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Combination of a T 
cell activating therapy 
and anti‑phosphatidylserine 
enhances anti‑tumour 
immune responses in a HPV16 
E7‑expressing C3 tumour model
Brennan S. Dirk1, Genevieve Weir1, Tara Quinton1, Olga Hrytsenko1 & 
Marianne M. Stanford1,2*

DPX is a novel delivery platform that generates targeted CD8 + T cells and drives antigen-specific 
cytotoxic T cells into tumours. Cancer cells upregulate phosphatidylserine (PS) on the cell surface 
as a mechanism to induce an immunosuppressive microenvironment. Development of anti-PS 
targeting antibodies have highlighted the ability of a PS-blockade to enhance tumour control 
by T cells by releasing immunosuppression. Here, C57BL/6 mice were implanted with HPV16 E7 
target-expressing C3 tumours and subjected to low dose intermittent cyclophosphamide (CPA) in 
combination with DPX-R9F treatment targeting an E7 antigen with and without anti-PS and/or 
anti-PD-1 targeting antibodies. Immune responses were assessed via IFN-γ ELISPOT assay and the 
tumour microenvironment was further analyzed using RT-qPCR. We show that the combination of 
DPX-R9F and PS-targeting antibodies with and without anti-PD-1 demonstrated increased efficacy 
compared to untreated controls. All treatments containing DPX-R9F led to T cell activation as 
assessed by IFN-γ ELISPOT. Furthermore, DPX-R9F/anti-PS treatment significantly elevated cytotoxic 
T cells, macrophages and dendritic cells based on RT-qPCR analysis. Overall, our data indicates that 
anti-tumour responses are driven through a variety of immune cells within this model and highlights 
the need to investigate combination therapies which increase tumour immune infiltration, such as 
anti-phosphotidylserine.

The ability to engage and activate T cells to tumour-associated targets has the potential to elicit strong anti-
tumour responses in vivo1–3. DPX, previously known as Depovax, is a novel formulation which enhances immune 
responses in humans and animals4,5. DPX encapsulates cancer specific peptides into a no release depot composed 
of an oil diluent, which provides long-lasting reservoir of antigens in vivo4,5. DPX formulation containing the 
HPV16 E7 peptide target (DPX-R9F) has demonstrated efficacy in mice bearing HPV16 E7-expressing C3 
tumours, and efficacy is enhanced following PD-1 blockade, which has been shown to reinvigorate T cells, and 
decrease exhaustion to enhance anti-tumour responses6,7. Preclinical studies have demonstrated DPX formula-
tions induce robust cytotoxic T cell (CTL) responses, and generation of tumour infiltrating CTLs8. In recent 
human clinical trials, DPX formulated with five survivin-specific peptides resulted in robust immune responses 
directed at the tumour target, survivin9. Pre-clinical and clinical data demonstrates enhanced anti-tumour 
responses with checkpoint inhibitors and additional adjuvants thereby expanding the clinical use of DPX-based 
therapies5,6,10. The combination of DPX-based formulation with checkpoint molecules and immune modula-
tors represent different ways to target immune cells and augment their activation status7. This formulation has 
been demonstrated to work in combination with low dose intermittent cyclophosphamide (CPA), a treatment 
designated to modulate immune responses11. The sequencing of DPX-based formulation and CPA has been 
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investigated pre-clinically, and implemented in clinical trials for its benefits as an immune modulator5,6. However, 
this treatment has yet to be investigated in combination with a specific cancer-targeted therapy as a prospective 
way to enhance efficacy in tumour challenge models.

Phosphatidylserine (PS) is a molecule present on the inner leaflet of the plasma membrane in normal heathy 
cells12. Upon apoptosis, PS is ‘flipped’ to the outer leaflet of the plasma membrane, rendering it exposed to the 
extracellular environment12. Through a process termed efferocytosis, phagocytic cells uptake PS-expressing 
apoptotic membranes through a direct interaction with TIM receptors and an indirect interaction with TAM 
receptors13. To prevent an over-stimulated immune response to apoptotic cells, the uptake of apoptotic bodies 
is naturally anti-inflammatory. This process is driven through the ability of TIM and TAM receptors present 
on the surface of macrophages and dendritic cells to stimulate downstream expression of immune-suppressive 
cytokines such as transforming growth factor β (TGF-β) and interleukin-10 (IL-10)14–16. Within an otherwise 
healthy individual, this process maintains cellular homeostasis, and prevents diseases such as atherosclerosis 
and a variety of inflammatory diseases. However, in addition to being expressed on apoptotic cells, PS can also 
be abundantly expressed on malignant cells, and represents a prominent mechanism of immune evasion, which 
can negatively impact patient prognosis17.

Within the tumour microenvironment (TME), PS becomes expressed on the outer leaflet of the plasma 
membrane due to rapid cell division, dysregulated membrane trafficking pathways, and upregulation of cell death 
associated pathways18. Although PS expression constitutes a cellular ‘eat-me’ signal, cancerous cells often usurp 
the immunosuppressive capabilities of PS to enhance survival of the cells through multiple mechanisms. First, 
circulating PS-expressing extracellular vesicles can dampen T cell activation15. Second, phagocytic cells ingest-
ing PS-membranes fail to become mature and functional antigen-presenting cells15. Lastly, anti-inflammatory 
signals such as TGF-β and IL-10 further prevent effective anti-tumour responses by other cytolytic cell types15.

Pre-clinical studies have recently demonstrated the efficacy of targeting PS as a potential avenue to enhance 
current cancer immunotherapies. In vivo studies using anti-PS antibodies (3G4, 2aG4 and mch1N11) dem-
onstrated efficient targeting to malignant cells and tumour vasculature, resulting in enhanced anti-tumour 
responses19,20. Moreover, when provided in combination with radiotherapy, these antibodies improved the efficacy 
of chemo and radiation therapy by increasing antibody-dependent cytotoxicity of PS-expressing cells. Further-
more, combination of anti-PS antibodies with anti-CTLA-4 and anti-PD-1 resulted in the increased infiltration 
of cytolytic T cells and reduced immune suppressive cell types such as regulatory T cells, and myeloid derived 
suppressor cells21. Taken together, the combination of anti-PS antibodies with current and new immunotherapies 
is an attractive approach to combating malignant cells.

Using a tumour-bearing mouse model of C3 cells expressing the HPV16 E7 antigen, we demonstrate DPX-
R9F/CPA in combination with PS-targeting antibodies enhances T cells, macrophages, and dendritic cell infiltra-
tion into the tumour microenvironment providing a rationale for combining these treatments.

Methods
Mice and tumour implantations.  Pathogen free, 6–8 week old female C57BL/6 mice were purchased 
from Charles River Labs (St. Constant, QC, Canada). Mice were housed under top-filtered conditions and pro-
vided food and water ad libitum.

The C3 cell line was provided by Dr. Martin Kast, and was derived from C57BL/6 embryo cells transfected 
with HPV16 DNA and demonstrated to express an immunodominant peptide from HPV16 E7 in the context of 
MHC class I on the cell surface22. The C3 cell line was maintained in IMDM supplemented with 10% fetal bovine 
serum, 2% penicillin–streptomycin, 50 mM mercaptoethanol and 2 mM L-Glutamine. In all tumour studies mice 
were implanted with 3 × 105 C3 tumour cells in the left flank on study day 0.

Tumour growth was measured with digital calipers twice weekly, and size was calculated by the formula 
(width2 x length)/2. In survival studies, mice were terminated when tumour volume reached ≤ 2000mm3, or 
when mice displayed signs of poor health such as dehydration, decreased activity, hunched posture, tumour 
ulcerations, or site of injection reactions. When endpoints were identified, mice were humanely euthanized per 
CCAC guidelines.

Peptides.  All peptides were synthesized by NeoMPS (San Diego, USA) with 90% purity. All studies used the 
peptide epitope HPV16 E749-57 (RAHYNIVTF; R9F). For ELISPOT assays, a control irrelevant peptide was used 
(WT-126–134). All formulations contained a universal T helper peptide PADRE (AKXVAAWTLKAA).

DPX preparation and administration.  Peptides were formulated in DPX with a proprietary immu-
nostimulant as previously described7. Peptides and immunostimulant were first solubilized in buffer and mixed 
10:1 (w:w) with DOPC/cholesterol mixture (Lipiod GMBH, Germany) to form liposomes. The mixture was then 
lyophilized to a dry cake which was reconstituted with Montanide ISA51 VG (SEPPIC, France) immediately 
prior to injection. Mice were injected subcutaneously on the right flank with 50 µl of DPX-R9F containing 10 µg 
of R9F fused with PADRE + 20 µg of immunostimulant. For experiments with multiple injections, they were 
given on the same flank, but avoiding previous injection sites. In tumour challenge studies DPX was adminis-
tered on study days 15 and 29. In immune monitoring studies, DPX was administered on study day 21.

Cyclophosphamide treatment.  CPA was reconstituted in PBS and provided in drinking water at a con-
centration of 0.133 mg/mL. Based on 3 mL of water/mouse/day, the CPA dose was calculated at 20 mg/kg/day. 
In tumour challenge studies CPA was provided for one week starting on study day 7 and then again starting on 
study day 22. In immune monitoring studies, CPA was provided for one week starting on study day 14.
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Antibody treatment.  For challenge studies, monoclonal antibodies were administered on study days 15, 
18 and 21, and again on study day 29, 32 and 35. For immune monitoring studies, antibodies were administered 
on study days 21, 24, and 27. Indicated antibodies: Anti-PS (mch1N11, 100 µg/dose), or isotype (C44, 100 µg/
dose) and anti-PD-1 (RMP1-14, 200 µg / dose) were given by intraperitoneal injection.

IFN‑y ELISPOT.  IFN-γ ELISPOT was performed as previously described7. Single cell suspensions were 
prepared from splenocytes in complete RPMI media (RPMI 1640 (Gibco) + 10% FBS (Hyclone), 2% penicil-
lin/streptomycin (Gibco), 2 mM L-Glutamine (Gibco), 50 mM mercaptoethanol (Sigma-Aldrich), and 5 mM 
HEPES buffer (Gibco)) and adjusted to 5 × 106 cells/mL. Peptide and splenocytes cells were then added to the 
IFN-γ ELISPOT plates (BD Bioscience) and incubated overnight at 37 °C in 5% CO2 and developed the follow-
ing day using AEC kit (Sigma Aldrich). Spot forming units were enumerated using the ELISPOT Reader (C.T.L 
Ltd, Shaker Heights, OH, USA).

RT‑qPCR.  Total RNA from tumour tissue was isolated using RNeasy Mini Kit (QIAGEN); 4 µg aliquots were 
treated with DNase I (Invitrogen) and reverse transcribed using Superscript III reverse transcriptase kit (Invit-
rogen) and oligo d(T) primer (Invitrogen). Quantitative analysis of transcripts was performed on Rotor-Gene Q 
real time PCR machine using a QuantiFast SYBR Green PCR kit (QIAGEN). Data were quantified based on the 
standard curve method and normalized to GAPDH mRNA expression.

Statistical analysis.  Statistical Analysis of data was conducted with GraphPad Prism 6 (La Jolla, CA, 
USA) software. Data were analysed by appropriate tests as indicated in the figure legends. Significant levels were 
denoted as: *p < 0.05, ** p < 0.01, *** p < 0.001.

In tumour challenge studies mice with adverse events such as tumour ulcerations and injection site reactions 
which resulted in humane endpoint were excluded from the analyses presented in Fig. 1 through 3.

Figure 1.   PS Targeting can enhance therapeutic benefit of tumours responsive to immune therapy. (A) Study 
schedule for tumour kinetics and survival: On study day 0, C57BL/6 mice (n = 10) were implanted with HPV16 
E7-expressing C3 tumour cells (SC). Groups of mice received treatment with DPX-R9F (containing the 
peptide epitope HPV16 E749-57) and cyclophosphamide (CPA; 20 mg/kg/day PO), monoclonal antibodies (Ab) 
PS-targeting (mch1N11; 100 µg/dose IP), C44 and/ or anti-PD-1 (clone RMP1-14; 200 µg/dose IP) as indicated. 
(B) tumour kinetics (C) survival. Significance calculated by linear regression for tumour measurements against 
untreated, and Mantel-Cox compared to untreated for survival studies: *p < 0.05 (DPX-R9F/CPA/anti-PD-1 & 
DPX-R9F/CPA/isotype), ***p < 0.001 (DPX-R9F/CPA/anti-PS & DPX-R9F/CPA/anti-PS/anti-PD-1).
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Results
Anti‑PS combination with DPX‑R9F enhances survival and prolongs tumour control over 
untreated controls.  To assess the efficacy of anti-PS targeting in combination of DPX-formulations, we 
utilized an established model of HPV16 E7-expressing cells injected subcutaneously into C57BL/6 mice. Starting 
seven days prior to DPX-R9F treatment mice were treated with 7 days of orally administered cyclophosphamide 
(CPA; 20 mg/kg/day) as previously described6. On days 15 and 29, mice were treated with DPX formulated 
with R9F subcutaneously followed by antibody treatments delivered intraperitoneally on days 15, 18, 21, 29, 
32, 35 with anti-PS (mch1N11) or isotype (C44), anti-PD-1 (RMP1-14), or quadruple therapy (DPX-R9F/CPA/
anti-PS/anti-PD-1) (Fig. 1A). All groups receiving DPX-R9F and CPA treatment experienced enhanced tumour 
control compared to both untreated groups and anti-PD-1/anti-PS combination alone (Fig.  1B,C). Interest-
ingly, combination therapy of both anti-PD-1 and anti-PS without DPX-R9F/CPA resulted in increased tumour 
growth similar to untreated groups, highlighting the benefit of DPX-R9F/CPA treatment in generating immune 
responses. Previous studies have identified a synergistic effect of combining anti-PS and anti-PD-1 antibodies, 
however this has not been tested in combination with DPX-R9F treatment in this model19. Combination of 
anti-PD-1 and anti-PS without DPX-R9F did not result in a significant improvement in survival compared to 
the untreated control group and resulted in a worse outcome possibly due to underlying toxicity issues in this 
model, and tumour ulcerations which required termination . Within the DPX-R9F-treated groups, the addi-
tion of anti-PD-1 prolonged survival and delayed tumour growth over untreated mice but was not significantly 
different from the isotype control. In contrast, the addition of anti-PS targeting antibodies either alone or in 
combination with anti-PD-1 resulted in the greatest overall survival (40% survival compared to 10% survival 
of both DPX-R9F/CPA/isotype or DPX-R9F/CPA/anti-PD-1/isotype), and moderately reduced tumour burden 
compared to other groups (147.6mm3 for DPX/CPA/anti-PS/anti-PD-1 compared to 303.4mm3 compared to 
the DPX-R9F/CPA/anti-PS, and 569.4 mm3 for DPX-R9F/CPA/anti-PD-1 at day study day 50). Although much 
of the differences observed were not statistically significant over isotype controls, or DPX-R9F/CPA alone, due 
to the reduction in tumour burden compared to formulations lacking DPX-R9F, we sought to characterize the 
different immune responses generated by each of the combinations and the associated anti-tumour responses.

Anti‑PS did not enhance systemic antigen‑specific responses in DPX‑R9F treated mice.  The 
efficacy of many cancer therapeutics is based around the specific targeting of tumour antigens23,24. Due to the 
unique ability of DPX to harness antigen-presenting cells and direct antigen specific T cell responses5, we sought 
to examine this phenomenon in combination with anti-PS antibodies as a possible mechanism of enhanced 
tumour control and survival. To test the ability of anti-PS treatment to affect antigen-specific responses, spleens 
were harvested from tumour-bearing treated mice, and subjected to an IFN-γ ELISPOT assay on study day 31 
(Fig. 2A). The control untreated and non-tumour bearing naïve mice failed to elicit antigen specific responses 
in the IFN-γ ELISPOT Fig. 2B. In contrast, antigen specific responses were observed in all treatment groups 
which included DPX-R9F, highlighting the ability of DPX to harness antigen-specific responses. No increases 
in antigen-specific responses were observed in the anti-PD-1/anti-PS group, however, a limited sample size pre-
cluded proper comparison. No significant difference was observed between any of the DPX-R9F combinations 
over their respective isotype control treatment groups.

DPX‑R9F/CPA/anti‑PS upregulates expression of genes associated with cytotoxicity and anti‑
gen presentation.  Not all tumour-specific responses can be directly observed within circulating PBMCs 
and detected by IFN-γ ELISPOT25. Therefore, we directed our analysis to intra-tumour characterization of the 
responses. Previous studies examining the mechanism of action of anti-PS treatment demonstrated enhanced 
tumour infiltration of immune cells21,26. In line with the mechanism of action of anti-PS, we continued to assess 
the tumour micro environment using RT-qPCR. In this analysis HPV16 E7-expressing cells were implanted sub-
cutaneously in the left flanks of C57BL/6 mice, CPA was administered orally 7 days prior to DPX-R9F treatment 
on day 21. Anti-PS or isotype, anti-PD-1, or anti-PS/anti-PD-1 combination was administered on day 21, 24 and 
day 27 (Fig. 2A). All mice were terminated on day 31 and tumours were extracted and analyzed by RT-qPCR.

To evaluate changes induced by treatment in the tumour microenvironment we analyzed expression of genes 
associated with immune cell infiltration and activation by RT-qPCR (cd8α, gzmb, tnfα, pdcd1, cd74, cd80, F4/80, 
ifng and cd68). Analysis of tumours from DPX-R9F/CPA/anti-PS treatment resulted in elevated expression of 
cd8α compared to untreated controls (Fig. 3A). Similar increases were detected in the DPX-R9F/CPA/isotype 
treatment group, highlighting the effectiveness of DPX-R9F treatment in enhancing tumour infiltrating lympho-
cytes. Although modest increases in cd8a were detected in both anti-PD-1 treatment groups (DPX-R9F/CPA/
anti-PD-1/isotype or anti-PS), these differences were not significant from the untreated control. Consistent with 
the elevated levels of cd8α mRNA, increased levels of cytotoxic markers IFN-γ (ifng) and the cytolytic granule 
enzyme, granzyme B (gzmb) were found in both DPX-R9F/CPA/isotype or anti-PS groups (Fig. 3A,C). In the 
tumours treated with DPX-R9F/CPA/anti-PD-1 the levels of gzmB and ifng transcripts were slightly elevated 
but not statistically different from the levels in the untreated control group (Fig. 3B,C). Elevated levels of PD-1 
(pdcd1) transcripts were observed in the DPX-R9F/CPA anti-PS group, but not in treatment groups containing 
anti-PD-1 (Fig. 3D). Quadruple therapy resulted in suppressed immune cell gene signatures within the tumour 
like untreated levels, indicating that anti-tumour responses may be driven through different mechanisms than 
strictly immune cell infiltration.

We next assessed expression of cd74, an HLA-DR gamma protein that plays a critical role in MHC class II-
mediated antigen presentation in macrophages and dendritic cells27. All treatment groups other than the quad-
ruple DPX-R9F/CPA/anti-PD-1/anti-PS group had significantly elevated levels of cd74 compared to untreated 
controls (Fig. 3E). Furthermore, RT-qPCR revealed a marked increase in the number of F4/80 (emr1) transcripts 
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in the DPX-R9F/CPA/anti-PS treated group compared to untreated and isotype controls (Fig. 3F). Taken together, 
these results highlight the capability of anti-PS treatment to enhance tumour infiltration of both cytolytic, and 
antigen-presenting cell types. The addition of the anti-PD-1 to the treatment regime appears to slightly improve 
tumour control, but by a different mechanism than directly enhanced immune cell infiltration within the tumour.

Discussion
A major hurdle to over come when implementing tumour targeted immunotherapy is the intrinsic immunosup-
pressive nature of many tumour microenvironments. One such mechanism is the presence of PS on the surface of 
malignant cells, microvesicles and apoptotic bodies that are naturally immunosuppressive in nature20. Recently, a 
blockade of PS through binding of surface exposed PS has proven to be an effective way at generating anti-tumour 
immunity by targeting the tumour microenvironment itself26,28,29. In the present study we demonstrate enhanced 
tumour control and prolonged survival of tumour bearing mice when DPX-R9F immunotherapy is combined 
with anti-PS or anti-PS and anti-PD-1 combination antibody treatment over untreated controls (Fig. 1B,C). Upon 
investigation into the underlying immune responses of different treatment groups, we identified that treatment 
of DPX-R9F with anti-PS did not enhance peripheral antigen-specific responses as determined by IFN-γ ELIS-
POT (Fig. 2B), but resulted in elevated numbers of CTL, dendritic cell and macrophage gene signatures within 
the tumour. Upon addition of anti-PD-1 antibodies combined with DPX-R9F/anti-PS, there was a significant 
decrease in the expression of immune cell markers, suggesting that anti-PD-1 has the ability to systemically alter 
the status of immune cells30, whereas anti-PS can directly influence the TME20. Overall, these results highlight 
differing mechanisms by which various combination therapies with DPX can modulate the intra-tumoural, and 
systemic immune responses within our model.

Treatment of cancer in vivo and in vitro with anti-PS treatment have highlighted the role of antigen-presenting 
cells to specifically target cancerous cells20,29. These findings were characterized as increased infiltration upon 
treatment to initiate immune responses and tumour cell engulfment31. Here, we recapitulate these findings when 
combining DPX-R9F with anti-PS by RT-qPCR analysis of tumour tissue, where gene signatures associated with 
APCs are enhanced with treatment. Not directly studied here was the role of NK cells in tumour cell lysis which 
can also be enhanced through tumour specific antibodies such as anti-PS32,33. It is likely that NK cell-mediated 
ADCC plays an import part in controlling tumour control in the anti-PS treated groups, and warrants further 
investigation within this model.

The addition of anti-PD-1 to DPX-R9F/CPA/anti-PS therapy resulted in a decreased expression of both 
antigen-presenting cell markers and cytolytic cell markers within the tumour compared to DPX-R9F/CPA/anti-
PS treatment. Interestingly, the drop in expression of classical anti-tumour genes (ifng and gzmb) did not result 

Figure. 2.   IFN-γ ELISPOT responses within treatment groups. (A) IFN-γ ELISPOT was performed using 
splenocytes (500,000 cells/ well) stimulated with R9F peptide as described in the materials and methods. 
Groups of mice received treatment with DPX-R9F (containing the peptide epitope HPV16 E749-57) and 
cyclophosphamide (CPA; 20 mg/kg/day PO), monoclonal antibodies (Ab) PS-targeting (mch1N11; 100 µg/dose 
IP), C44 and/ or anti-PD-1 (clone RMP1-14; 200 µg/dose IP) as indicated. (B) Results shown have background 
removed. No significant difference was detected between DPX-R9F-treated groups using one-way ANOVA 
followed by a Tukey post test.
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in any worse tumour burden or decreased survival (Fig. 1). During the immune analysis, only one timepoint was 
analyzed (SD31), and may not have been the optimum timepoint to observe the changes between all groups. It is 
possible that combination of all three agents targeting different aspects of the anti-tumour response, generation 
of tumour-specific T cells, enhancing functionality of T cells, and direct tumour targeting, may have resulted in 
delayed or accelerated lymphocyte infiltration which was not detected in this assay. Further longitudinal analysis 
may be required to fully elucidate the mechanism governing the synergistic effects of combination treatment.

DPX is a novel T cell activating platform which allows for active uptake of tumour-specific antigens by antigen 
presenting cells4. Combination of DPX-based immunotherapy with other immunomodulatory agents such as 
CPA and anti-PD-1 has yielded promising therapeutic capabilities6,7. Although survival was not significantly 
different from single antibody treatment, dual antibody treatment (anti-PS and anti-PD-1) in combination 
with DPX-R9F/CPA exhibited some level of tumour control compared to untreated, and also resulted in dif-
fering immune responses which seemingly allowed for tumour control similar to that of the other DPX-R9F/

Figure 3.   Increases in cytotoxic CD8α+ T cells and antigen presenting cells within the tumour 
microenvironment confirmed by RT-qPCR. C57BL/6 mice (n = 5–11) were treated as in Fig. 2, data pooled from 
two separate experiments. Tumours were analyzed by RT-qPCR for expression of (A) Cd8alpha (CD8a), (B) 
IFNγ. (C) Gzmb (Granzyme B), (D) Pdcd1 (PD-1), (E) Cd74 (F) Emr1 (F4/80) Statistics by one-way ANOVA 
followed by Tukey post test: *p < 0.05 *p < 0.01, ***p < 0.001.
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CPA-containing groups (Fig. 1B,C). Although, we were unable to determine a definitive mechanism for this 
phenomenon, it can likely be attributed to a cumulation of multiple converging anti-tumour effects. These results 
are akin to our previous studies evaluating anti-PD-1 in combination with DPX-R9F formulations, where we 
observed limited tumour infiltration of immune cells but significant expansion of CTLs in the spleen7. Moreover, 
antigen-specific clones were found to have expanded TCR-β repertoires toward R9F, and correlated to tumour 
control7. Paradoxically, it remains possible that addition of anti-PD-1 to the DPX-R9F/CPA/anti-PS hindered 
the classical anti-tumour responses. Compared to the DPX-R9F/CPA/anti-PS treatment, the addition of PD-1 
lowered overall infiltration of immunes cells determined by RT-qPCR, and had a slight reduction in ELISPOT 
responses. Despite these differences, the quadruple therapy did not decrease survival or tumour burden signifi-
cantly from the triple therapy with anti-PS.

We have previously demonstrated the benefit of anti-PD-1/CPA/DPX-R9F in this tumour model7,34. How-
ever, we are unable to observe an additive effect when including anti-PS to the therapy. In future experiments, 
it would be prudent to evaluate different timelines for administration of anti-PD-1 or anti-PS. Recently it has 
been demonstrated in both preclinical and clinical studies that timing of PD-1 may impact the generation of 
dysfunction T cells should sufficient priming of T cells following a vaccination of cancer peptides not take place35. 
In line with these recent findings, we have administered DPX and anti-PD-1 simultaneously to minimize this 
effect. However, combination of PD-1 with various cancer-targeting antibodies may require a further delay in 
anti-PD-1 administration to see maximum benefit, and greatest tumour control36. Incorporating these findings in 
the management of a combination antibody approach warrant further investigation to tease out how checkpoint 
inhibitors play a role in this novel combination therapy.

In conclusion, the addition of anti-PS to the DPX-R9F/CPA therapy in the HPV16 E7-expressing tumour 
model resulted in enhanced anti-tumour responses, resulting in modest levels of tumour control compared to 
untreated and isotype control groups. The addition of anti-PD-1 to the treatment did offer enhanced survival 
compared to isotype control, and was not significantly different compared to DPX-R9F/CPA/anti-PS. Whether 
or not APCs drive the infiltration of other leukocytes, remains an active area of research, and will require in vivo 
mouse models to functionally link APC chemotactic factors to lymphocyte recruitment. The anti-PS blockade 
is an efficient method to target the tumour microenvironment, and the results presented here warrant further 
investigation of tumour targeting agents with novel T cell activating therapies.

Ethical approval.  All experimental protocols were approved by the university committee on laboratory ani-
mals at Dalhousie University under the guidelines of the Canadian Council on Animal Care ethical standards. 
All applicable international, national, and institutional guidelines for the care and use of animals were followed. 
This article does not contain any studies with human participants performed by any of the authors.
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