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Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of
N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We
extracted standard mRNA-sequencing and clinical data from the TCGA database. +e prognostic risk model was obtained by
Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases.
Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were
calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for
each patient and we divided all KIRC samples into high-risk and low-risk groups. +en, high- and low-risk subtypes were
established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the
entire sampled data set. +e reliability of the prognostic model was confirmed by receiver operating characteristic curve
analysis. Results.We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
Risk score � AC015813.1∗ (0.0086) + EMX2OS∗ (−0.0101) + LINC00173∗ (0.0309) + PWAR5∗ (−0.0146) + SNHG1∗
(0.0043). +e signature showed a better predictive ability than other clinical indicators, including tumor node metastasis
classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and
regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages,
mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the
low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In
conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related
lncRNA prognostic signature.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) is an adenocar-
cinoma originating from tubular epithelial cells. KIRC is the
most aggressive pathological subtype and accounts for more
than 70% of all renal cell carcinoma (RCC) cases [1]. Since
most patients with KIRC are not sensitive to chemo-
radiotherapy, surgical operation remains an effective
treatment [2, 3]. However, patients with advanced KIRC are

prone to relapse after surgery, resulting in a poor prognosis
[4–6]. KIRC has significant heterogeneity and complex
pathogenesis, making it difficult to delay the progression and
metastasis of KIRC as early as possible. +us, it is important
to identify effective potential therapeutic targets. However, it
is difficult to improve the diagnostic accuracy and guide the
choice of treatment for KIRC patients based on the TNM
staging system. Several polygenic risk models have been
explored, such as the miRNA model [7], glycolysis-related
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gene signature [8], and metabolism-related gene signature
[9]. +ere are different advantages and limitations in these
risk models; therefore, the establishment of new biomarkers
and prognostic models are required for KIRC patients.

Long noncoding RNAs (lncRNAs) do not encode pro-
teins, and the transcription length exceeds 200 nucleotides.
LncRNAs regulate approximately 70% of the genetic ex-
pression through the regulation of epigenetics, transcription,
and post-transcription, including complex physiological and
biochemical mechanisms of both normal and cancerous
tissues, such as cell proliferation, differentiation, and car-
cinogenesis [10–14]. According to previous reports, the
downregulated or upregulated expression of lncRNAs play
their respective roles in cancers, especially in KIRC [15–17].
For instance, the lncRNA FGD5-AS1 was identified to be
a potential biomarker of KIRC since it was significantly
associated with Von Hippel-Lindau syndrome [18]. Simi-
larly, another study revealed that the lncRNA CDKN2B-AS1
played a carcinogenic role and can serve as a therapeutic
target of KIRC [19].

N6-methylandenosine (m6A) modification is charac-
terized by maintaining dynamic change based on “writers”
(methylases), “erasers” (demethylases), and “readers” (signal
transducers) [20]. According to previous reports, aberrant
regulation of m6A resulted in oncogenic activity, driving the
malignancy and immunomodulatory abnormalities [21–23].
A study identified that METTL3 promotes KIRC progres-
sion through m6A and provides epitranscriptional insights
[24]. In addition, METTL14 was reported to be a prognostic
protective factor of KIRC [25]. Overall, m6A-modified
lncRNAs are widely involved in tumor progression, me-
tastasis, chemoradiotherapy sensitivity, and immune in-
filtration [21, 26–28]. However, the mechanism of m6A-
modified lncRNAs in KIRC remains unclear.

Finally, we constructed a m6A-related lncRNAs prog-
nostic signature and it can provide prognosis prediction of
patients with KIRC and new insights for immunotherapy.

2. Materials and Methods

2.1. Data Source. We extracted standard mRNA-sequencing
and clinical data from the TCGA database (https://
www.cancer.gov/). 528 KIRC samples and 72 adjacent
normal samples were obtained after excluding those with
missing survival information.

2.2. Bioinformatics and Statistical Analysis. Based on the R
package “ballgown,” we obtained the differential lncRNAs
between KIRC samples and control and used the above
differential lncRNAs for subsequent analysis (with the
∣logFC∣≥ 2 and p< 0.05). We obtained m6A-regulatory
genes including eight “writers” (RBM15, RBM15B,
VIRMA, WTAP, METTL3, METTL14, METTL16, and
ZC3H13), two “erasers” (ALKBH5 and FTO), and
13 “readers” (YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3,
FMR1, HNRNPC, RBMX, HNRNPA2B1, and LRPPRC)
[29]. Based on the gene expression matrix of 239 lncRNAs

and m6A-regulatory genes, Pearson’s correlation analysis
was performed with R package “psych” (with the filtering
threshold of correlation coefficient >0.5, p value< 0.05). We
extracted m6A-related lncRNAs (p< 0.05). We randomly
divided the samples into training and test sets, each taking
half of the cases. Based on Lasso regression and Cox re-
gression for the training set, the prognostic risk signature
was constructed; risk scores were calculated with the R
package “glmnet” [30]. +us, we identified 28 filtered genes
and calculated the risk score for all KIRC patients using the
formula:Risk score � 􏽐

n
i�1 Coef i ∗ xi (xi represents the ex-

pression of lncRNAs; Coefi represents the regression co-
efficient of each lncRNA). Based on the median value of the
prognostic risk score, risk scores were calculated for each
patient, and we divided all KIRC samples into high-risk and
low-risk groups. +en, to evaluate and validate the reliability
of the model, we constructed a time-longitudinal receiver
operating characteristic (ROC) curve. We then performed
survival analysis using the R package “Kaplan–Meier sur-
vival”. We evaluated whether the clinical characteristics,
including TNM, pathological, and histological stages, were
correlated with the risk scores. We analyzed immune in-
filtration and immune checkpoints including LESCtin and
PD-L1 in two risk groups. Ultimately, with the R package
“pRRophetic,” signature-related drug sensitivity predictions
were conducted [31].

3. Results

3.1. Screening and Identifying of m6A-Related lncRNAs in
KIRCPatients. +e study workflow is shown in Figure 1.We
downloaded the data of 600 samples, composed of 528 KIRC
samples and 72 normal samples, from the TCGA database.
Based on the differential analysis, 239 lncRNAs, composed
of 111 upregulated cases and 128 downregulated cases, were
screened in the KIRC samples. Figures 2(a)) and 2(b) shows
the first 20 differential lncRNAs. We also collected 23 m6A-
regulatory genes and analyzed the correlation between these
regulators and the differential lncRNAs. Finally, 28 prog-
nostic m6A-related lncRNAs were identified.

3.2. Construction and Validation of the Prognostic Risk
Signature. Univariate Cox regression was used to identify
prognosis-related lncRNAs. Lasso regression with 10-foldcross-
validation was performed as shown in Figure 3(a)–3(b)
(λmin� 0.0428). +e prognostic signature contained six
lncRNAs, namely AC015813.1, EMX2OS, LINC00173, LINC
01355, PWAR5, and SNHG1 (Figure 3(c)). Risk score �

AC015813.1∗ (0.0086) + EMX2OS∗ (−0.0101) +

LINC00173∗ (0.0309) + PWAR5∗ (−0.0146) + SNHG1 ∗
(0.0043). Apositive coefficient indicated that it was a risk factor,
whereas a negative coefficient indicated a protective factor in
KIRC.+en,we calculated the area under the curve (AUC) value
of the ROC curve in the signature at different prediction
endpoints (Figure 3(d)).+e results indicated that overexpressed
EMX2OS and PWAR5 were associated with a better prognosis
in KIRC patients, while the higher expression levels of
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AC015813.1, LINC00173, LINC01355, and SNHG1 were cor-
related with a worse prognosis. Moreover, the AUC value of the
prognosis model for the overall survival of 6, 7 and 10 years can
reach more than 0.6, indicating that the prediction effect of the
model is ideal.

3.3. PrognosticValue of the Signature. In the high-risk group,
patients had a worse prognosis (Figures 4(a)–4(c)). +e
corresponding ROC curves were obtained, and the AUCwas
0.697 for the prognostic risk signature. +e deaths of KIRC
patients increase with increasing risk (Figures 4(d)–4(e)). In

Prognostic model of KIRC based on m6A-related lncRNAs
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Figure 1: Workflow chart.
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Figure 2: Screening of differentially expressed lncRNAs. (a) Heat map of the first 20 differential lncRNAs in KIRC tumor tissues and normal
tissues.+e blue bar represents the cancer cases, and the red bar represents the control cases. (b) Volcano map of the differentially expressed
lncRNAs. Red dots represent the upregulated lncRNAs and blue dots represent the downregulated lncRNAs.
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addition, we compared the AUC values between the risk
model and other clinical indicators, including TNM, his-
tological, and pathological stages (Figure 4(f)). As a result,
the signature showed better predictive ability. After scoring
based on the signature, we divided the patients according to
the TNM stage, pathological stage, and histological grade
and compared the risk differences. +e risk scores did not
differ significantly (stage M0/1; N0/N1) due to the small
number of samples in groups M1 (n� 3) and N1 (n� 4). +e
risk scores of stage T2/3/4 were generally higher than those
of stage T1. +e risk scores of pathological stage II/III were
higher than those of pathological stage I. Similarly, the risk
scores of G2/3 were higher than those of G1 based on
histological grade. +e above results are shown in
Figures 5(a)–5(e).

3.4. Infiltration Abundances of Immune Cells of Two Risk
Groups. A heat map was created to explore infiltration
abundances of immune cells of the two risk groups based on
CIBERSORT (Figure 6(a)). In the high-risk group, M0
macrophages, CD8+ T cells, and regulatory T cells had
higher scores (Figure 6(b)). Activated dendritic cells, M1

macrophages, mast resting cells, and monocytes account for
a larger proportion in the low-risk group. We checked
immune checkpoint genes in the two groups to investigate
whether there was a significant correlation. In the high-risk
group, LSECtin was overexpressed (Figures 6(c)–6(d)). In
the low-risk group, PD-L1 was overexpressed.

3.5. Drug Sensitivity Prediction Based on the Risk Model.
In addition to immune checkpoint blocking therapy, we
referred to the Cancer Genomic Project database and
identified 94 KIRC-related drugs. +e IC50 of these drugs
was analyzed and high-risk patients may benefit more from
AZ628 (supplementary material 1).

4. Discussion

LncRNAs are crucial in the development, progression,
dissemination, and treatment resistance of genitourinary
malignancies. First, lncRNAs are involved in the main
carcinogenic events of genitourinary malignancies, in-
cluding androgen receptor signaling and hypoxia-inducible
factor pathway activation [32, 33]. LncRNAs are also key
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Figure 3: Construction and validation of the Lasso regression signature. (a) +e lowest point of the lasso regression curve determines the
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regulatory factors in the colonization and intravascular
transit of cancer metastasis [34]. In addition, lncRNAs are
considered essential epigenetic regulators that modulate key
molecules in cancer treatment and drug resistance [35, 36].
+us, lncRNAs are promising candidates for diagnostic
markers, therapeutic targets, and prognostic factors in
KIRC. With its integral role in modulating diverse physi-
ological processes, especially in tumor microenvironment
remodeling, m6A modification may be utilized in thera-
peutic interventions against cancer [37–39]. A previous
study investigated theMETTL14/BPTF axis in RCC to reveal
the integral role of m6A modification [40].

In the current study, we have identified a novel prog-
nostic signature in KIRC patients. Overexpressed EMX2OS
and PWAR5were associated with a better prognosis in KIRC
patients, while the higher expression levels of AC015813.1,
LINC00173, LINC01355, and SNHG1 were correlated with
a worse prognosis. EMX2OS, as an antisense transcript from
EMX2 in the urogenital system [41], was reported to be
a metabolism-associated and prognostic protective lncRNA
for KIRC [42]. In other studies, EMX2OS was also identified

as a protective prognostic index for KIRC patients, including
a signature of four hypoxia-associated lncRNAs [16] and
a glycolysis-based lncRNA signature [43]. Moreover, one
study indicated that EMX2OS is a biomarker for renal al-
lograft survival [44]. Another study reported that EMX2OS
acted as a synergistic role in regulating the proliferation and
migration of prostate cancer cells [45]. In contrast, little
research has been conducted on the basic information and
biological functions of the Prader Willi/Angelman region
RNA 5 (PAR5; also known as PWAR5). +e PAR proteins
participated in apoptosis and stress response to cancers [46].
A study proposed that PAR5 prevented premature mitotic
entry by modulating CDK-1 phosphorylation [47]. In hu-
man tumors, PAR5 is a tumor suppressor in anaplastic
thyroid carcinomas [48] and gliomas [49]. In general, the
two lncRNAs mentioned above have been widely confirmed
as protective factors in published studies. However, the role
of AC015813.1 in KIRC remains unknown. As for
LINC00173, its high expression promoted the progression of
cervical cancer by targeting miR-3171 [50], hepatocellular
carcinoma via the microRNA-641/RAB14 axis [51], triple-
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negative breast cancer [52], glioma through sponging miR-
765 [53], colorectal cancer by regulating the miR-765/PLP2
axis [54], and lung squamous cell carcinoma by sponging
miR-511-5p to regulate VEGFA expression [55]. In other
studies, LINC00173 was reported to inhibit pancreatic
cancer by repressing sphingosine kinase 1 protein ex-
pression [56]. In conclusion, a considerable number of
studies revealed its prognostic role in a variety of cancers.
Interestingly, in two independent studies on cervical cancer
[50, 57], LINC00173 plays a dual role as a promoter and
inhibitor, which may be attributed to the different bi-
ological functions it targets. Another study indicated that it
serves as a sponge for miR-338-3p to promote prostate
cancer progression by regulating Rab25 [58]. However,
there are no relevant reports on RCC in general.
LINC01355 was reported to be a tumor suppressor in breast
cancer [59] and a tumor enhancer in gastric cancer [60] and
oral squamous cell carcinoma [61]. +e regulatory mech-
anisms of SNHG1 in cancers have been widely studied. It
was reported that SNHG1 activated STAT3 and PD-L1 to
regulate the immune escape of RCC [62]. Moreover,
SNHG1 negatively regulated miR-137 to promote RCC
progression and metastasis [63].

Previous studies have shown that the prognosis of KIRC
worsens with an increase in the pathological stage [64]. Clear
cell RCCwasmore often of higher grade and advanced TNM
stages than papillary RCCs [65]. Consistently, in the current
study, there was a worse prognosis for KIRC patients of
higher grades (G2+G3) and advanced T stage.

Although KIRC is susceptible to immunotherapy, the
tumor microenvironment (TME) of RCC contains a relatively
unique level of immune infiltration [66]. Higher levels of tumor
CD8+ T cell infiltration suggest a worse prognosis in KIRC
[66, 67]. In our study, CD8+ T cells accounted for a larger
proportion in the high-risk group. In the low-risk group, ac-
tivated dendritic cells had significantly higher scores. A new
specific immunotherapeutic approach, such as Rocapuldencel-
T autologous immunotherapy for KIRC patients, involves
dendritic cell vaccination against cancer [68–70]. In the high-
risk group, M0macrophages had significantly higher scores. In
the low-risk group, M1 macrophages had significantly higher
scores. A study indicated that patients with high infiltration of
M1 macrophages may benefit more from ICI therapy, while
high infiltration of M0 macrophages will have the opposite
effect [71]. In the high-risk group, regulatory T cells had sig-
nificantly higher scores. Regulatory T cells are regarded as
inhibitors of antitumor immunity, and their elimination may
augment natural and pharmacologic immunity [72], which is
corroborated herein. Taken together, the level of immune
infiltration in KIRC patients seems to be different from that in
other forms of cancer. Notably, in the low-risk group, PD-L1
was significantly overexpressed. It is thus necessary to develop
new anti-PD-1/PD-L1 agents to treat KIRC [67, 73]. Moreover,
we can predict the sensitivity of chemotherapy drugs based on
the differences in IC50.

+is study had some limitations. First, further verifi-
cation of experimental and clinical studies will be beneficial.
Furthermore, the specific regulatory mechanisms and
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signaling pathways in which m6A-related lncRNAs interact
with immune infiltrating cells in regulating the tumor im-
mune microenvironment require further investigation.
Nevertheless, despite these limitations, we identified m6A-
related lncRNAs and explored cell-infiltrating characteristics
of two risk groups based on the risk model, which can be
used to guide immunotherapy.

In conclusion, we developed a prognostic signature in
patients with KIRC. Moreover, this prognostic signature was
associated with immune checkpoints and immune in-
filtrating cells, providing novel potential targets to guide
immunotherapy in KIRC.
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Figure 6: Correlations between the risk scores and infiltration abundances of immune cells and immune checkpoints. (a) Heat map of
immune infiltration cells between the high-risk and low-risk groups. (b) Box plot of immune infiltration between n the high-risk and low-
risk groups. (c) Differential LSECtin expression in the high-risk and low-risk groups. (d) Differential PD-L1 expression in the high-risk and
low-risk groups.
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