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A B S T R A C T

Brain activity is a dynamic combination of the responses to sensory inputs and its own spontaneous processing. Consequently, such brain activity is continuously
changing whether or not one is focusing on an externally imposed task. Previously, we have introduced an analysis method that allows us, using Hidden Markov
Models (HMM), to model task or rest brain activity as a dynamic sequence of distinct brain networks, overcoming many of the limitations posed by sliding window
approaches. Here, we present an advance that enables the HMM to handle very large amounts of data, making possible the inference of very reproducible and
interpretable dynamic brain networks in a range of different datasets, including task, rest, MEG and fMRI, with potentially thousands of subjects. We anticipate that the
generation of large and publicly available datasets from initiatives such as the Human Connectome Project and UK Biobank, in combination with computational
methods that can work at this scale, will bring a breakthrough in our understanding of brain function in both health and disease.
1. Introduction

Understanding the nature of temporal dynamics of brain activity at a
range of temporal and spatial scales is an important challenge in
neuroscience. When studying task data, the aim is to discover the neural
underpinnings and brain mechanisms elicited by the task, for which one
relates the time course of the measured data to behaviour as compre-
hensively as possible. That is to say, we are interested in the dynamics
evoked by the task. In this case, many repetitions of the same task are
typically considered in the hope of characterising and interpreting the
differences with respect to some baseline condition. Presumably, the
brain adapts to the task at different time scales and in an online fashion,
and we would like to capture these changes at as high a temporal reso-
lution as the imaging modality will allow. When studying rest data,
where the brain is not engaged in a predefined task, the brain will still
process information dynamically, adapting its activity to the current
perception of the environment combined with the products of its own
spontaneous activity. In this case, then, we are interested in character-
ising the spontaneous dynamics. Either case, being able to characterise
the temporal trajectories of whole-brain network activity at different
time scales is, considering the complex and deeply integrated nature of
the brain, crucial to understand the ultimate underpinnings of cognition
(Buzs�aki and Draguhn, 2004; Bressler and Menon, 2010).

The most common analysis technique used for describing brain
network dynamics in both task and rest is the use of sliding windows
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(Wendling et al., 2009; Allen et al., 2014). The sliding windows approach
(and methods built upon it) suffers from a number of limitations (Hin-
driks et al., 2016) that can undermine any conclusions. In particular, they
need a pre-specification of the time scale at which the neural processes of
interest occur, i.e. the temporal width of the window. This choice is
crucial and is a trade-off between two conflicting criteria: too long a
window will miss fast dynamics, whereas too short a window will have
insufficient data to provide a reliable network estimation. An alternative
to the sliding window approach is the Hidden Markov Model (HMM),
which can be used to describe brain activity as a dynamic sequence of
discrete brain states, each characterised by a distinct pattern of network
activity, including functional connectivity and/or spectral content (Baker
et al., 2014; Vidaurre et al., 2016; Vidaurre et al., Woolrich). The HMM
can be applied to task data to provide a rich description of the brain
dynamics; for example, by estimating the HMM in a completely unsu-
pervised way (i.e. with no knowledge of the task), and then post-hoc
relating the HMM state sequence to the task timings, to reveal task-
dependent functional connectivity dynamics (Vidaurre et al., 2016).
This strategy can reveal task-related processes that are too fast to be seen
by sliding window analyses (Vidaurre et al., 2016). The HMM can also be
used on resting data to capture quasi-stationary states of activity that are
consistently recurring over a population (Baker et al., 2014). This allows
for the analysis of how certain dynamic properties vary across subjects,
such as the transition probabilities between states or the differences of
state occupancies (i.e. how much time is being spent in each state). An
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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illustration of the HMM in both rest and task is presented in Fig. 1.
In the context of the HMM, increasing the amount of data can help to

achieve richer and more robust conclusions about the dynamic nature of
brain activity. In task, for example, having more trials will allow us to
have a better understanding of the timing of brain activity in relation to
the task and its trial-by-trial variability (which is due in part to noise but
also to interesting cognitive processes such as learning). Fortunately,
projects like the Human Connectome Project (HCP) (Van Essen et al.,
2013) and UK Biobank (Sudlow et al., 2015) are recently producing an
unprecedented amount of high quality data, with the number of subjects
on the order of hundreds or thousands. However, group-level HMMs (run
on data temporally concatenated over all subjects) are computationally
expensive to train on such massive data sets. This problem is exacerbated
if we use more complex HMM observation models (i.e. the model of the
data produced for each HMM state), such as the use of a multivariate
autoregressive model (MAR), designed to capture state-specific multi-
region spectral information in electrophysiological data (Vidaurre
et al., 2016).

In this paper, we propose an alternative to the standard HMM that
uses a stochastic variational inference approach that can be applied to
very large neuroimaging data sets, by greatly reducing its computational
cost. The algorithm is generally applicable to the different instantiations
of the HMM framework that are required for different data modalities. In
the hope that it will be useful to other researchers, a Matlab toolbox
implementing the algorithm has been publicly released.1 In the present
work, we demonstrate the approach's performance on 820 subjects'
resting-state fMRI data from the HCP, 5248 subjects' resting-state fMRI
data from UK Biobank, and 52 subjects' MEG task-data from the HCP (this
last dataset using a MAR observation model at high temporal resolution).
Altogether, we use these examples along with simulated data to
demonstrate that having a suitable computational method that scales
well to large amounts of data can significantly enrich our description of
dynamic brain activity.

2. Methods

2.1. The HMM and variational inference

The HMM is a family of models that can describe time series of data
using a discrete number of states, all having the same probabilistic dis-
tributions but each having different distribution parameters. Thus, the
states correspond to unique patterns of brain activity that recur in
different parts of the time series. For each time point t, a state variable
dictates the probability of each state being active at that moment. Fig. 1a
exemplifies the model; on top, there are the state time courses, i.e. the
values of the state variable across time; in the bottom, there is a graphical
description of some states, in this case parametrised in terms of their
mean activation level and functional connectivity. This general frame-
work has different instantiations, depending on the choice of the obser-
vation model distribution. The most common variety of the HMM uses a
multivariate Gaussian observation model, typically characterising the
distribution of each state k by its mean μk and covariance Σk (Baker et al.,
2014). It is important to bear in mind that our definition of a network is
different from the activation maps that for example Independent
Component Analysis (ICA) provides. The HMM Gaussian states contain
not only an activation map (encoded by μk) but also a covariance matrix
that can be interpreted as a network matrix of functional connectivity (as
in e.g Fig. 1a). Another version of the HMM is the HMM-MAR, where the
observation model is an autoregressive model and, thus, the states are
defined and driven by their spectral signature (Vidaurre et al., 2016). In
this case, both the amount of activity and connectivity are established as
a function of frequency. A third possibility is the HMM-AR (HMM with
autoregressive models), where the cross-channel interactions are not
1 https://github.com/OHBA-analysis/HMM-MAR.
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modelled. The AR is an intermediate point of model complexity between
the Gaussian and the MAR models that keeps the channel-by-channel
spectral information. Both the AR and the MAR have an important
parameter: the model order, which controls the amount of detail in
modelling the state spectra.

Whichever the chosen observation model distribution, an HMM
generally comprises the description of the states, the state time courses
(which determines the probability of each state to be active at each time
point in the time series) and the transition probabilities between the
states (i.e. the probability to transition from each state to each other
state). Because here we run the HMM on all concatenated subjects'
datasets, the states and the transition probabilities are defined at the
group level; the state time courses are however particular to each subject
- that is, states can come active at different moments for each subject.
Since the probability distribution of each part of the model depends on all
others, there is no closed-form solution available. A popular inference
paradigm that assumes certain simplifications in the model is variational
Bayes (Wainwright and Jordan, 2008), which has its roots in the field of
statistical physics, and, earlier than that, in the calculus of variations
developed in the 18th century by Euler and others mathematicians. The
variational inference methodology introduces certain factorisations in
the HMM probability distribution such that we can iterate through
different group of parameters, leaving the remaining parameters fixed
and thus reducing the computational burden. The goal is the mini-
misation of the so-called free energy, a quantity that includes the
Kullback-Leibler divergence between the real and the factorised distri-
butions and the entropy of the factorised distribution. The equations for
the computation of the free energy in the context of the HMM can be
found elsewhere (Vidaurre et al., 2016).

2.2. Stochastic variational inference for handling large data sets

The estimation of the observation model distribution for the Gaussian
case implies the inversion of a Q-by-Q matrix per state, where Q is the
number of channels or time series (e.g. brain areas); in the case of the
MARmodel, it requires the inversion of a PQ-by-PQmatrix, where P is the
order of the MAR. In the standard variational inference approach, either
case requires the entire data set to be loaded into memory. The estima-
tion of the state time courses (for any HMM type of model, whether one
uses variational inference or the maximum-likelihood approach) is based
on the so-called Baum-Welch (also referred to as forward-backward)
recursions (Baum et al., 1970), which, having computed the likelihood
of each state at each time point, requires a complete sequential forward
pass through the data followed by a complete backwards pass. Although
this process is parallelizable across subjects, it can still be time consuming
when the time series are long and/or the number of subjects is large.
Therefore, standard variational inference for the HMM can be chal-
lenging for large data sets, because of (i) the memory required to estimate
the observation models and (ii) the computation time taken by the esti-
mation of the state time courses. In this paper, we make use of the
principle of stochastic optimisation (Robbins and Monro, 1951) applied
to variational inference (Hoffman et al., 2013) and apply it to the HMM,
in order to develop a very efficient optimisation algorithm that addresses
both computational difficulties, allowing for the estimation of the HMM
on many subjects in just a few hours, and with modest memory
requirements.

Standard variational inference guarantees the free energy to decrease
at each iteration and, eventually, to converge. Stochastic variational
inference instead performs a noisy and computationally cheap update at
each iteration. Although those can occasionally lead to small free energy
increments, they will typically improve the model. Over many iterations
it is guaranteed to converge (Robbins and Monro, 1951; Hoffman et al.,
2013). In this case, “noisy” means that we base each iteration on a
random subset of M subjects: these are what we need to keep in memory
to estimate what we refer to as the interim state observation models and
for which we need to compute the state time courses. (Importantly, to

https://github.com/OHBA-analysis/HMM-MAR


Fig. 1. Scheme of HMM working on rest (a) and rest (b). In both cases, the HMM estimates several brain networks (or states) that are common to all subjects or trials, together with a
specific state time courses for each subject which indicates when each state is active. In task, we can compute the state mean activation locked to the behavioural event, producing a state
evoked response, which corresponds to a time-course of the proportion of trials for which subjects are in each state.
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obtain an interim state observation model, we must compute its param-
eters as though N subjects were actually used so that the estimation's
properties mimic that of a standard variational step). This way, we have
an interim estimation of the observation models, which (thanks to the
additivity of the Gaussian and MAR distributions) can be linearly com-
bined with the current estimation to form the new estimation. Such
combination is parametrised by some scalar ρ such that

ϕnew ¼ ð1� ρÞ ϕold þ ρϕinterim (1)

where ϕnew, ϕold and ϕinterim represent, respectively, the new, previous
and interim posterior distributions of the observation models, and ρ de-
creases as the algorithm progresses, so that, at iteration c we have

ρ ¼ ρðcÞ ¼ ðcþ αÞ�β (2)

with α and β being some «delay» and «forget» parameters.
The estimation of the state transition probabilities is done exactly

with little extra cost by keeping the sufficient statistics of the state time
courses, Σt Pr(st) Pr(st-1), where st represents the hidden state at time
point t, and Pr(st) represents the probability distribution of each state
being active at t.

In Baum et al. (1970), the sampling of the subjects is purely random;
here, we propose to (stochastically) promote those subjects that have
been historically sampled fewer times. We do this through the
648
following equation

wi ¼ τri ; (3)

where wi is the unnormalised probability of selecting subject i, ri the
number of times that subject i has been selected in previous iterations
(scaled so that mini(ri) ¼ 0) and τ � 1 is a parameter controlling how
much we discourage subjects that have been frequently selected to be
picked up at the current iteration.

The HMM optimisation is known to potentially suffer from having
local minima. For this reason, and although stochastic inference can help
to avoid flat local minima by virtue of the noisiness in the updates
(Hoffman et al., 2013), the initialisation plays a crucial role because it
can get the optimisation process away from poor regions of the parameter
space. Hence, we need an initialisation mechanism that is computa-
tionally affordable in both time and memory use. The initialisation
strategy that we propose here provides a reasonably good solution
without being computationally expensive. In short, it consists of running
separately the standard HMM inference on subsets of subjects and
combining the results into a single solution using a matching algorithm.
A detailed description is presented in the Supplementary material.

The algorithm is summarised as follows:

1. Initialise the observation models.
2. Repeat:



2 https://www.humanconnectome.org/documentation/MEG/MEG1_Release_
Reference_Manual.pdf.
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a. Choose M subjects at random using probabilities, wi, computed as
in (Eq. (3)).

b. Compute the state time courses for the M subjects.
c. Compute the interim state probability distribution using the M

subjects as though we had N subjects.
d. Perform an approximate update of the state probability distribu-

tions using (Eq. (1)).
e. Perform an exact update of the state transition probabilities.
f. Update ρ using (Eq. (2)).
g. Compute the free energy.

Until the free energy converges.
In this paper, we have used α ¼ 5, β ¼ 0.7, and τ ¼ 0.9. There is a

limited impact of the precise choice of α, β and τ. Of more importance is
the choice of the value of M, which we varied depending on the data set
(see below). As reported in Hoffman et al. (2013), very low values of M
can have a negative effect, as the updates become too noisy; very large
values can be computationally costly and typically do not bring much
benefit. The chosen value is thus a trade-off.

Note that the general stochastic inference framework is the same for
the Gaussian and the MAR state models, differing only in the particulars
as to how to perform inference of the observation model parameters (step
2c). More comprehensive information can be found elsewhere about
variational inference (Wainwright and Jordan, 2008), stochastic varia-
tional inference (Hoffman et al., 2013), the Hidden Markov model
(Rabiner, 1989), and its applications to neuroimaging (Baker et al., 2014;
Vidaurre et al., 2016; Vidaurre et al., Woolrich).

2.3. Simulated data

We first used synthetic signals to demonstrate the validity of the
proposed stochastic inference approach. We generated two classes of
signals using the HMM as a generative model. For the Gaussian obser-
vation model, we simulated 6 states, each with 10 regions and a
randomly generated covariance matrix. For each subject, in order to
verify that the stochastic algorithm produces similar results to the non-
stochastic algorithm when there is some inter-subject variability, a
small perturbation was applied to the covariance matrix by adding a
second randommatrix, sampled from the same distribution and scaled by
a factor of 1 � 10�2. For the MAR observation model, on the other hand,
we used 3 states, each with two channels/regions. These states were
obtained from an actual HMM-MAR estimation on the task-MEG HCP
data (described below), where we observed that two of the states (red
and blue, see Results) were capturing the neural dynamics associated
with the task, and the other state (green) corresponded to a baseline
state. For both observation models, we simulated state time courses for
200 subjects, with 500 samples per subject.

2.4. fMRI data

We used resting-state fMRI data from N ¼ 820 subjects from the HCP,
all healthy adults (ages 22–35 years, 453 females) scanned on a
3 T Siemens connectome-Skyra. For each subject, four 15-min runs of
fMRI time series data with temporal resolution 0.73 s and spatial reso-
lution 2-mm isometric were available. The preprocessing pipeline is the
same as in Smith et al. (2015): following artefact removal using FSL tools
(Jenkinson et al., 2012), we used group spatial-ICA to obtain a “parcel-
lation” of 50 components that covers both the cortical surfaces and the
subcortical areas; then, we used this parcellation to project the fMRI data
into 50-dimensional time series; such time series, of size (number of
participants x number of scans x number of time points x number of ICA
components¼ 820 � 4 x 1200 � 50), were standardised so that, for each
scan, subject and ICA component, the data have mean 0 and standard
deviation 1.

We also used resting-state fMRI data from the UK Biobank, a large-
scale prospective epidemiological study aiming to allow the
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identification of risk factors and early biomarkers relating to many dis-
eases (Sudlow et al., 2015; Miller et al., 2016; Alfaro-Almagro et al.,
1000). We used the first public release containing 5847 resting-state
subjects (aged 40–69 when recruited). The data was acquired in a
3 T Siemens Skyra using a 32-channel receive head coil with Multiband
acceleration of 8x for 6 min and 10 s (490 timepoints), with temporal
resolution of 0.735s, and spatial resolution of 2.4 mm isometric. Pre-
processing was similar to that for HCP data, including motion correction,
intensity normalisation, high-pass temporal filtering and EPI unwarping
(Alfaro-Almagro et al., 1000). We then use ICA (Beckmann and Smith,
2004) followed by automated classification and removal of the artefact
components (Griffanti et al., 2014). Group-ICA was then run using the
first 5248 subjects' cleaned data, resulting in 100 group-level compo-
nents, of which 55 were manually classified as non-artefact and used for
the HMM analyses. Dual regression analysis (Beckmann et al., 2009) is
performed to obtain subject-specific node timeseries associated with the
group-level parcels, for feeding into the HMM analyses.

2.5. MEG data

We used 52 MEG subjects from the HCP having both resting state and
the motor task data available (Larson-Priora et al., 2013). Resting state
data consisted three sessions (6 min each, eyes open), and the examined
task data has two sessions of 14min each. The chosen task sessions
consisted of blocks of moving either left or right hand and feet respec-
tively. Here, for simplicity, we used the right hand moves only. We used
the preprocessing pipelines offered by the HCP consortium, removing
bad channels, segments and bad independent components from task and
rest data.2 After bandpass filtering (1–48 Hz), the MEG data were LCMV-
beamformed (Woolrich et al., 2011). Using the AAL atlas, we considered
the two parcels representing left and right precentral gyrus, and use PCA
to extract the first principal component from each one. The motor task
was a simple localizer task that included right hand movements; data
epochs were time-locked to EMG onset and downsampled to 100 Hz. For
the resting-state data, artificial epochs of the same size as the task epochs
were uniformly spread throughout the session. In both the rest and task
data, the resulting parcels were then sign-flipped, if necessary, to match
the corresponding MEG sensor motor-related evoked fields with same
polarity across all subjects (Vidaurre et al., 2016). Parcel time-series were
also normalized before being subject to HMM analysis, such that they
have mean equal to zero and standard deviation equal to one for all
subjects separately.

2.6. Available software

The HMM is available in both the standard and the stochastic infer-
ence versions as a Matlab toolbox in a public repository.1 Currently,
Gaussian, MAR and AR observation models are available, with the option
of working in PCA space to control the dimensionality. This is particu-
larly useful in the case of the MAR model, where the number of model
parameters rapidly (quadratically) increases with the number of chan-
nels. The toolbox also offers some data preprocessing utilities and two
different ways to compute the state spectra once the HMM has been
estimated: one makes use of a weighted version of the multitaper intro-
duced in Vidaurre et al. (2016), and the other uses the MAR or AR pa-
rameters directly.

3. Results

3.1. Simulated data

The aim is to use the simulated data to verify that the stochastic
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https://www.humanconnectome.org/documentation/MEG/MEG1_Release_Reference_Manual.pdf


D. Vidaurre et al. NeuroImage 180 (2018) 646–656
algorithm's performance is consistent with the standard HMM inference,
by comparing model inference using the non-stochastic and stochastic
algorithms. We ran (standard) non-stochastic inference and stochastic
inference for 100 different random state time courses. Because the
ordering of the states in the output is random, we matched the states of
the estimation and the ground truth model based on the correlations
Fig. 2. Results for simulated data, for the Gaussian and the MAR case. (a) Mean correlation b
approach (left), and between state time courses inferred using the stochastic approach and the
sizes and the MAR observation model, for different batch sizes. (b) Ground truth and inferr
intersubject variability. (c) Mean activation (mean of the Gaussian distribution) and functiona
against the standard and stochastic inference estimations; each colour represents a different st
functional connectivity. (d) Ground truth and inferred state time courses for one subject, using th
state (blue, red and green) for the ground truth model (continuous lines) and the estimated mo
correspond to stochastic inference).
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between the state time courses. Once the states are matched, we use the
average correlation between matched states as a similarity measure to
compare the estimations to the ground truth, and to compare the stan-
dard inference to the stochastic inference. Fig. 2a shows, for three
different stochastic batch sizes, the mean correlation between the sto-
chastic and non-stochastic algorithms (left) as well as the mean
etween state time courses inferred using the non-stochastic approach and the stochastic
ground truth (right), for the Gaussian observation model with two different perturbation
ed state time courses for one subject, using the Gaussian observation model with high
l connectivity (off-diagonal elements of the covariance matrix) of the ground truth model
ate, and each dot represents a region if showing the mean or a pair of regions if showing
e MAR observation model. (e) Power estimation for each channel (left and right) and each
dels (discontinuous lines; top panels correspond to standard inference and bottom panels



Fig. 3. Results of the stochastic HMM inference on resting-state fMRI data from 820 HCP subjects, using a Gaussian distribution to describe each state. (a) Mean activation for three
example states. (b) Histogram of the maximum fractional occupancy, a measure aiming to check whether the HMM is able to characterise the dynamics of the data (see Results). (c)
Correlation of the state time courses across different runs of the algorithm, showing that the results are robust and consistent across runs. (d) Correlation of the activation maps and
functional connectivity between estimations obtained from separate half-splits of the data set, averaged across 5 random splits, and with the states ordered from less to more correlated. (e)
Fractional occupancy (defined as the total time spent by the subjects in each state) and distribution of dwell time (i.e. the time spent in each state visit) per state, reflecting basic aspects of
the temporal dynamics of the data. (f) Transition probability matrix, reflecting the probability to transition between every pair of states.
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correlation between the stochastic estimations and the ground truth
(right). A full representation of the 100 runs is presented in the form of
histograms in Fig. SI-1. In general, even in the limit of a batch size of one
subject, we find the stochastic algorithm still infers state time courses
that are well correlated with the non-stochastic algorithm. As expected,
however, the similarity between the two algorithms is higher for larger
batch sizes (in the limit of a batch size equal to the number of subjects,
the two algorithms are exactly equivalent).

Representative examples of the inferred state time courses for a single
subject are shown in Fig. 2b and d for the Gaussian and the MAR cases
respectively (these examples' accuracies correspond to the median of the
100 runs). The ground truth average activity (mean of the state's
Gaussian distribution) and functional connectivity (off-diagonal ele-
ments of the state covariance matrices) for the Gaussian case is plot
against the standard and stochastic estimations (with batch size equal to
50) in Fig. 2c, where each colour represents a different state, and each
dot represents a region (if showing the mean) or a pair of regions (if
showing functional connectivity). The state spectra information for the
ground truth (solid lines) versus the standard inference and stochastic
inference estimations (discontinuous lines) is illustrated in Fig. 2e for the
two channels. These results together indicate that the inference is
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consistent between the standard and the stochastic algorithms for a va-
riety of configuration parameters, with both algorithms able to reason-
ably recover the ground truth.
3.2. HCP resting fMRI data

We used stochastic inference on 820 resting-state fMRI subjects from
the HCP to obtain 12 states of quasi-stationary brain connectivity. We ran
the algorithm 5 times, with an average running time of 221min (mini-
mum and maximum were 208min and 225min) using a standard work-
station (endowed with four Intel Xeon CPU E5-2643 0 3.30 GHz
processors). We used M ¼ 30. Some of the results that follow are from a
selected run of the stochastic algorithm. However, the different runs were
relatively similar (see below). With these results, our goal is to illustrate
(i) the type of information the HMM can provide about brain dynamics,
and (ii) the ability of the stochastic inference to produce useful and non-
trivial results. Note that it is not possible to make a comparison of the
standard inference and the stochastic inference in this case because the
standard inference is computationally implausible given the size of the
data set.

Fig. 3a shows the mean activation maps for three of the twelve



Fig. 4. Results of the stochastic HMM inference on resting-state fMRI data from 5248 UK Biobank subjects, using a Gaussian distribution to describe each state. The description of each
panel is analogous to that of Fig. 2, except for the activation maps being volumetric instead of showing the cortical surface.
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networks (states), representing a sensory state, a default mode network
(DMN) state, and a visual state (the rest are presented in Fig SI-2).
Regarding the temporal information, the most fundamental output is the
state fractional occupancy, defined as the proportion of time that each
subject spends in each brain state. A model that captures the within-
subject temporal dynamics effectively (as opposed to a model that only
finds between-subject differences) would be expected to have subject-
specific fractional occupancies such that single states do not “domi-
nate” entire subjects. In other words, for an HMM to be useful in
describing brain dynamics, we expect each subject's time to be shared by
various states. A statistic reflecting the satisfaction of this minimum
requirement is the maximum fractional occupancy; that is, for each
subject or scanning session, how much time of the time series is taken by
the state that takes the longest. Fig. 3b shows a histogram with the
maximum fractional occupancy. Most subjects have maximum fractional
occupancy below 0.4, demonstrating that most subjects need several
states to be optimally described.

Another important sanity check is how consistent are separate runs of
the stochastic inference. This is important, because the standard HMM
estimation is, as mentioned earlier, known to be to some extent depen-
dent on the initialisation, and our algorithm is introducing an additional
stochastic factor. To investigate this, we match the states across different
HMM stochastic estimations (using the Hungarian algorithm from
Munkres (1957), applied to the correlation of the state time courses), and
collect the correlation of the state time courses between the re-ordered
estimations (i.e. for each pair of matched states from two different
runs, we get the correlation between these states' time courses). Fig. 3c
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shows that these correlations are high (most typically over 0.75),
reflecting the robustness of the proposed stochastic inference approach.

A further robustness test, which would also speak to the reliability of
the potential scientific conclusions, is to split the data set into two halves
and run the HMM separately. Here, we have used 5 different half-splits,
computing the correlation between the activation maps and functional
connectivity (off-diagonal elements of the covariance matrix) between
the two 410-subject HMMestimations for each of the splits. Fig. 3d shows
these correlations (averaged across the 5 splits) for each state, with the
states ordered from more to less correlated. Most states show a high
correlation between the two half-split estimations for both mean acti-
vation and functional connectivity, with the exception of one state, which
has a relatively low correlation for the activation maps. This state,
however, has a mean activation very close to zero in both estimations,
with the covariance matrix instead capturing most of the distinct state-
specific characteristics of the data when the state is active. Further-
more, Fig SI-4a examines the stability of the transition probabilities be-
tween half-splits, which are also quite robust.

Having assessed the basic validity of the stochastic inference, we
analysed in more detail the temporal characteristics of one of the runs.
Fig. 3e shows the fractional occupancy for every state along with the
distribution of the states' dwell times (which refers to the temporal
duration of the state visits). From this figure, we can see certain differ-
ences in the sense that some states are visitedmore than others. However,
the differences in terms of dwell times are small. Finally, Fig. 3f shows
the transition probability matrix, showing that some (state-pair) transi-
tions are more probable than others (Allen et al., 2014). Altogether, these



Fig. 5. Results of the stochastic HMM inference on task MEG data from 52 MEG subjects, modelling the activity of the two motor cortices during a button-press task (1.2s inter-trial
interval). To describe each state, we used a multivariate autoregressive model (MAR) distribution that can capture the spectral properties of the data. (a) The HMM, blind to the task
information during the inference of the model, can discover states that reflect the underlying task dynamics; correspondingly, the state evoked response (top left panel) differentiates
between event-related components that increase in probability (e.g. state blue, representing the evoked response) and others that show a decrease (e.g. state red, representing the event-
related desynchronisation). When combining each state's temporal (top left panel) and spectral information (top right panel), the approach provides a time-frequency description of the
data (bottom panel). Notably, the HMM captures the rhythmicity of the task (i.e. hand movements every 1.2s). (b) State onset probability, indicating, for each state and time point, the
proportion of trials for which the state becomes active at this time point; each thin line represents a subject and the thick line is the group average; statistical significance of whether the
dominant state has significantly larger onset probability than any of the other states is shown on top. (c) State evoked response for data where no task is performed. (d) Correlation of the
state time courses across different runs of the algorithm, proving that the runs are extremely consistent. (e) Correlation of the power spectral densities between estimations obtained from
separate half-splits of the data set, averaged across 5 random splits, and with the states ordered from less to more correlated. (f) Fractional occupancy and dwell times of the four states. (g)
Transition probability matrix.
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results demonstrate that the HMM, when combined with the stochastic
inference algorithm, can reproducibly model brain dynamics in large
fMRI data sets.

3.3. Biobank resting fMRI data

Next, we used the stochastic algorithm on 5248 fMRI subjects from
the resting-state data set of Biobank, again performing 5 runs of the al-
gorithmwithM¼ 250. The average running time was 144min (minimum
andmaximumwere 141min and 148min). In this case, tests based on half
splits and 12 states (see HCP Resting fMRI Data section) revealed that 8
out of 12 states were robust across halves (see Fig SI-5). The HCP data set
allowed 12 reliable states possibly because of the higher data quality and
more scanning time per subject. Basing then on the reliability of the re-
sults, we present here the model with 8 states. Three of them, repre-
senting sensory-motor, DMN and visual networks, are displayed in
Fig. 4a (the rest are shown in Fig SI-3). The rest of the figures (Fig. 4b-f)
are analogous to the HCP results, and the conclusions are similar. The
HMM can capture the dynamics of brain activity (Fig. 4b), and the sto-
chastic inference was robust and consistent across different runs of the
algorithm (Fig. 4c) and between random half-splits of the data set
(Figs. 4d and SI-4b); this consistency was however less pronounced than
in the HCP data set, probably due to the very high quality of the HCP
data. As with the HCP, there were some differences in fractional occu-
pancies across states. In this case, however, the differences in dwell time
were larger than for the HCP, but still not huge.

It is worth noting that, although some similarities exist, there are
certain differences between the HCP and the Biobank states. This is
possibly due not only to differences in the pipeline and the characteristics
of the data, but also to fact that the data is projected into different spaces:
whereas the state maps for Biobank are volumetric, the HCPmaps refer to
the cortical surfaces. Indeed, the ICA decompositions emphasise different
areas in the two data sets. To illustrate this discrepancy, Fig. SI-6 shows
“representability” maps, where, for each voxel (or grayordinate), we
compute the sum of the absolute values of all ICA components. This in-
dicates howmuch is each region represented by each ICA decomposition.
These apparent differences in the independent components on which the
HMM was run are likely to explain much of the differences in the
HMM results.

3.4. Task MEG data

Finally, we test the performance of the stochastic inference algorithm
in task using 52 MEG subjects from the HCP. In this case, we used a MAR
observation model of order 5 to describe the states, such that, as dis-
cussed above, the segmentation will be based on the spectral information
of the data. Given the relative simplicity of the task and because we have
only two data channels (brain regions), we limit our HMM to infer 4
states only. Again, we run the algorithm 5 times with M ¼ 8, which took
166min on average (with minimum and maximum of 90min and
229min). Note that the size of data set and the number of model pa-
rameters just about permits the use of the standard inference approach,
albeit at great computational cost. The stochastic algorithm can relatively
easily handle this data and model, and, although we here focus on only
two regions to allow for straightforward comparisons with previous work
(Vidaurre et al., 2016), it has the potential to be extended, for example, to
work over more brain regions (e.g. spanning the whole brain).

We next show that, similar to what was previously shown using
standard inference (Vidaurre et al., 2016), the HMM can capture differ-
ences in activity modulated by the task. Fig. 5a (top left) shows the
average state time courses (with standard errors) around the button press
event, which can be interpreted as a “state evoked response”, i.e. what is
the average probability (across trials) of each state being active at each
time point. Two states, blue and red, capture most of the task-relevant
dynamics. This is confirmed quantitatively by applying statistical
testing, where we tested for each state and time point whether the
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fractional occupancy of the state is significantly different (higher or
lower) at this time point than in the rest of the trial (permutation testing,
significance level of 0.01). The results of these tests are depicted on top of
Fig. 5a. It can be observed that it is mostly the red and the blue states that
exhibit differences across time, suggesting that they are modulated by the
task. Note that, unlike the study in Vidaurre et al. (2016), the button
presses are here rhythmic and more frequent, possibly producing an
entrainment of cortical activity to the movement. This effect, due to the
neural activity of the previous button press “leaking” into the next trial, is
expressed by the HMM as an oscillatory behaviour of the state
time courses.

Fig. 5a also shows the spectral properties of the states, in terms of
power (top centre) and coherence (top right). As expected, the estimation
of coherence is noisier than that of power. Interestingly, the red state,
which represents a strong activation in the beta band in both hemi-
spheres, does not get depressed at the same time of the button press, as
might be expected, but a bit later. Again, this is probably due to the
resonating activity from the last button press, which was bringing a post-
movement increment in beta activity when the new movement was
starting. Temporal and spectral information can be combined to produce
HMM-regularised time-frequency representations of the activity. This is
shown in Fig. 5a (bottom).

As an alternative view to the fractional occupancy, we also looked in
Fig. 5b at how the onset of the states (i.e. the instants when a state be-
comes active) relates to the task. The onset of the states can be inter-
preted as a point process, with one event per state occurrence indicating
the times when this state becomes active. Hence, the Onset Probability
measure reflects, for each time point and state, the percentage of trials for
which this state becomes active precisely at this time point. Each light
line corresponds to one subject, and the thick lines represent the mean
across subjects. For visualisation purposes, the curves were smoothed. At
the top of Fig. 5b, each grey dot indicates that the dominant state at this
time point has significantly larger onset probability than any of the other
states (permutation testing, significance level of 0.01), suggesting that it
is the red and blue states that primarily attain significance. This figure
gives a complementary perspective of the state dynamics. For example, it
reveals that the blue state becomes active, on average, at exactly the time
of the button press, reaching a peak of fractional occupancy at ~þ0.25s
(Fig. 5a), and yielding to the red state slightly later than þ0.5s.

Fig. 5c shows the average state fractional occupancy (with standard
errors) for an HMM estimation obtained from the MEG resting-state data,
where no movement is performed, and trials were artificially assigned to
the resting-state session. Here, the states do not show any oscillatory
pattern or any other consistent temporal variation (i.e. the average state
time courses are flat across the entire trial, and the only difference be-
tween states in terms of the global temporal information is the total
average fractional occupancy across all time points). Finally, Fig. 5d and
e shows that the estimations are very consistent across different runs of
the algorithm and between random half-splits of the data set (for the half-
splits, the correlations are computed on the power spectral density ob-
tained from the MAR coefficients). Additional temporal information for
one of the runs is presented next, showing fractional occupancy and
dwell time distribution (Fig. 5f), and the transition probability ma-
trix (Fig. 5g).

4. Discussion

Current efforts are being undertaken to publicly release large data sets
with hundreds or even thousands of subjects. Also, improvements and
standardisation of protocols, together with the increase of widespread
data sharing, will likely make it possible to combine and fuse neuro-
imaging data from different recording modalities. The availability of
more data allows for more sophisticated analyses that will allow us to ask
particular questions for the first time. For these reasons, it is crucial to
have methods that can be scaled to large data sets. In this paper, we have
proposed a method that can leverage large data sets' availability to
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address a difficult question: the characterisation of dynamic connectivity
in both task and rest.

The HMM methodology has been proven useful in the past (Baker
et al., 2014; Vidaurre et al., 2016; Vidaurre et al., Woolrich). In resting,
the dynamics of whole-brain resting state networks have been charac-
terised in MEG (Baker et al., 2014) and fMRI (Vidaurre et al., Woolrich),
unveiling, for example, that the transitions between states or networks
are far from random. In task, the HMM was able to find transient, short-
lived states with specific spectral signatures that meaningfully charac-
terised the primary motor cortex dynamics during a simple motor task.
Here we have substantially enhanced the method to allow for the char-
acterisation of dynamic brain networks in both task and rest from very
large to very large datasets.

The HMM provides a rich description of brain network dynamics,
without the limitations of sliding-window approaches. More specifically,
as the number of inferred HMM states grows we are potentially able to
capture most of the information contained in the data without being
bound to a predefined time-scale (the width of the window) and without
any of the estimation problems of the sliding window approach (i.e. the
uncertainty of an estimation based on just a few data points). For
example, as the Biobank data set grows towards the goal of 100,000
subjects, with the proposed stochastic inference approach, we are
confident to estimate HMMs with more states while still having more
than enough data to estimate each state sufficiently well. Two interesting
developments that would boost even further the potential of the data
could be (i) the combination of models from different data sets using
some principled quantitative approach, and (ii) the possibility of esti-
mating a joint model using different data sets in a single inference pro-
cess. This would require sufficiently uniform preprocessing pipelines and
a mapping of the data to a common brain space (which is not currently
the case for the HCP and UK Biobank).

While our method can be readily applied to both rest and task data,
the study of functional dynamics in resting-state is however not free of
controversy. For example, Laumann and colleagues (Laumann et al.,
2016) reasonably argue that most of the observed changes in functional
connectivity are due to factors other than true switches in cognitive
content, namely head motion, sleep and sampling variability. Provided
head motion is handled with care, and acknowledging the influence of
sleep and drowsiness (undeniably a genuine neuronal and cognitive
process that can be an issue in any analysis, whether on dynamic func-
tional connectivity or otherwise), the main obstacle to identifying fast
cognitive changes in resting-state data is the lack of statistical power of
the sliding window approaches: because windows are relatively short,
the observed changes are mostly driven by the high variance of the
estimator (Hindriks et al., 2016). Here, we claim that studying dynamical
functional connectivity in resting-state data is not necessarily an ill-posed
problem; rather, the increasing availability of data makes possible to
approach this problem convincingly, if we have to tools to tackle it. A
strong argument supporting this claim is the demonstrated robustness of
the method; in particular, if we split any of the three considered data sets
into two halves and obtain a separate estimation for each half, the two
estimations are highly consistent (see Results).

Note that the contribution of this paper is primarily targeting the
computational issues of having a large amount of data in time, sessions
and/or subjects. A related but different problem is the case whenwe have
a large number of regions of interest. Unfortunately, the stochastic
inference procedure would only address the computational aspects of it
and not the overfitting issues. The stochastic scheme can be however
useful when there is the possibility of collecting more data. Obviously,
using more data will reduce overfitting and increase the computational
cost, which can in turn be alleviated using the proposed stochastic
inference scheme.

In summary, the approach presented here opens the door to new
methodological research based on the HMM. For example, the combi-
nation of many different models to obtain an ensemble that performmuch
better than its parts has been a successful story in supervised learning
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(Hastie et al., 2003). Here, in an unsupervised learning scenario, we can
leverage the computational efficiency of the algorithm to obtain a
numerous set of HMMs that can somehow be combined to provide a
richer description of the data. How these models can be combined, and
what new aspects of data we could investigate by using such a coales-
cence of individual HMMs (potentially with different parametrisations),
will be the subject of future investigations.
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