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Host-pathogen molecular cross-talks are critical in determining the pathophysiology of a specific infection. Most of these cross-
talks are mediated via protein-protein interactions between the host and the pathogen (HP-PPI). Thus, it is essential to know
how some pathogens interact with their hosts to understand the mechanism of infections. Malaria is a life-threatening disease
caused by an obligate intracellular parasite belonging to the Plasmodium genus, of which P. falciparum is the most prevalent.
Several previous studies predicted human-plasmodium protein-protein interactions using computational methods have
demonstrated their utility, accuracy, and efficiency to identify the interacting partners and therefore complementing
experimental efforts to characterize host-pathogen interaction networks. To predict potential putative HP-PPIs, we use an
integrative computational approach based on the combination of multiple OMICS-based methods including human red blood
cells (RBC) and Plasmodium falciparum 3D7 strain expressed proteins, domain-domain based PPI, similarity of gene ontology
terms, structure similarity method homology identification, and machine learning prediction. Our results reported a set of 716
protein interactions involving 302 human proteins and 130 Plasmodium proteins. This work provides a list of potential human-
Plasmodium interacting proteins. These findings will contribute to better understand the mechanisms underlying the molecular
determinism of malaria disease and potentially to identify candidate pharmacological targets.

1. Introduction

Infectious diseases represent a major public health challenge
that results from molecular cross-talks between pathogens
and their hosts. These cross-talks are mostly mediated by
protein-protein interactions occurring between host and
pathogen (HP-PPI). PPI correspond to physical interactions
between proteins that represent the key elements of the infec-
tion mechanism and play crucial roles in the evolution of the
infections, as they may turn the balance in favor of the spread
of the pathogen or its clearance. Malaria is an infectious dis-
ease caused by one of the five types of the protozoan parasite
Plasmodium with P. falciparum strain being the most preva-

lent. The infection is transmitted by an infected mosquito
that bites a human, leading to the multiplication of the para-
sites in the host’s liver before infecting and destroying red
blood cells. In 2018, WHO estimated 228 million cases of
malaria occurring worldwide (95% confidence interval [CI]:
206-258 million) with around 405000 deaths from malaria
globally (https://www.who.int/news-room/feature-stories/
detail/world-malaria-report-2019), of which 93% of them
are recorded in Africa. Thus, identifying the human and Plas-
modium proteins involved in the infection can provide
insights into the underlying molecular mechanisms of path-
ogenicity and potentially identify new putative pharmacolog-
ical targets. Experimental methods that have been used to

Hindawi
BioMed Research International
Volume 2020, Article ID 2082540, 11 pages
https://doi.org/10.1155/2020/2082540

https://orcid.org/0000-0002-3387-6493
https://orcid.org/0000-0002-2815-1834
https://orcid.org/0000-0002-5293-4337
https://orcid.org/0000-0002-1159-6482
https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019
https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2082540


predict the host-pathogen protein interactions include the
yeast two-hybrid (Y2H) system, affinity purification (AP)
[1] coupled to mass spectrometry (MS) [2], proximity-
dependent labeling coupled to mass spectrometry, chemical
crosslinking coupled to mass spectrometry (XL-MS), and
protein microarray methods. These later have been exten-
sively used to capture the interactions between host and
microbial proteins at different resolution levels [3–6].
Although these techniques are able to successfully identify
host-pathogen proteins interactions, their technical chal-
lenges [7] and their high cost impedes their application and
feasibility [8]. Nowadays, computational methods have
shown utility in performing large screening, improving the
accuracy and efficiency for identifying protein-protein inter-
actions in combination with experimental data sets [9, 10].
Moreover, these computational tools are contributing in
complementing large-scale experimental efforts to character-
ize host-pathogen interaction networks. Numerous efforts
have previously investigated host-pathogen interactions in
the context of malaria disease using computational methods
[11–19]. Depending on the methods used, the predictions
may include large false positive interactions. Here, we present
an integrative computational approach for the prediction of
host-pathogen protein-protein interactions based on the
combination of six distinct approaches including protein
sequence homology, domain-domain protein interactions,
proteins similarity structure, similar Gene Ontology terms,
and the use of human and parasite expression data to predict
human-Plasmodium falciparum 3D7 interactions combined
to machine learning techniques in order to better understand
the mechanisms underlying the malaria disease.

2. Materials and Methods

2.1. Data Integration. In order to decrease false-positive
predictions, we have performed an integrative computa-
tional approach by integrating five distinct OMICS based
approaches and different datasets.

2.1.1. Protein Expression Data. We collected lists of gene
names related to mass-spectroscopic proteome analyses of
human red blood cells (RBC) from two distinct resources.
We have integrated 1,578 human proteins previously
reported as expressed in RBC [20]. We also included a
recently updated and improved dataset of RBC proteome
[21], which reports a nonredundant list of 1,989 gene prod-
ucts. Furthermore, expression profile (peak protein expres-
sion stage) and subcellular localization of Plasmodium
falciparum 3D7 proteins for merozoite, ring, trophozoite,
and schizont stages were extracted from PlasmoDB and from
other studies published earlier [22, 23]. To recognize putative
interactions brought about by membrane proteins of the vac-
uole, we included parasite proteins that are previously estab-
lished as parasitophorous vacuole membrane proteins [24].
Moreover, we included parasite proteins reported to be asso-
ciated with Maurer’s cleft specialized secretory compartment
[25]. Finally, merozoite surface proteins that are involved in
host RBC invasion were also included [26]. In total, we

obtained 2,430 nonredundant plasmodium RBC-expressed
proteins and 1,889 unique human RBC-expressed proteins.

2.1.2. Host-Pathogen Protein-Protein Interaction Based on
Domain-Domain Interactions. It is well established that pro-
tein domains are the key mediators of any protein-protein
interaction. Exploiting domains as building blocks for PPI
prediction have been widely used [27, 28]. Several databases
are available to provide open access to domain-domain inter-
action data. Here, we collected (On February 2020) data from
the INstruct database accessible through http://instruct.yulab
.org/ [29] and iPfam database, available at http://ipfam.org
[30] providing high-quality 3D structurally resolved
protein-protein interactions and Pfam domain interactions
based on known 3D structures found in the Protein Data
Bank, respectively.

2.1.3. Host-Pathogen Protein-Protein Interaction Based on
Gene Ontologies. Protein partners from PPIs may participate
in related and/or similar biological processes [12]. The gene
ontology (GO) project offers a standardized annotation
schema for proteins involved in specific biological processes
[31]. To identify potential host-pathogen protein interactions
based on their involvement in similar and/or related biologi-
cal processes, Human and Plasmodium falciparum 3D7 gene
ontologies and annotation information were retrieved (On
February 2020) from the Gene Ontology project website
http://current.geneontology.org/annotations/index.html.

2.1.4. Host-Pathogen Protein-Protein Interaction Homology
Based. The rationale behind the homology-based method is
that conserved interactions between a pair of proteins are
expected to have interacting homologs in other species. The
conserved interaction is called “Interolog.” Considering a
template PPI pair (x, y) in source species, identify the homo-
log x′ in the host and the homolog y′ in the pathogen and
then conclude that (x′, y′) pair also forms a PPI [32]. Known
host-pathogen protein interactions were retrieved (On Feb-
ruary 2020) from Phi-Base database (http://www.phi-base
.org/index.jsp) [33], protein-protein interactions derived
from Reactome database (http://www.reactome.org) [34],
Biogrid: The Biological General Repository for Interaction
Datasets (BioGRID: https://thebiogrid.org) [35], and Intact
(http://www.ebi.ac.uk/intact) [36]. Homology relationship
was determined between protein sequences of P. falciparum
3D7 collected from PlasmoDB (https://plasmodb.org/
common/downloads/) against human protein sequences.
Blastp Best reciprocal hit (BRH) approach with Evalue ≤ 1
0−5 was used for homology investigation [37].

2.1.5. Host-Pathogen Protein-Protein Interaction Structure
Based. Multiple studies used a structure similarity-based
method and use template PPIs to detect similar interacting
pairs within host and pathogen proteins [11]. Such a method
starts with a set of host and pathogen proteins, and then
sequence matching procedures are used to determine the sim-
ilarities between the host or pathogen proteins with known
structure or known interaction protein partners. Data for
structurally known interaction protein partners integrated
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here were retrieved (On February 2020) from PrePPI (http://
bhapp.c2b2.columbia.edu/PrePPI) [38], SNAPPI-DB (http://
www.compbio.dundee.ac.uk/SNAPPI/downloads.jsp) [39],
SCOP2 (http://scop2.mrc-lmb.cam.ac.uk/), [40], and the data-
base of three-dimensional interacting domains (3did) (https://
3did.irbbarcelona.org/) [41].

2.1.6. Data Standardization and Harmonization. Collected
data from several databases were structured in different for-
mats with different features. They were parsed to extract rele-
vant information. Accession IDs in UniProt were mapped to
HUGO Gene Nomenclature Committee (HGNC) symbols
for human and PF IDs for Plasmodium. We also used Plas-
moDB gff files to convert PF ID into aliases (example: PF ID
= PF3D7_0302600, Alias = PFC0125w). Final results were
presented into a tab-separated file format displaying the
potential interactions between Human genes (HGNC symbol)
and Plasmodium falciparum 3D7 genes (PF ID and aliases).

2.1.7. Functional Analysis.Human and Plasmodium proteins
involved in predicted interactions using the present compu-
tational approaches were subject to gene set enrichment anal-
ysis in order to identify significantly enriched pathways.
Functional analysis was performed using StringDB [42].

2.2. Host-Pathogen Interaction- (HPI-) Prediction Using
Machine Learning Protein Sequences Based Approaches

2.2.1. Data Preprocessing. Domain-domain interaction data
collected (On February 2020) from the3DID database and
other data from [43] were used as positive and negative
protein-protein interactions to train the models. For each pro-
tein or domain accession, amino-acid sequences were
retrieved, and for each pair of interactors, sequences were
concatenated. Thereafter, amino-acid sequences have been
converted into overlapping 3-mer subsequences, and occur-
rences of all subsequences were counted with term
frequency-inverse document frequency (TF-IDF) vectorizer
provided by Scikit-Learn python module. TF-IDF vectorizer
is a very common algorithm for text analysis for machine
learning, by evaluating how relevant a subsequence is associ-
ated to a sequence in a collection of all sequences. This is done
by multiplying two metrics to know how many times a 3-mer
subsequence appears in the whole sequence and the inverse
document frequency of the subsequence across the set of
amino-acid sequences. (ngram_range = 2, 2 (bigrams), max
features = 2000 (top features ordered by term frequency across
the sequence)) [44].

2.2.2. Machine Learning Classifiers. Eight classifiers have
been evaluated, namely, the K-nearest neighbors (KNN)
classifier [44], the logistic regression classifier [45], the deci-
sion tree [46], the random forest [47], the adaptative boost
(Adaboost) [47] classifier, the voting classifier [48], the
Gaussian Naive Bayes classifier [46], and the support vector
machine (SVM) [49].

2.2.3. Performance Metrics. For validation, k-fold cross-
validation is used. It is a powerful preventative measure
against overfitting. K is fixed at 10, which means that the

training dataset is divided into 10 equal parts and the process
will run 10 times, each with a different holdout set. This
allows us to keep our test set as an unseen dataset for select-
ing the final tuned model [50]. To evaluate the performances
of the studied classifiers, we estimated the five measures
below:

(i) Precision. It refers to the percentage of results, which
are relevant. It is the ratio of correctly predicted pos-
itive observation to the total positive observations

(ii) Recall. It refers to the percentage of total relevant
results correctly predicted points out of all the data
points

(iii) Accuracy. It is the number of correctly predicted
labels out of all the class labels

(iv) F1-Score. It is the weighted average of Precision and
Recall. It takes both false positive and false negatives
into account

(v) AUC. The area under the curve is the measure of the
ability of a classifier to distinguish between classes
and is used as a summary of the ROC curve

(vi) ROC Curve. It plots true positive rate (sensitivity) on
the y-axis and false positive rate (specificity) on the x
-axis

The five performance measures are defined as follows:

Precision =
TP

TP + FP
, ð1Þ

Accuracy =
TP + TN

TP + TN + FP + FN
, ð2Þ

F − score = 2 ∗ TPR ∗
Precision

TPR + Precision
, ð3Þ

TPR =
TP

TP + FN
, ð4Þ

FPR =
FP

FP + TN
, ð5Þ

where TP, TN, FP, FN, TPR, and FPR represent true pos-
itive, true negative, false positive, false negative, true positive
rate, and false-positive rate, respectively (see Supplementary
File 1 and Supplementary File 2).

3. Results

In the present study, we integrated data from different
sources combining several approaches that have been widely
used to predict host-pathogen interacting proteins (Figure 1).

3.1. HPI Prediction Based on Machine Learning Approach.
Table 1 highlights the performance of each investigated clas-
sifier based on calculated metrics. We observed that most of
the individual classifiers tend to perform effectively.

Figure 2 highlights the overlap between human-Plasmo-
dium falciparum 3D7 parasite interacting proteins after
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applying the four filters described previously, i.e., domain-
domain interactions, protein structure similarity, ontology-
based filter, and homology to partners in known PPIs. In order
to be less stringent, we selected host-pathogen interactions
that were common to at least 3 distinct filters. Our results
showed a total of 16,679 (1050 + 4096 + 8492 + 282 + 2759)
host-pathogen putative interactions involving 4,609 distinct
human proteins and 334 different parasite proteins.

3.2. The Integrative Approach. Considering the whole sets of
distinct 2,430 plasmodium RBC-expressed proteins and
1,889 human RBC-expressed proteins integrated in the
present analysis, the number of possible interactions across
the host erythrocyte and the parasite proteins would tre-
mendously be very large. To reduce false-positive predic-
tions, we have combined appropriate approaches as
previously detailed, thereby resulting in the prediction of
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Figure 1: Data integration schema.

Table 1: Classifiers evaluated performance and metrics.

Model Accuracy Precision Recall
F1-
score

AUC
score

FPR

VC 94 94 94 94 98 7

SVM 93 93 93 93 98 10

LR 91 91 91 90 93 16

KNN 88 88 88 88 88 14

Adaboost 85 85 85 85 92 15

RF 82 85 82 81 92 21

GNB 74 75 74 75 81 20

DTree 74 74 74 74 72 22

VC: voting classifier; SVM: support vector machine; LR: logistic regression;
KNN: K-nearest neighbor; RF: random forest; GNB: Gaussian Naive Bayes;
DTree: decision tree.
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probable host-parasite interactions. A detailed representa-
tion of the approach followed is shown in Figure 2.

Among the 4,609 human proteins involved in the pre-
dicted interactions using at least three distinct approaches,
only 366 (out of 1,889 human RBC-expressed proteins)
(Figure 2) were identified as expressed in RBC. Figure 3(a)
shows the protein-protein interaction network involving
these 366 genes using the StringDB tool.

The functional analysis of the previous network showed
that themost enriched KEGGpathways include the endocytosis
pathway (hsa04144) (FDR = 9:83e − 10), the ubiquitin-
mediated proteolysis (hsa04120) (FDR = 4:10e − 09), the focal
adhesion pathway (hsa04510) (FDR = 6:74e − 07), the regula-
tion of actin cytoskeleton pathway (hsa04810) with an FDR =
1:04e − 06, and the bacterial invasion of epithelial cells pathway
(hsa05100) (FDR = 1:93E − 06) and the spliceosome
(hsa03040) (FDR = 1:73e − 06). Reactome-enriched pathways
include the immune system (FDR = 2:51e − 20), the membrane
trafficking pathway (FDR = 6:36e − 20), the vesicle-mediated
transport (FDR = 1:13e − 19), and the adaptive immune system
(FDR = 7:95e − 15). Among the most enriched protein
domains found with SMART and PFAM, we report “the
ADP-ribosylation factor family” (FDR = 1:06e − 28), “the
RAS, ROC, DAP kinase domain” (FDR = 1:01e − 25), “the
Ras family” (FDR = 7:97e − 25) and the “Gtr1/RagA G protein
conserved region” (FDR = 2:53e − 15).

On the other hand, among the 334 Plasmodium gene-
s/proteins (involved in predicted interactions) (Figure 2),
only 169 out of 2,430 Plasmodium RBC-expressed proteins
were identified based on the integration of P. falciparum
3D7 expression data. Figure 3(b) shows the protein-protein
interaction network involving the 169 Plasmodium RBC-
expressed proteins using the StringDB tool [42].

The functional analysis (using an FDR cutoff of 0.05) of
this network showed that the most enriched KEGG pathways
include malaria pathway (pfa05144) (FDR = 1:85e − 14, the
metabolic pathway (pfa01100) (FDR = 0:0085), and the pro-
panoate metabolism (pfa00640) (FDR = 0:0125). Among the
most enriched Pfam domains, we report the PFEMP DBL
domain (FDR = 1:35E − 22), the N-terminal segments of
PfEMP1 (FDR = 2:11E − 21), the Duffy-binding domain
(FDR = 7:18E − 21), and the acidic terminal segments, variant
surface antigen of PfEMP1 (FDR = 1:09E − 20). Interestingly,
Figure 3(b) showed that PFA0310c and FKBP35 play a key
role and act like linkers between proteins involved in malaria
pathways (represented in blue color in Figure 3(b)) and other
proteins in the network. PFA0310c and FKBP35 encode for a
P-type calcium transporting ATPase sarcoplasmic and
endoplasmic reticulum Ca-ATPase, belonging to the cation
transport ATPase (P-type) (TC 3.A.3) family and for a pepti-
dylprolyl isomerase, FK506-binding protein- (FKBP-) type
peptidylprolyl isomerase, respectively. These proteins may

Homology based Domain based1798803 95453

1142552206839500

34331604 1050 4096 24168

399275910043

8492

813

Machine learning prediction

11520 interactions
involving

3769 human proteins
286 P. falciparum 3D7 proteins

1109 interactions
involving

366 human proteins
169 P. falciparum 3D7 proteins

716 interactions
involving

302 human proteins
130 Plasmodium falciparum 3D7 proteins

Expression data integration

282
Similarity basedOntology based

16679 interactions common between at least 3 approaches
involving 4,609 distinct human proteins interacting with 334 parasite proteins

Figure 2: Comparison between the different approaches. The Venn diagram was created using the Venn diagram tool (http://bioinformatics
.psb.ugent.be/webtools/Venn/).
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(a)

(b)

Figure 3: Protein-protein interactions network generated using StringDB. (a) The human interactome involving the 366 RBC-expressed
genes identified through the combination of different approaches. Nodes in red color denote proteins involved in endocytosis. Those in
blue color denote proteins involved in ubiquitin-mediated proteolysis. Green color corresponds to proteins involved in spliceosome.
Yellow nodes denote proteins implicated in focal adhesion. Pink color represents proteins involved in bacterial invasion of epithelial cells,
while cyan color highlights proteins related to regulation of actin cytoskeleton. (b) The Plasmodium falciparum 3D7 DEG interactome.
Nodes in red color denote proteins involved in the malaria pathway. Nodes with blue color denote proteins involved in “Carbon
metabolism.” Green color corresponds to proteins involved in the Propanoate metabolism.
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have essential roles in P. falciparum erythrocytic stages and
may represent good parasite therapeutic targets.

3.3. The Human-Plasmodium falciparum 3D7 Interactome.
The simultaneous integration of human and Plasmodium fal-
ciparum 3D7 expression data with the machine learning
approach predictions allowed to identify 716 human-Plasmo-
dium falciparum 3D7 interacting proteins in postinfection set-
tings that involve 130 distinct parasite proteins and 302
unique human proteins (Figures 2 and 4, Supplementary
Table 1). Figure 4 displays a human-Plasmodium falciparum
3D7 interacting network following infection.

In order to assess the reliability of the human-Plasmodium
interacting proteins reported in the current study, we have
compared our results with previous experimental and compu-
tational initiatives that are aimed at deciphering human-Plas-
modium falciparum interactions.

We found one interaction previously reported by [15].
This interaction involves PF14_0407 (PF3D7_1442900)
encoding for a putative guanine nucleotide exchange factor
with SAR1B (secretion associated Ras-related GTPase 1B).

Furthermore, four other interactions were previously
reported by [20]. These later correspond to the interaction of
PF14_0244 (PF3D7_1426500) (ABC transporter, putative)
with ABCG2 (ATP-binding cassette subfamily G member 2
(Junior blood group)), MAL13P1.294 (PF3D7_1358900)
(GTP binding protein, putative) with RWDD1 (RWD domain
containing 1), PF13_0157 (PF3D7_1327800) (ribose-phos-
phate pyrophosphokinase, putative) with PRPS1 (phosphori-
bosyl pyrophosphate synthetase 1), and PFI0550w (PF3D7_
0911300) (hypothetical protein) with human CD59 protein

(CD59 molecule (CD59 blood group)). The same study
reported an interaction between MAL13P1.190 (PF3D7_
1338100) (proteasome regulatory component, putative) with
PSMD4 that has not been detected in our study. However,
we report novel interactions of this parasite protein with
PSMD1, PSMD3, PSMD6, PSMD7, PSMD8, and others (Sup-
plementary Table 1). Among interesting findings, we report
no previously reported interactions related to Basal Cell
Adhesion Molecule (BCAM) human protein that interacts
with 43 Plasmodium proteins encoding for erythrocyte
membrane protein 1 (PfEMP1), ABC transporter, (heavy
metal transporter family), cytochrome C oxidase subunit,
phosphatidylinositol 3-kinase, preprocathepsin c precursor,
serine protease belonging to subtilisin family, and histone
acetyltransferase GCN5 (Figure 4, Supplementary Table 1).
Moreover, we report potential interactions between the
human ATP-binding cassette transporter ABCB6 which has
been shown to encode the Langereis (Lan) blood group
antigen and Plasmodium proteins encoding for ABC
transporters. We also reported potential binding of the
human protein ICAM-4 to PFF0800w Plasmodium protein.

Moreover, among the 130 Plasmodium falciparum 3D7
genes involved in the predicted interactions, five were shown
to be expressed exclusively in the ring stage, eight in the tropho-
zoite stage, three in the schizont stage, and 19 in the merozoite
stage. These genes are associated to 26, 75, 122, and 19 interac-
tions, respectively (Supplementary Table 1). Out of these 130
Plasmodium falciparum 3D7 genes involved in the predicted
interactions, we also identified 5 proteins (PF11_0245, PF13_
0044, PF14_0230, PFE1035c, PFL0815w) expressed in both
ring and trophozoite stages, two proteins (PF07_0139, PF08_

Figure 4: Host pathogen protein interaction network. Blue nodes denote human proteins. Yellow nodes refer to Plasmodium falciparum 3D7
proteins. The network was generated using Cytoscape 3.7.2.
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0141) expressed in both trophozoites andmerozoites, 1 protein
(PF11_0097) expressed in both trophozoites and schizont, 1
protein (PF11_0362) expressed in both ring and schizont,
and 32 expressed in the 4 stages (Supplementary Table 1). A
functional analysis of these proteins involved in transition
from a stage to another showed that these later are enriched
in PFEMP DBL domain (PF03011) (FDR = 0:00066), Duffy-
binding domain (PF05424) (FDR = 0:00066), acidic terminal
segments, variant surface antigen of PfEMP1 (PF15445)
(FDR = 0:00066), and N-terminal segments of PfEMP1
(PF15447) (FDR = 0:00066). These proteins may present a
good therapeutic target to avoid parasite transition state and
stop parasite life cycle progress.

4. Discussion

Host-pathogen protein-protein interactions underlie the crit-
ical process of infectious diseases by which pathogenic agents
are able to invade host cells [51]. In the context of malaria
disease, diverse efforts have been made during the past
decades to identify human-Plasmodium proteins interaction
including the use of computational methods to understand
the mechanisms underlying the disease in order to develop
novel therapeutic solutions [11, 12, 14, 17, 18]. While these
investigations are reliable and represent highly valuable
resources contributing to decipher the mechanisms underly-
ing malaria disease, some may contain large false-positive
predictions due to the exclusion of important criteria such
as gene expression data in human and Plasmodium parasite
and/or domain-domain interactions [12, 14, 15, 17, 18].
Indeed, gene expression data and domain-domain interac-
tions constitute essential and key criteria that have to be con-
sidered. In order to comprehensively describe infections, the
underlying gene expression changes in host and pathogen
need to be clearly understood. Here, we are proposing an
integrative computational approach based on the combina-
tion of multiple criteria including GO terms, similarity struc-
tures between proteins, homology data, domain-domain
protein interactions, gene expression data in the host, and
the pathogen and machine learning approaches. We used
human and Plasmodium expression data previously identi-
fied by mass-spectroscopic proteome analysis of the human
or plasmodium red blood cell that mainly relies on the phys-
ical separation of the two infection partners. While this tech-
nique is widely used, the dual RNAseq technique is another
method that allows to profile gene expression in an infecting
pathogen and its infected host simultaneously [52, 53] per-
mitting a better investigation of host-pathogen proteins
interaction when such data are available.

Subsequently, we report a set of human-Plasmodium fal-
ciparum 3D7 protein-protein interactions that have not been
reported before including human proteins BCAM, ABCB6,
and ICAM-4 with a considerable number of Plasmodium
proteins known to be involved in the disease and expressed
at different parasite stage life cycle. BCAM encodes for
Lutheran blood group glycoprotein, a member of the immu-
noglobulin superfamily and a receptor for the extracellular
matrix protein, laminin. Previous studies have identified
BCAM as a receptor for Escherichia coli Cytotoxic Necrotiz-

ing Factor 1 (CNF1) and show that it is essential for cell
intoxication [54]. A recent study assessed ABCB6 as a host
factor for Plasmodium falciparum malaria parasites during
erythrocyte invasion and that ABCB6 may mediate P. falci-
parum invasion through species protein-protein molecular
interactions [55]. Moreover, it was previously suggested that
ICAM-4 binds to P. falciparum merozoites, and the addition
of recombinant ICAM-4 to parasite cultures blocks invasion
of erythrocytes by newly released merozoites [56]. BCAM is
an extracellular matrix protein belonging to the immuno-
globulin superfamily. It interacts with laminin via its five
immunoglobulin-like domains. On the other hand, PfEMP1
has been demonstrated to use ICAM-1, another surface pro-
tein belonging to the immunoglobulin superfamily, to inter-
act with the host red cell [57]. Given the homology between
ICAM-1 and BCAM, it is therefore likely that they would
contribute to the same biological process in the physiopa-
thology of the P. falciparum infection. The existing overlap
with previous studies consolidates the reliability and credibil-
ity of the present approach that could be applied to investi-
gate other host-pathogen protein-protein interactions. We
reported a set of proteins involved in transition from parasite
stage to another including PFE1035c and PF13_0044 that are
enriched in pyrimidine metabolism KEGG pathway and in
PFEMP DBL domain (PF03011) (FDR = 0:00066), Duffy-
binding domain (PF05424) (FDR = 0:00066), acidic terminal
segments, variant surface antigen of PfEMP1 (PF15445)
(FDR = 0:00066), and N-terminal segments of PfEMP1
(PF15447) (FDR = 0:00066). These proteins may present a
good therapeutic target to avoid parasite transition state
and stop parasite life cycle progress. A previous study
reported the important role of the purine and pyrimidine
pathways for P. falciparum cell growth and division. Indeed,
the rapid rate of nucleic acid synthesis during the intraery-
throcytic growth phase makes purine and pyrimidine meta-
bolic pathways promising targets for novel drug
development [58]. Furthermore, we reported another protein
PF11_0240 encoding for dynein heavy chain that may pres-
ent an interesting therapeutic target. Another study investi-
gated the role of dynein heavy chain, suggesting that it may
play a role in the flagellar motility of the male gametes [59].
Moreover, we reported some Plasmodium falciparum hub
proteins (Figure 4) having the potential to interact with sev-
eral human proteins including PFI0480w encoding for a heli-
case with Zn-finger motif, PF11_0240 that encodes for a
dynein heavy chain, and PFE0765w encoding for a phos-
phatidylinositol 3-kinase. Additional studies have shown that
helicases are omnipresent enzymes playing a prominent role
in nucleic acid metabolism and can be used as potential tar-
gets for the development of novel therapeutics [60]. In addi-
tion, it was previously shown that the inhibition of
phosphatidylinositol 3-kinase prevented the parasite trans-
port to the food vacuole, the site of hemoglobin catabolism,
and caused the inhibition of parasite growth [61].

5. Conclusions

Computational methods may play important roles in paving
the way for experimental host-pathogen interactions
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verification by highlighting key potential interactions and
limiting the experimental scope leading to expense reduction
and rapid knowledge generation. Here, we investigated
human-Plasmodium protein-protein interactions using an
integrative computational approach. We report a set of bio-
logically relevant host-pathogen interactions that will enrich
existing resources and may contribute to a better under-
standing of the etiology of the disease. The present approach
is not restricted to a particular host or pathogen but can be
applied for predicting other host-pathogen interactions
unless gene expression data is available. The detailed interac-
tion map between proteins from the pathogen and the
human host would help to identify key hubs in the infection
physiopathology process.
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