reconstruct VE time-series for the centroids of the

246 (210 cortical, 36 subcortical) regions of interest (ROIs) defined on

the Brainnetome atlas (Fan et al., 2016). The beamformer weights

were computed for each centroid separately using the regularized

broadband (0.1–150 Hz) data covariance matrix and the lead-fields

calculated from the volume conductor model. The weights form a spa-

tial filter that allows signals to pass from the location of interest and

attenuate signals from all other locations.

Voxels in a 2-mm resolution template MRI grid in the Montreal

Neurological Institute (MNI) space were labeled according to the

Brainnetome atlas, and voxels with the same label were defined as a

ROI. For each ROI, the k-medoids algorithm was used to locate the

voxel, designated as the centroid, with the minimal squared Euclidean

distance to all other voxels of the ROI. These centroids were

nonlinearly warped to the co-registered MRI of each subject. For the

construction of the beamformer weights, a time window that included

all the trials that remained after artifact rejection was used to com-

pute the broadband data covariance matrix, as per the suggestion

made in Brookes et al. (2008). The covariance matrix was regularized

TABLE 1 Demographic and clinical data for the patients

Left

patients
(n = 25)

Right

patients
(n = 16) p-valuesa

Age (mean ± SD years) 16.6 ± 6.2 16.9 ± 8.0 .894

Age at seizure onset

(mean ± SD years)

8.7 ± 7.9 8.5 ± 5.7 .929

Gender (M, F) 13, 12 10, 6 .540

Focal region (TLE, TELE) 7, 18 6, 10 .732

MRI status (Normal,

FCD, MTS, other)

3, 6, 3, 13 3, 4, 1, 8 .927

Language laterality (left,

right, bilateral, unknown)

11, 7, 3, 4 11, 3, 0, 2 .369

Number of current AEDs

(median ± IQR)b
2 ± 1 1.5 ± 1 .811

Abbreviations: FCD, focal cortical dysplasia; MTS, mesial temporal lobe

sclerosis; TELE, temporal plus extra-temporal lobe epilepsy; TLE, temporal

lobe epilepsy.
aTo test for a significant difference between the left and right patients, a

two sample t-test was used for the age and age at seizure onset, Fisher's

exact test for gender and focal region, the Freeman–Halton extension of

Fisher's exact test for MRI status and language laterality, and the

Wilcoxon rank sum test for the number of anti-epileptic drugs (AEDs).
bThe AEDs include levetiracetam, ethosuximide, clonazepam, clobazam,

rufinamide, lamotrigine, lacosamide, zonisamide, carbamazepine,

oxcarbazepine, valproic acid, phenytoin, tiagabine, and topiramate.
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using the Tikhonov method with a noise floor equal to 5% of the aver-

age of the eigenvalues of the matrix.

The beamformer output, called a VE, at a target source location

and orientation θ is the weighted sum of the signals of all the MEG

sensors (van Veen, van Drongelen, Yuchtman, & Suzuki, 1997):

Vθ =B �Wθ

where Vθ is the N × 1 VE vector for all N time points, B is the N × M

data matrix containing the magnetic field at the M sensor locations

for all N time points, and Wθ is the M × 1 weight vector. The weight

vector is computed according to the following formula (Mosher,

Baillet, & Leahy, 2003; Robinson & Vrba, 1999; van Drongelen,

Yuchtman, Van Veen, & van Huffelen, 1996; van Veen et al., 1997):

Wθ =
C−1
b Lθ

LTθC
−1
b Lθ

where Cb is the M × M covariance matrix, Lθ is the M × 1 lead-field

vector, and T denotes matrix transpose. The optimum source orienta-

tion for the lead-field vector was determined via eigendecomposition

of the beamformer-derived source covariance matrix, as is described

in Sekihara, Nagarajan, Poeppel, and Marantz (2004). The

beamformer-derived source covariance matrix for location r is given in

the following formula:

P rð Þ= LT rð ÞCbL rð Þ� �−1

where P(r) is the p × p source covariance matrix for p source orienta-

tion components and L(r) is the M × p lead-field matrix.

2.5 | FC analysis

Functional interactions between oscillating source activities can be

obtained by quantifying the phase relationship between their time-

series. The phase lag index (PLI) measures the asymmetry in the distri-

bution of instantaneous phase differences between two time-series

and is computed according to the following formula (Stam, Nolte, &

Daffertshofer, 2007):

Ψ fð Þ= E sgn Im sk fð Þ½ �ð Þ½ �j j

where Ψ(f) is the PLI between two time series at frequency f, sk(f) is

the cross-spectrum between the time-series for trial k at frequency f,

F IGURE 1 Overview of the analysis pipeline. Abbreviations: ROI, region of interest; VE, virtual electrode; dwPLI, debiased weighted phase lag
index; HCs, healthy controls; LPs, patients with left-hemispheric focal epilepsy; RPs, patients with right-hemispheric focal epilepsy; NBS, network-
based statistics
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Im[sk(f)] denotes the imaginary part of the cross-spectrum, and E[.] is

the expected value operator. The PLI is sensitive against the effects of

noise sources, volume conduction, and field spread because it discards

connections with a zero (modulus π)-phase lag at the expense of

potentially discarding true zero-phase interactions (Stam et al., 2007).

However, the sensitivity of the PLI is affected by the discontinuity in

the index as low-amplitude perturbations may change the sign of the

phase difference between two time-series for a particular trial (Vinck,

Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011). The

weighted PLI (wPLI) has been proposed to reduce the effects of this

discontinuity by weighting the sign of the phase difference with the

magnitude of the imaginary part of the cross-spectrum (Vinck

et al., 2011):

Φ fð Þ= E Im sk fð Þ½ �½ �j j
E Im sk fð Þ½ �j j½ �

where Φ(f ) is the wPLI between two time series at frequency f. As

both the PLI and wPLI are affected by the number of trials used to

compute them, the debiased wPLI-square estimator (dwPLI) has been

proposed to reduce the effects of this sample size bias and is given in

the following formula (Vinck et al., 2011):

Ω̂w
fð Þ=

PK

k=1

P

j6¼k
Im sk fð Þ½ � � Im sj fð Þ

� �

PK

k=1

P

j 6¼k
Im sk fð Þ½ � � Im sj fð Þ

� ��� ��

where Ω̂w
fð Þ is the dwPLI between two time-series at frequency f and

K is the number of trials.

In the current study, the dwPLI was used to estimate FC between

the ROI centroids. To compute the dwPLI between each pair of ROI cen-

troids, Fourier spectra for each trial of the VE time-series was obtained

using the discrete Fast Fourier Transform with a Hann window and used

to calculate the cross-spectra between each pair of ROI centroids. 3-s tri-

als were used for frequencies above 3 Hz, and 12-s trials were used for

frequencies from 0.5 to 3 Hz. The dwPLI were averaged over the delta

(0.5–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), low beta (13–20 Hz), high

beta (20–30 Hz), and low gamma (30–50 Hz) frequency bands and used

to construct 246-by-246 weighted adjacency matrices.

F IGURE 2 Group comparison of the global efficiency (GE), characteristic path length (CPL), and transitivity (T) of the second quadrant
(i.e., right intra-hemispheric network) of the adjacency matrix in six frequency bands. Bar lengths indicate mean values; error bars indicate
standard errors of the mean. p-values were false discovery rate (FDR) adjusted for six frequency bands, three global graph measures, and two
quadrants. (Bottom insert) Adjacency matrix of a representative right patient in the theta band, and a corresponding anatomical depiction
showing connections with values above 0.1
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2.6 | Global graph analysis and machine learning

To characterize the difference between the intra-hemispheric brain

networks of the three groups, the second and fourth quadrants

(123-by-123) of the adjacency matrices, which respectively represent

the right and left intra-hemispheric connection strengths between the

ROI centroids (i.e., nodes), were set to a 10% threshold and used to

compute three global graph measures (i.e, global efficiency (GE), char-

acteristic path length (CPL), and transitivity (T)) in all six frequency

bands. The length between two nodes was computed as the inverse

of their connection strength, as per the suggestion made in Boccaletti,

Latora, Moreno, Chavez, and Hwang (2006), and Dijkstra's algorithm

was used to find the shortest path length. For nodes that were discon-

nected from each other, the shortest path length was set to infinity

and excluded from the computation of the CPL. The CPL and GE are

measures of functional integration where the CPL is defined as the

average shortest path length between all pairs of nodes in the net-

work (Watts & Strogatz, 1998) and the GE as the average inverse

shortest path length (Latora & Marchiori, 2001). The GE is mainly

influenced by short paths, which imply a stronger potential for

F IGURE 3 Group comparison of the global efficiency (GE), characteristic path length (CPL), and transitivity (T) of the fourth quadrant (i.e., left
intra-hemispheric network) of the adjacency matrix in six frequency bands. Bar lengths indicate mean values; error bars indicate standard errors
of the mean. p-values were false discovery rate (FDR) adjusted for six frequency bands, three global graph measures, and two quadrants. (Bottom
insert) Adjacency matrix of a representative left patient in the theta band, and a corresponding anatomical depiction showing connections with
values above 0.1

TABLE 2 Results of a Naïve-Bayes classifier (78.0 ± 0.5% [mean ± SD] accuracy) in classifying patients with right-hemispheric focal epilepsy
(RPs) and patients with left-hemispheric focal epilepsy (LPs) using the following three input features: the global efficiency (GE), characteristic path
length (CPL), and transitivity (T) in the theta band of the right intra-hemispheric network

Sensitivity Specificity Precision AUCa

Left patients (LRs) 0.760 ± 2.2E−16 0.811 ± 0.013 0.863 ± 0.008 0.869 ± 0.007

Right patients (RPs) 0.811 ± 0.013 0.760 ± 2.2E−16 0.684 ± 0.003 0.869 ± 0.007

Weighted average 0.780 ± 0.005 0.791 ± 0.008 0.793 ± 0.006 0.869 ± 0.007

aAUC = area under the receiver operating characteristic (ROC) curve.
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functional integration between brain regions, while the CPL is mainly

influenced by long paths (Rubinov & Sporns, 2010). T is a measure of

functional segregation that represents the prevalence of clustered

connectivity around the nodes in the network and is defined as the

normalized sum of the weighted geometric mean of the connection

strengths of all the triangles around all the nodes (Newman, 2003;

Onnela, Saramaki, Kertesz, & Kaski, 2005; Rubinov & Sporns, 2010). T

is a variant of the mean clustering coefficient (CC) that is normalized

collectively and therefore does not suffer from the problem where the

mean CC may be disproportionately influenced by nodes that have a

few neighbors (Newman, 2003; Rubinov & Sporns, 2010). The

Wilcoxon rank sum test was used to test for a significant difference

(p < .05) between the global graph measures of the three groups. p-

values were false discovery rate (FDR) adjusted (Benjamini &

Hochberg, 1995) for six frequency bands, three global graph mea-

sures, and two quadrants.

The global graph measures that were significantly different

(p < .005) between LPs and RPs (i.e., the GE, CPL, and T in the theta

band of the right intra-hemispheric network) were used as input fea-

tures of a Naïve-Bayes classifier to classify the LPs and RPs. The

TABLE 3 Results of a Naïve-Bayes classifier (75.5 ± 1.7% [mean ± SD] accuracy) in classifying healthy controls (HCs), patients with right-
hemispheric focal epilepsy (RPs), and patients with left-hemispheric focal epilepsy (LPs) using the following 11 input features: the global efficiency
(GE) in the theta, low beta, and high beta bands; the characteristic path length (CPL) in the theta, low beta, high beta, and low gamma bands; and
the transitivity (T) in the theta, low beta, high beta, and low gamma bands of the right intra-hemispheric network

Sensitivity Specificity Precision AUCa

Healthy controls (HCs) 0.881 ± 0.038 0.955 ± 0.009 0.913 ± 0.016 0.988 ± 0.003

Left patients (LPs) 0.651 ± 0.024 0.823 ± 0.024 0.708 ± 0.029 0.837 ± 0.011

Right patients (RPs) 0.743 ± 0.024 0.854 ± 0.012 0.634 ± 0.021 0.854 ± 0.009

Weighted average 0.755 ± 0.017 0.877 ± 0.010 0.761 ± 0.015 0.894 ± 0.006

aAUC = area under the receiver operating characteristic (ROC) curve.

F IGURE 4 Subnetwork identified using network-based statistics (NBS) with a 3.45 primary threshold, 5,000 random permutations, and a
p < .05 significance level (family-wise error rate [FWER]-corrected) on the connection strengths of the complete, un-thresholded adjacency
matrices of patients with right-hemispheric focal epilepsy (RPs) and patients with left-hemispheric focal epilepsy (LPs) in the theta band. The
network was primarily composed of intra-hemispheric connections within the right hemisphere (27 were right intra-hemispheric and

8 interhemispheric) and had 28 nodes located in the right hemisphere (3 were frontal, 11 temporal, 4 parietal, 3 insular, 1 limbic, 3 occipital,
1 basal ganglia, and 2 thalamus) and 5 nodes located in the left hemisphere (2 were frontal and 3 occipital). The most significant connections were
intra-hemispheric connections in the right hemisphere between two nodes in the inferior temporal gyrus (ITG) (t = 4.47), a node in the ITG and a
node in the inferior parietal lobule (IPL) (t = 4.20), a node in the fusiform gyrus (FG) and a node in the IPL (t = 4.18), a node in the superior
temporal gyrus (STG) and a node in the basal ganglia (BG) (t = 4.09), and a node in the ITG and a node in the IPL (t = 4.00)
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global graph measures of the right intra-hemispheric network that

were significantly different (p < .01) between at least two of the three

groups (i.e., the GE in the theta, low beta, and high beta bands [three

features] and the CPL and T in the theta, low beta, high beta, and low

gamma bands [8 features]) were used as input features of a Naïve-

Bayes classifier to classify the three groups.

To train and test the classifiers, the following procedure was used.

The subjects were randomly partitioned and separated into 10-folds.

For each of 10 iterations, subjects in one fold were used as a testing-

set and subjects in the other nine folds were used as a training set. This

procedure was repeated 100 times. The performance of the classifiers

was evaluated by averaging the accuracy, sensitivity, specificity, preci-

sion, and area under the receiver operating characteristic (ROC) curve

(AUC) over the 10 iterations and the 100 random partitions.

Although there was no significant difference between the hemi-

spheric language dominance of the three groups (p > .05), language

dominance may still influence the topology of the intra-hemispheric

networks. Therefore, an unbalanced two-way analysis of variance

(ANOVA) was performed to test whether the effect of language domi-

nance on the global graph measures was significant. p-values were

FDR adjusted (Benjamini & Hochberg, 1995) for six frequency bands,

three global graph measures, and two quadrants.

F IGURE 5 Significant nodes (p < .05) identified via comparison of the betweenness centrality (BC), eigenvector centrality (EVC), clustering
coefficient (CC), and nodal efficiency (NE) of the complete adjacency matrices in the theta band of patients with right-hemispheric focal epilepsy
(RPs) and patients with left-hemispheric focal epilepsy (LPs). p-values were false discovery rate adjusted for one frequency band (i.e., the theta

band), four local graph measures, and 246 nodes. The color of the nodes are scaled according to their z-values, with a darker color indicating a
greater value. For BC, there were 8 nodes located in the left hemisphere (1 was frontal, 6 temporal, and 1 parietal). For EVC, there was 1 node
located in the right temporal lobe and 13 nodes located in the left hemisphere (2 were frontal, 5 temporal, 3 parietal, 2 insular, and
1 hippocampus). For CC, there were 21 nodes located in the right hemisphere (4 were frontal, 4 temporal, 2 parietal, 2 insular, 2 limbic,
1 occipital, 1 hippocampus, 4 basal ganglia, and 1 thalamus) and 2 nodes located in the left hemisphere (1 was frontal and 1 was in the thalamus).
For NE, there were 44 nodes located in the right hemisphere (7 were frontal, 14 temporal, 4 parietal, 2 insular, 2 limbic, 1 occipital, 2 amygdala,
2 hippocampus, 5 basal ganglia, and 5 thalamus) and 1 node located in the left parietal lobe
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2.7 | Local graph analysis and NBS

To characterize the difference between the brain networks of LPs and

RPs on a local level, the complete adjacency matrices were set to a

10% threshold and used to compute four local graph measures

(i.e., BC, eigenvector centrality [EVC], CC, and nodal efficiency [NE])

in the theta band. BC is based on the idea that central nodes

(i.e., hubs) act as important controllers of information flow by partici-

pating in many short paths and is defined as the fraction of all the

shortest paths in the network that pass through the node of interest

(Freeman, 1979; Rubinov & Sporns, 2010). EVC is based on the idea

that a node is more influential if it is connected to a few highly

connected nodes rather than if it is connected to many poorly con-

nected nodes and is defined as the element of the eigenvector of the

largest eigenvalue of the adjacency matrix that corresponds to the

node (Bonacich, 1972, 2007). Nodes have a high EVC if they are con-

nected to other nodes that have a high EVC (Bonacich, 1972). The

CC, a local variant of the T, is a measure of the amount of clustered

connectivity around a node and is defined as the weighted geometric

mean of the connection strengths of all the triangles around the node

normalized by the total number of possible connections between the

neighbors of the node (Onnela et al., 2005; Rubinov & Sporns, 2010;

Watts & Strogatz, 1998). The NE, a local variant of the GE, is a mea-

sure of the ability of a node to send information to other nodes in the

network and is defined as the average inverse shortest path length

between the node and all other nodes (Latora & Marchiori, 2001;

Rubinov & Sporns, 2010). The Wilcoxon rank sum test was used to

test for a significant difference (p < .05) between the local graph mea-

sures of the LPs and RPs. p-values were FDR adjusted (Benjamini &

Hochberg, 1995) for one frequency band (i.e., the theta band), four

local graph measures, and 246 nodes.

TABLE 4 The number of significant nodes (p < .05, false
discovery rate [FDR]-adjusted) in each brain area identified via
comparison of the betweenness centrality (BC), eigenvector centrality
(EVC), clustering coefficient (CC), and nodal efficiency (NE) of the
complete adjacency matrices in the theta band of patients with right-
hemispheric focal epilepsy (RPs) and patients with left-hemispheric
focal epilepsy (LPs) along with the number of nodes in each brain area
of the subnetwork identified using network-based statistics (NBS)
with a 3.45 primary threshold, 5,000 random permutations, and a
p < .05 significance level (family-wise error rate [FWER]-corrected) on
the connection strengths of the complete, un-thresholded adjacency
matrices of RPs and LPs in the theta band

Brain area (right) NBS

Local graph measures

CC NE BC EVC

Right middle frontal gyrus 1 1 1 0 0

Right orbital gyrus 1 1 3 0 0

Right precentral gyrus 1 0 0 0 0

Right inferior frontal gyrus 0 2 3 0 0

Right superior temporal gyrus 1 1 3 0 0

Right middle temporal gyrus 2 1 3 0 0

Right inferior temporal gyrus 6 1 3 0 0

Right fusiform gyrus 2 0 1 0 0

Right parahippocampal gyrus 0 1 4 0 1

Right superior parietal lobe 1 0 1 0 0

Right inferior parietal lobe 2 1 0 0 0

Right precuneus 1 1 3 0 0

Right insular gyrus 3 2 2 0 0

Right cingulate gyrus 1 2 2 0 0

Right medioventral occipital cortex 2 1 1 0 0

Right lateral occipital cortex 1 0 0 0 0

Right amygdala 0 0 2 0 0

Right hippocampus 0 1 2 0 0

Right basal ganglia 1 4 5 0 0

Right thalamus 2 1 5 0 0

Brain area (left) NBS

Local graph measures

CC NE BC EVC

Left superior frontal gyrus 1 0 0 0 0

Left orbital gyrus 1 1 0 0 0

TABLE 4 (Continued)

Brain area (left) NBS

Local graph measures

CC NE BC EVC

Left inferior frontal gyrus 0 0 0 1 1

Left middle frontal gyrus 0 0 0 0 1

Left superior temporal gyrus 0 0 0 3 4

Left middle temporal gyrus 0 0 0 1 1

Left inferior temporal gyrus 0 0 0 1 0

Left fusiform gyrus 0 0 0 1 0

Left postcentral gyrus 0 0 0 1 2

Left inferior parietal lobe 0 0 0 0 1

Left precuneus 0 0 1 0 0

Left insular gyrus 0 0 0 0 2

Left medioventral occipital cortex 1 0 0 0 0

Left lateral occipital cortex 2 0 0 0 0

Left hippocampus 0 0 0 0 1

Left thalamus 0 1 0 0 0

Note: The NBS network had nodes in 20 brain areas (16 in the right

hemisphere and 4 in the left hemisphere) while BC identified significant

nodes in 6 brain areas (all left), EVC in 9 brain areas (1 right and 8 left), CC

in 17 brain areas (15 right and 2 left), and NE in 18 brain areas (17 right

and 1 left). The number of brain areas that matched was 13 between the

NBS network and the CC (12 right and 1 left), 13 between the NBS

network and the NE (all right), 14 between the CC and NE (all right),

1 between the CC and EVC (all right), 1 between the NE and EVC (all

right), and 4 between the BC and EVC (all left). Brain areas that matched

between any of the NBS network, CC, NE, and EVC are in italics while brain

areas that matched between the BC and EVC are in boldface.

Abbreviations: CC, clustering coefficient; BC, betweenness centrality;

EVC, eigenvector centrality; NBS, network-based statistics; NE, nodal

efficiency.
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To identify a subnetwork that differs between LPs and RPs,

NBS with a 3.45 primary threshold, 5,000 random permutations,

and a p < .05 significance level (family-wise error rate [FWER]-

corrected) (Zalesky et al., 2010) was performed on the connection

strengths of the complete, un-thresholded adjacency matrices of

the LPs and RPs in the theta band. First, a mass univariate t-test is

performed on the connection strengths, resulting in a t-statistic per

connection. Only those connections with a t-statistic greater than

the primary threshold are admitted to the next step. Next, topologi-

cal clusters are identified from the supra-threshold connections,

and permutation testing is used to compute FWER-corrected p-

values for the identified clusters. During permutation testing, 5,000

random permutations are performed where the adjacency matrices

of the patients are shuffled between the two groups. For each

permutation, the process of performing a mass univariate t-test,

choosing supra-threshold connections, and identifying topological

clusters from the supra-threshold connections is repeated. The size

of the largest identified cluster for each permutation is used to gen-

erate an empirical null distribution. Therefore, the FWER-corrected

p-value for a cluster of a given size represents the probability of

randomly finding a cluster with the same or greater size under the

null hypothesis.

To examine the similarity between the local graph measures and

the subnetwork identified using NBS, the ROIs were grouped into

48 brain areas (24 in each hemisphere) according to the grouping

scheme of the Brainnetome atlas, and the number of nodes in each

brain area that had significant local graph measures or that were part

of the NBS subnetwork was recorded.

3 | RESULTS

3.1 | Global graph analysis and machine learning

A group comparison of the GE, CPL, and T of the right and left intra-

hemispheric networks in all frequency bands for the LPs, RPs, and

HCs is shown in Figure 2 and Figure 3. The results showed that the

GE, CPL, and T of the right intra-hemispheric network in the theta

band were significantly different (p < .005, FDR-adjusted) between

the RPs and both the LPs and HCs with the GE and T being signifi-

cantly greater for the RPs and the CPL being significantly lower. The

GE of the right intra-hemispheric network in the delta band was sig-

nificantly lower (p < .05, FDR-adjusted) for the LPs than the RPs and

HCs while the T of the right intra-hemispheric network in the delta

band was significantly greater (p < .05, FDR-adjusted) for the RPs than

the LPs and HCs. For the LPs and RPs, there was no significant differ-

ence between the GE, CPL, and T of the right intra-hemispheric net-

work in the higher frequency bands (i.e., the alpha, low beta, high

beta, and low gamma bands) and of the left intra-hemispheric network

in all frequency bands. The GE, CPL, and T of both intra-hemispheric

networks in the low and high beta bands were significantly different

(p < .01, FDR-adjusted) between the HCs and both patient groups

with the GE and T being significantly lower for the HCs and the CPL

being significantly greater. The CPL in both intra-hemispheric net-

works in the low gamma band was significantly greater (p < .05, FDR-

adjusted) for the HCs than both patient groups while the T of the right

intra-hemispheric network in the low gamma band was significantly

lower (p < .005, FDR-adjusted) for the HCs than both patient groups.

For the three groups, there was no significant difference between the

GE, CPL, and T of both intra-hemispheric networks in the alpha band.

An unbalanced two-way ANOVA showed that the effect of hemi-

spheric language dominance on the global graph measures was not

significant for any of the frequency bands.

When used as input features for a Naïve-Bayes classifier to clas-

sify the LPs and RPs, the global graph measures that were significantly

different (p < .005, FDR-adjusted) between LPs and RPs (i.e., the GE,

CPL, and T of the right intra-hemispheric network in the theta band)

were able to achieve a 78.0 ± 0.5% (mean ± SD) accuracy and an AUC

of 0.869 ± 0.007 for both patient groups. When used as input fea-

tures for a Naïve-Bayes classifier to classify the three groups, the

global graph measures of the right intra-hemispheric network that

were significantly different (p < .01, FDR-adjusted) between at least

two of the three groups (i.e., the GE in the theta, low beta, and high

beta bands [three features] and the CPL and T in the theta, low beta,

high beta, and low gamma bands [eight features]) were able to achieve

a 75.5 ± 1.7% accuracy and an AUC of 0.988 ± 0.003 for the HCs,

0.837 ± 0.011 for the LPs, and 0.854 ± 0.009 for the RPs. The sensi-

tivity, specificity, precision, and AUC, which were used to evaluate

the performance of the classifiers, are shown in Table 2 and Table 3.

3.2 | Local graph analysis and NBS

Performing NBS with a 3.45 primary threshold, 5,000 random permu-

tations, and a p < .05 significance level (FWER-corrected) on the con-

nection strengths of the complete, un-thresholded adjacency matrices

of RPs and LPs in the theta band was able to identify a subnetwork,

which is shown in Figure 4, that differs between the two patient

groups. The network was primarily composed of intra-hemispheric

connections within the right hemisphere (27 were right intra-

hemispheric and 8 interhemispheric) and had 28 nodes located in the

right hemisphere (11 were temporal and 3 subcortical), and 5 nodes

located in the left hemisphere (2 were frontal and 3 occipital). The

most significant connections were intra-hemispheric connections in

the right hemisphere between two nodes in the inferior temporal

gyrus (ITG) (t = 4.47), a node in the ITG and a node in the inferior pari-

etal lobule (IPL) (t = 4.20), a node in the fusiform gyrus (FG) and a

node in the IPL (t = 4.18), a node in the superior temporal gyrus (STG)

and a node in the basal ganglia (BG) (t = 4.09), and a node in the ITG

and a node in the IPL (t = 4.00).

Comparison of the BC, EVC, CC, and NE of the complete adja-

cency matrices in the theta band of the LPs and RPs was able to iden-

tify nodes, which are shown in Figure 5, that were significantly

different (p < .05, FDR-adjusted) between the two patient groups.

The CC and NE identified nodes primarily in the right hemisphere

while the BC and EVC identified nodes primarily in the left
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hemisphere. For BC, there were 8 nodes located in the left hemi-

sphere (6 were temporal). For EVC, there was 1 node located in the

right temporal lobe and 13 nodes located in the left hemisphere

(5 were temporal and 1 was in the hippocampus). For CC, there were

21 nodes located in the right hemisphere (4 were temporal and 6 sub-

cortical) and 2 nodes located in the left hemisphere (1 was frontal and

1 was in the thalamus). For NE, there were 44 nodes located in the

right hemisphere (14 were temporal and 14 subcortical) and 1 node

located in the left parietal lobe.

The NBS network had nodes in 20 brain areas (16 in the right

hemisphere and 4 in the left hemisphere) while BC identified signifi-

cant nodes in six brain areas (all left), EVC in nine brain areas (1 right

and 8 left), CC in 17 brain areas (15 right and 2 left), and NE in 18 brain

areas (17 right and 1 left). The number of brain areas that matched

was 13 between the NBS network and the CC (12 right and 1 left),

13 between the NBS network and the NE (all right), 14 between the

CC and NE (all right), 1 between the CC and EVC (all right), 1 between

the NE and EVC (all right), and 4 between the BC and EVC (all left).

The number of nodes in each of these brain areas that were in the

NBS network and that were significant for the local graph measures is

shown in Table 4.

4 | DISCUSSION

Three global graph measures (i.e., global efficiency [GE], characteristic

path length [CPL], and transitivity [T]) were used in this study to com-

pare the intra-hemispheric brain networks of HCs, patients with left-

hemispheric focal epilepsy (LPs), and patients with right-hemispheric

focal epilepsy (RPs). This was accomplished by using beamformer

source reconstruction with resting-state MEG (rs-MEG) data to derive

virtual electrode (VE) time-series for the region-of-interest (ROI) cen-

troids of the Brainnetome atlas, after which the debiased weighted

phase lag index (dwPLI) was used as a measure of functional connec-

tivity (FC) between the ROI centroids. Only the global graph measures

of the right intra-hemispheric network were significantly different

between RPs and LPs; all three in the theta band, and the GE and T in

the delta band. The global graph measures of the right intra-

hemispheric network in the theta band were also significantly differ-

ent between HCs and RPs but not between HCs and LPs. Based on

these results, the complete brain networks (i.e., composed of both the

intra- and interhemispheric networks) in the theta band of the

patients were analyzed with network-based statistics (NBS) to identify

other subnetworks that may be different between LPs and RPs. The

brain networks in the theta band were also analyzed with four local

graph measures (i.e., nodal efficiency [NE], clustering coefficiency

[CC], betweenness centrality [BC], and eigenvector centrality [EVC])

to identify brain regions that may have different network properties

for LPs and RPs.

The NBS subnetwork was primarily composed of intra-

hemispheric connections within the right hemisphere, which is con-

sistent with the global graph measures in the theta band being sig-

nificantly different between LPs and RPs for the right intra-

hemispheric network and not for the left intra-hemispheric net-

work. Additionally, the graph measures that are local variants of the

global graph measures (i.e., NE for GE and CC for T) were primarily

significant for nodes located in the right hemisphere, which also

agrees with the results obtained with the global graph measures

and NBS. However, the local graph measures that indicate central-

ity (i.e., BC and EVC) were primarily significant for nodes located in

the left hemisphere. For the NBS subnetwork and the local graph

measures, the nodes were primarily located in the temporal lobe.

This result may be due to all the patients having either TLE or

TELE. Other studies have also shown differences between the

functional networks of RPs and LPs in the theta band on a local

level. An EEG study found that, for classification of patients with

left or right TLE, the directed connection strengths in the theta

band from the right to the left hippocampus and the right medial

temporal pole (MTP) to the right amygdala were important features

(Verhoeven et al., 2018). A MEG study found that the connection

strength in the theta band between the right hippocampus and left

middle frontal lobe (MFL) was significantly greater for patients with

right mesial TLE than for patients with left mesial TLE and epilepsy

patients with focal cortical dysplasia (FCD) (Jin & Chung, 2015).

The GE and T of the right intra-hemispheric network in the theta

band were significantly greater for RPs than both LPs and HCs while

the CPL was significantly lower, which indicates a greater functional

integration and segregation in the right (affected) intra-hemispheric

brain networks of RPs in the theta band. The increased segregation is

comparable with a study using both EEG and MEG that reports a

greater mean CC in the theta band for the functional networks of

patients with focal epilepsy than those of HCs (Horstmann et al.,

2010). Although the increased integration is not comparable with

Horstmann et al., which reports a greater theta CPL for the functional

networks of patients with focal epilepsy (Horstmann et al., 2010), it is

comparable with a MEG study that reports a lower mean eccentricity

in the theta band for the functional networks of patients with frontal

lobe epilepsy (Niso et al., 2015). Both the increased integration and

segregation may also be comparable with a MEG study that reports a

greater GE, mean CC, and mean nodal strength in the 5–14 Hz fre-

quency range for the functional networks of epilepsy patients with

absence seizures (Chavez et al., 2010). However, these studies neither

distinguishes between RPs and LPs nor between unaffected and

affected intra-hemispheric networks. Other studies have also shown

altered global characteristics for the functional networks of patients

with epilepsy in the theta band. An EEG study found that patients

with epilepsy had a greater mean connection strength in the theta

band than HCs (Douw, de Groot, et al., 2010) while a MEG study

found that patients with tumor-related epilepsy had a positive correla-

tion between seizure frequency and both mean connection strength

(significant) and CPL (nonsignificant) in the theta band (Douw

et al., 2010).

The altered functional networks of patients with epilepsy in the

theta band may be related to the origin and regulation of theta oscilla-

tions (Douw, van Dellen, et al., 2010). Although theta oscillations have

been thought to originate from the hippocampus and then spread to
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the outer cortical layers, studies have reported that other brain

regions may generate theta oscillations during certain cognitive states

(Mizuki, Tanaka, Isozaki, Nishijima, & Inanaga, 1980). Gamma-

aminobutyric acid (GABA)-ergic interneurons in the hippocampus may

be responsible for the regulation of theta oscillations (Klausberger

et al., 2003; Klausberger & Somogyi, 2008). Animal studies have

reported that induction of generalized epilepsy in rats via blockade of

GABA receptors altered patterns of theta oscillations (Mackenzie,

Medvedev, Hiscock, Pope, & Willoughby, 2002), that perturbation of

hubs formed by GABA-ergic interneurons altered network synchroni-

zation in the hippocampus of rats and mice (Bonifazi et al., 2009), and

that induction of TLE in rats disrupted hippocampal theta resonance

and phase lead (Marcelin et al., 2009). A study found that generation

of hippocampal theta oscillations due to medial septal neurons pro-

duced an anti-epileptic effect in rats with TLE (Colom, Garcia-

Hernandez, Castaneda, Perez-Cordova, & Garrido-Sanabria, 2006). As

can be seen in a recent review article (Kitchigina, 2018), other studies

have shown that TLE and Alzheimer's disease (AD) result in alterations

of theta and gamma oscillations in networks involving the hippocam-

pus and other brain regions. Verhoeven et al. found that the directed

connection strength in the theta band from the right to the left hippo-

campus was an important feature for classification of patients with

right or left TLE and that the directed connection strengths in the

theta band from the right to the left hippocampus and from the right

hippocampus to the right amygdala were important features for classi-

fication of HCs and patients with TLE (Verhoeven et al., 2018). In our

study, the CC and NE in the theta band identified nodes that were sig-

nificantly different between RPs and LPs in the right hippocampus

while the EVC in the theta band identified a significant node in the left

hippocampus.

The GE of the right intra-hemispheric network in the delta band

was significantly lower for LPs than both RPs and HCs while the T

was significantly greater for RPs than both LPs and HCs, which indi-

cates a lower functional integration in the left (unaffected) intra-

hemispheric brain networks of LPs and a greater functional segrega-

tion in the right (affected) intra-hemispheric brain networks of RPs in

the delta band. The increased segregation and decreased integration

is comparable with Horstmann et al., which reports a greater CPL and

mean CC in the delta band for the functional networks of patients

with focal epilepsy than those of HCs (Horstmann et al., 2010). How-

ever, Horstmann et al. neither distinguishes between RPs and LPs nor

between unaffected and affected intra-hemispheric networks.

All three global graph measures of both intra-hemispheric net-

works were significantly different between the HCs and both patient

groups in the low beta, high beta, and low gamma bands; the right and

left CPL and the right T in all three bands, and the right and left GE

and the left T in the beta bands. The GE and T were greater while the

CPL was lower for the patients than the HCs, which indicates a

greater functional integration and segregation in the brain networks

of patients with focal epilepsy in the higher frequency bands. The

increased integration is comparable with results obtained using MEG

FC analysis to compare HCs and patients with generalized epilepsy in

the beta and gamma bands (Niso et al., 2015) and using fMRI FC

analysis to compare HCs and patients with TLE (Doucet et al., 2015;

Garcia-Ramos et al., 2016). However, the increased segregation is not

comparable with the results obtained using fMRI FC analysis, which

reports that the patients had lower segregation than the HCs (Doucet

et al., 2015; Garcia-Ramos et al., 2016). Although generalized and

focal epilepsy are two different types of epilepsy, both are disorders

of abnormal brain networks (Engel Jr. et al., 2013). Therefore, their

network topologies may share some characteristics. Our study as well

as the previously mentioned studies suggest that one of these charac-

teristics may be the functional integration in the higher frequency

bands.

Most of the aforementioned studies on patients with epilepsy

examined the global characteristics of the network of the entire brain.

Douw et al. found that the combined left and right intra-hemispheric

networks along with the left temporo-occipital, right temporo-occipital,

right fronto-temporal, and left temporal networks of patients with

tumor-related epilepsy had a significant positive correlation between

seizure frequency and mean connection strength in the theta band

(Douw, van Dellen, et al., 2010). However, their sample was composed

of patients with generalized epilepsy as well as patients with focal epi-

lepsy, and they did not compare RPs and LPs. Another study using EEG

FC analysis found that, for the CPL and mean CC in the alpha band, the

difference between the left and right intra-hemispheric fronto-temporal

networks was significantly more positive for patients with left fronto-

temporal epilepsy and significantly more negative for patients with right

fronto-temporal epilepsy than for HCs with the affected networks of

the patients having higher values than the unaffected (Vecchio et al.,

2015). This is not comparable with our study, which found a significant

difference between the right intra-hemispheric graph measures of the

RPs and LPs in the theta and delta bands rather than the alpha and did

not find a significant difference between the left intra-hemispheric

graph measures of the RPs and LPs.

When used as input features of a Naïve-Bayes classifier, the global

graph measures of the right intra-hemispheric network in the theta band

were able to classify the LPs and RPs with a 78.0% accuracy and an AUC

of 0.869 for both patient groups while the GE in the theta, low beta, and

high beta bands and the CPL and T in the theta, low beta, high beta, and

low gamma bands of the right intra-hemispheric network were able to

classify the three groups with a 75.5% accuracy and an AUC of 0.988 for

the HCs, 0.837 for the LPs, and 0.854 for the RPs. The performance of

these classifiers indicates that the global graph measures of the right

intra-hemispheric network may be useful not only for the diagnosis of

focal epilepsy but also for lateralization. This may be important for

patients with focal epilepsy who are drug-resistant and MRI normal, par-

ticularly if there is a lack of or an ambiguity in the seizures or IEDs

recorded during MEG, EEG, or other neuroimaging modalities. Studies

report that only about 30–50% of patients with epilepsy have IEDs on

their first EEG recording (Douw, de Groot, et al., 2010; King et al., 1998)

and that about 2–18% of patients never have IEDs during their EEG

recordings (Douw, de Groot, et al., 2010; Marsan & Zivin, 1970;

Noachtar & Remi, 2009). For MEG, the average sensitivity in detecting

clinically relevant IEDs is ~75% (Carrette & Stefan, 2019; Pataraia et al.,

2004; Paulini et al., 2007; Stefan et al., 2003). The application of machine
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learning algorithms to graph analysis of resting-state networks for assis-

tance in classification of patients with epilepsy is a rapidly growing field,

as can be seen in many studies (Babajani-Feremi, Noorizadeh,

Mudigoudar, & Wheless, 2018; Douw, de Groot, et al., 2010; Nissen

et al., 2017; Nissen et al., 2018; Verhoeven et al., 2018).

5 | LIMITATIONS

There are some limitations to this study. In particular, because most

of the patients were medicated with anti-epileptic drugs (AEDs), the

influence of the AEDs on their brain networks is a potential con-

found. This may be especially true for comparisons between the HCs

and the patients. Several studies have shown changes in functional

networks that are associated with AED use (Haneef, Levin, & Chiang,

2015; van Veenendaal et al., 2017). However, it is standard clinical

practice for our center to gradually wean patients off their AEDs

before the time of MEG data collection. Additionally, the patient

groups were matched (p > .05) for the number of different AED

types that they were medicated with (see Table 1) and the distribu-

tion of the different AED types across the two groups was relatively

uniform. Therefore, the variability in the FC due to the AEDs was

minimized. Another limitation of this study was that, due to a lack of

availability, the HCs were from a slightly older age group than the

patients. To account for this heterogeneity, analysis of covariance

(ANCOVA) was performed to test whether the effect of age on the

global graph measures was significant. The effect of age was shown

to not be significant (p > .05, FDR-adjusted) in the delta, theta, alpha,

low beta, and high beta bands.

An additional limitation was that resting-state MEG data were

collected during an eyes-open (EO) condition for the HCs and eyes-

closed (EC) condition for the patients. This is because the MEG data

were collected under two different protocols: a clinical protocol for

the patients and a research protocol for the controls. Resting-state

MEG data under research protocol are collected during an EO condi-

tion. However, resting-state MEG data under clinical protocol are col-

lected during an EC condition in our center, which is important for

patients with epilepsy who are often developmentally delayed and

have difficulty following instructions to minimize artifacts due to eye

movements and blinking. Tan et al. compared the functional networks

of HCs during EO and EC resting-state conditions (Tan, Kong, Yang,

Jin, & Li, 2013). They found that, in the theta band, the mean CC of

the entire brain network decreased only by about 13% from an EC to

an EO condition. In our study, as shown in Figure 2 and Figure 3, the

transitivity (a variant of the mean CC) of the right intra-hemispheric

network in the theta band was significantly less by more than 70%

(p < .005, FDR-adjusted) for the controls (under EO) than for the

patients with right-hemispheric focal epilepsy (under EC). Therefore,

because the 70% difference observed in our study is much more than

the 13% difference reported by Tan et al., it is unlikely that our results

in the theta band would be greatly impacted by the different EC and

EO conditions.

6 | CONCLUSIONS

To investigate functional and effective networks of patients with

epilepsy, global and local graph measures have been used to extract

useful features from the network of the entire brain. Because focal

epilepsy originates within networks limited to one cerebral hemi-

sphere, using global graph measures to characterize intra-

hemispheric networks rather than the network of the entire brain

may be able to reveal additional information about the brain net-

works of patients with focal epilepsy. In this study, global graph

measures based on FC analysis with rs-MEG data were able to dis-

tinguish between the intra-hemispheric brain networks of HCs, LPs,

and RPs, particularly in the theta band. The GE, CPL, and T of the

right intra-hemispheric network in the theta band were significantly

different between the RPs and both the LPs and HCs while the GE,

CPL, and T of both intra-hemispheric networks in the higher fre-

quency bands were significantly different between the HCs and

both the LPs and RPs. When used as input features of a Naïve-

Bayes classifier, the global graph measures of the right intra-

hemispheric network were able to classify the LPs and RPs as well

as all three groups. In the theta band, NBS was able to identify a

subnetwork that differs between LPs and RPs while local graph mea-

sures were able to identify brain regions that have different network

properties for LPs and RPs. The NBS subnetwork was primarily com-

posed of intra-hemispheric connections within the right hemisphere

while the CC and NE identified significant nodes primarily within the

right hemisphere. However, the BC and EVC identified significant

nodes primarily within the left hemisphere. Overall, the results of

this study indicate that the global graph measures of the MEG-based

right intra-hemispheric network may be useful for the diagnosis and

lateralization of focal epilepsy.
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