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Abstract: To function as a metabolic hub, plant mitochondria have to exchange a wide variety of
metabolic intermediates as well as inorganic ions with the cytosol. As identified by proteomic profiling
or as predicted by MU-LOC, a newly developed bioinformatics tool, Arabidopsis thaliana mitochondria
contain 128 or 143 different transporters, respectively. The largest group is the mitochondrial carrier
family, which consists of symporters and antiporters catalyzing secondary active transport of organic
acids, amino acids, and nucleotides across the inner mitochondrial membrane. An impressive 97%
(58 out of 60) of all the known mitochondrial carrier family members in Arabidopsis have been
experimentally identified in isolated mitochondria. In addition to many other secondary transporters,
Arabidopsis mitochondria contain the ATP synthase transporters, the mitochondria protein translocase
complexes (responsible for protein uptake across the outer and inner membrane), ATP-binding
cassette (ABC) transporters, and a number of transporters and channels responsible for allowing
water and inorganic ions to move across the inner membrane driven by their transmembrane
electrochemical gradient. A few mitochondrial transporters are tissue-specific, development-specific,
or stress-response specific, but this is a relatively unexplored area in proteomics that merits much
more attention.
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1. Introduction

Eukaryotic multicellular organisms need to exchange energy, matter, and information between
the environment and their cells, between their cells, and within their cells. To perform these tasks, they
need a diverse array of specialized proteins to move ions and molecules across the biological membranes,
which delimit the cells and the subcellular compartmentation. These proteins are collectively known
as transporters, which include carriers, channels, and pumps [1].

The mitochondrion is a metabolic hub, not only for energy metabolism—the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation—but also for the biosynthesis of coenzymes, amino acids,
some fatty acids, and lipids [2,3]. In photosynthetic cells in the light, there is a massive flow of fixed
carbon from the chloroplasts to the rest of the cell, especially to the mitochondria via the cytosol, but
metabolic cooperation between plastids and mitochondria also takes place in darkness [4,5]. Retrograde
signaling from the mitochondria to the nucleus probably involves export of peptides [6,7]. In addition
to this, to grow and divide the mitochondria one needs to import the vast majority of its proteins as
well as some tRNAs and rRNA [8–10].
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All of these processes require the presence of many different transporters in the mitochondria.
The outer membrane contains only two types: (i) Porin also called voltage-dependent anion channel
(VDAC) or voltage-dependent gated ion channel (VIC), which makes the outer mitochondrial membrane
(OMM) permeable to all molecules smaller than 5 kDa, obviating the need for other transporters
of small ions and molecules [11,12]. (ii) Translocase Outer Membrane (TOM), the subcomplex of
the Mitochondrial Protein Translocase (MPT) responsible for importing proteins across the OMM.
In addition to Translocase Inner Membrane (TIM), the MPT subcomplex responsible for importing
proteins across the inner mitochondrial membrane (IMM), the IMM contains many other transporters
of several different classes. The mitochondrial transportome was comprehensively reviewed by Lee
and Millar [13].

It is the purpose of this review first to compile a list of the transporters identified by proteomic
profiling of isolated plant mitochondria. This list will then be compared to a list of transporters
predicted by MU-LOC [14], a newly developed program, to predict mitochondrial proteins based on
their amino acid sequences and their gene expression patterns. Finally, for each transporter class or
family, we will briefly discuss the properties of the transporters present in plant mitochondria.

2. The Experimental Proteome and Transportome in Plant Mitochondria

2.1. The Experimental Mitochondrial Proteome

The mitochondrial proteome has been characterized in some depth in Arabidopsis thaliana
cell cultures and in potato (Solanum tuberosum L.) tubers. In both, almost 1100 proteins were
identified as summarized by Rao et al. [8]. Since then, Senkler et al. [15] published what they
called the ‘’mitochondrial complexome of Arabidopsis thaliana”, in which they identified 1359 proteins
involved in various complexes both in the membranes and in the soluble fraction. Altogether,
the mitochondrial proteome in a plant probably contains 2000–2500 proteins [8] or about 10% of
the total Arabidopsis proteome (Table 1). Plant mitochondrial DNA encodes at most 40 proteins [16],
which are synthesized inside the mitochondria on mitochondrial ribosomes, while the remaining
2000+ proteins are encoded in the nuclear DNA, synthesized on cytosolic ribosomes, or on polysomes
associated with the mitochondrial surface, and imported across the OMM and IMM [17].

The largest protein groups in the identified proteome of both Arabidopsis and potato mitochondria
are related to energy and metabolism, with around 150 and 200 proteins, respectively; protein fate,
protein synthesis, and RNA processing are each represented by approximately 100 proteins, while
transport has around 50 proteins [8]. In this Gene Ontology (GO) nomenclature, many transporters
are listed under different GO terms, e.g., ATP synthase subunits are found under energy. The actual
number of identified transporters is therefore much larger, as discussed below. However, it is not just
the number of unique proteins that is important. The abundance of each protein is also important, and
Salvato et al. [18] used spectral counting to estimate the abundance of the identified proteins. The 52
proteins under the GO term Transporter showed an overall average abundance, but with significant
variation among the transporters. Fuch et al. [19] went one step further by estimating the copy number
of the individual proteins and protein complexes present in a single mitochondrion. Based on that,
they could then calculate the surface area occupied by the various membrane proteins. They found that
VDAC and TOM cover 34% and 12% of the surface area of the OMM, respectively. The five respiratory
complexes cover 18% of the IMM, while the most abundant of the other carriers—ADP/ATP carrier,
phosphate carrier, the uncoupling protein, and the tricarboxylate/dicarboxylate carrier—cover a total
of about 11% of the IMM [19].
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Table 1. Number of proteins in different transporter classes and families, and their experimental (proteomic) identification in isolated mitochondria of Arabidopsis
and rice and mitochondrial localization prediction status (using MU-LOC) in Arabidopsis, rice, human, and mouse.

A. thaliana O. sativa H. sapiens M. musculus

Transport
DB #

Experimental
* % Predicted

# % Transport
DB #

Experimental
* % Predicted

# % Transport
DB #

Predicted
# % Transport

DB #
Predicted

# %

Whole proteome 26,091 - - - - 55,890 - - - - 37,742 - - 34,966 - -

ATP-dependent

ABC transporters 124 6 5 13 11 129 0 0 11 9 77 10 13 65 5 8

F-ATPase 44 16 36 17 39 50 7 14 13 26 60 25 42 58 19 33

MPT family 25 19 76 10 40 30 2 7 10 33 29 6 21 40 6 15

P-type ATPases 50 2 4 4 8 45 0 0 3 7 68 6 9 50 0 0

Other ATP-dependent 50 4 8 14 28 30 0 0 10 33 19 4 21 34 4 12

Secondary transporters

MC family 60 58 97 30 50 61 50 82 33 54 63 25 40 64 21 33

Other families 722 13 2 34 5 799 0 0 50 6 511 39 8 473 28 6

Ion channels 151 11 7 15 10 137 0 0 10 7 588 9 2 470 8 2

Unclassified 53 0 0 6 11 4 0 0 0 0 52 5 10 36 2 6

Total (Transporters) 1279 129 10 143 11 1285 59 5 140 11 1467 129 9 1290 93 7

# See Table S1 for a full list of transporters from TransportDB (http://www.membranetransport.org/transportDB2/index.html) and their mitochondrial prediction status (using MU-LOC).
* See Table S2 for a list of experimentally identified mitochondrial transporters.

http://www.membranetransport.org/transportDB2/index.html
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2.2. The Experimental Mitochondrial Transportome

Membrane transporters, and other transmembrane, integral-membrane proteins, are generally
more difficult to identify than soluble proteins using “bottom-up” proteomics due to the paucity
of charged and polar amino acids, which most sequencing-grade proteases recognize as cleavage
sites. Moreover, these proteins with their hydrophobic transmembrane helices are more difficult to
solubilize, and the large hydrophobic peptides formed do not ionize well for the mass spectrometry
detection [20–23].

In-depth proteome profiling has only been done on mitochondria isolated from a very limited
number of plant species and cell types, notably Arabidopsis cell cultures and potato tubers. Furthermore,
the plants/cell cultures have mostly been grown under standard environmental conditions (no stress),
and none of the tissues or cells have been photosynthetic. The only major exceptions to this are two
developmental studies in germinating rice seeds under normoxia and hypoxia [24] and in maize
embryos during seed development [25]. For that reason, the experimentally characterized mitochondrial
proteome, although quite comprehensive, can be expected to lack cell-specific, tissue-specific, and
environmental-specific mitochondrial proteins and protein isoforms.

In spite of these limitations, 128 transporters have been experimentally identified in Arabidopsis
mitochondria (Table 1). The most numerous are the secondary transporters with 71 proteins, including
58 belonging to the Mitochondrial Carrier (MC) family. There are also many F-ATPases (ATP synthase
subunits), and MPT proteins (subunits in the TOM and TIM complexes). Finally, 11 channels or pores
have been found and most of them water channels (aquaporins) or OMM porin, as well as ion channels
(Table S1). We will discuss the different transporter classes and families in more detail after looking at
the predicted mitochondrial transportome.

3. Mitochondrial Transporters—Predictions

We accessed the database TransportDB 2.0 [26] and extracted the membrane transport proteins
in Arabidopsis and rice and, for comparison, in Homo sapiens and Mus musculus, similar to what
was done by Hwang et al. [27]. The results are shown in Table 1. For most of the protein groups,
the numbers are similar to those of Hwang et al. [27]. For plants, the only major difference is found for
the group “Other ATP-dependent transporters”, where Hwang et al. [27] found 78 and 63 transporters
in Arabidopsis and rice, respectively. We have divided this group into three groups—F-ATPases, MPT
family, and Other ATP-dependent—but their sum in Table 1 is markedly higher for both Arabidopsis
and rice (119 and 110 transporters, respectively). The grand total number of transporters (about 1280
proteins) makes up 5% of the total proteome in Arabidopsis, but only 2% in rice due to its enormous
proteome (Table 1). The total number of transporters is about the same in plants as in human and
mouse, but the distribution between transporter classes is quite different. Plants have twice as many
ATP-binding cassette (ABC) transporters and about 200 more secondary transporters than mammals,
while the humans and mice have a staggering 588 and 470 ion channels, respectively, or more than
three times as many as plants. For comparison, the unicellular eukaryote Saccharomyces cerevisiae has
only 341 transporters (~5.4% of the proteome), while Escherichia coli has 661 transporters (~12.3% of
proteome) [26, 27, TransportDB 2.0]. The distribution of different classes of transporters in yeast and
Arabidopsis is similar. On the other hand, E. coli has almost twice as many ABC transporters (246 or
37.2% of total transporters versus 9.7% in Arabidopsis), but far fewer other ATP-dependent class of
transporters. E. coli also has a relatively lower proportion of secondary active transporters (281 or
42.7%) and ion channels (3.2%) compared to Arabidopsis (61.1% and 11.8%, respectively).

In the process of investigating and compiling the mitochondrial proteomes [8,18], it became
clear that the existing prediction programs could at most recognize about 50% of the experimentally
identified proteins as mitochondrial in spite of the fact that more than 90% of these proteins were
probably bona fide mitochondrial. Transporters were particularly poorly predicted, with the best
program identifying only 13 out of 59 proteins [8,18]. We, therefore, developed a new prediction
program, MU-LOC, which was significantly better at predicting mitochondrial proteins over six
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state-of-the-art tools for plant mitochondrial targeting prediction as benchmarked on two independent
datasets [14]. It was trained based on amino acid composition, protein position weight matrix, and
gene co-expression information using a deep neural network, and has the advantage of predicting
plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences.

When all the transporters from Arabidopsis and rice (Table S1) were processed by the MU-LOC
program, 143 and 140 of the proteins, respectively, were predicted to localize to the mitochondria (Table 1,
Table S1), which is about 11% of the total number of transporters in Arabidopsis. Thus, the mitochondrial
proteome, which makes up about 10% of the total proteome (see above), contains a proportional
number of transporters at least in Arabidopsis. It is encouraging to see that the subgroups, F-ATPases,
MPT family, and MC family, which are known to be predominantly mitochondrial [28,29], are heavily
predicted to belong in the mitochondria (Table 1, Table S1). The overlap between the experimental and
the predicted proteins will be discussed separately below under each transporter class and family.

MU-LOC was developed to predict mitochondrial proteins in plant cells, where one of
the challenges is that hundreds of proteins are dually targeted to mitochondria and plastids [30,31].
The protein features used to discriminate (see above) are actually species/kingdom neutral, so MU-LOC
should also be able to predict mitochondrial localization in animal cells. We, therefore, applied
MU-LOC to the total transportome in human and mouse cells (Table 1, Table S1). The numbers of
transporters of different classes predicted by MU-LOC to be mitochondrial in mammals do not differ
markedly from the values for plants and certainly do not reflect the large differences in the total
transportome. The high diversity in ion channels probably developed in animals in parallel with
muscles and nerves. Here, rapid changes in plasma membrane potential are required and only ion
channels can provide that with their short response times and large capacities [27]. It therefore makes
perfect sense if there is no evolutionary increase in the number of ion channels in animal mitochondria,
where the membrane potential is harnessed to produce ATP and/or transport metabolites across
the IMM and where a sudden membrane potential collapse would have very negative consequences
for cellular metabolism.

The ability of MU-LOC to predict mitochondrial localization of membrane transporters appears
to be equally good for mammalian cells, although experimental verification is lacking. We consider
this to be outside the scope of this review.

4. The Different Transporter Classes and Families

The Arabidopsis mitochondrial transportome contains 128 experimentally identified proteins
and 143 predicted proteins, or 211 proteins in all, which is 17% of the total number of proteins in
the Arabidopsis transportome. Out of the 211 proteins, 61 proteins (29%) were both predicted and
experimentally identified (Figure 1).
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Figure 1. Arabidopsis mitochondrial transporters in Venn diagrams. (A) A total of 211 transporters 
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mitochondrial. Out of these, 61 are both predicted and experimental. (B) Nearly all (97%) 
Mitochondrial Carrier (MC) family members have been experimentally identified in mitochondria, 
while only 50% are predicted to be mitochondrial. (C) A total of 81 ATP-dependent transporters (28% 
of all ATP-dependent transporters in Arabidopsis) are predicted to be or experimentally known to be 
mitochondrial. Out of these, 24 (30%) are both predicted and experimental. 
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while only six ABC transporters have been experimentally found to date (Table 1, Table S1). Three 
proteins were both predicted and found: iron-sulfur clusters transporter ATM1 (At4g28630), ATM2 
(At4g28620), and ATM3 (At5g58270). They all take part in the export of iron-sulfur clusters 
synthesized in the matrix to the intermembrane space from where the clusters are distributed to the 
rest of the cell [32,33]. 

In fact, iron-storing ferritin and the entire iron-sulfur biosynthesis pathway were found in potato 
mitochondria: frataxin, iron-sulfur cluster assembly proteins, iron-sulfur cluster scaffold protein, 
iron-sulfur cluster co-chaperone protein, Cys desulfurase, and ferredoxin [18,34]. 

4.1.2. The Mitochondrial Protein Translocator (MPT) Family 

The MPT family consists of subunits in the TOM and TIM complexes, where the majority of the 
subunits have been identified and about half predicted (Table 1, Table S1) [35]. This transporter 
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4.1.4. P-ATPases 

The Arabidopsis genome encodes 50 P-ATPase transporters belonging mainly to ATPases in the 
plasma membrane. Of these, MU-LOC predicted four to be mitochondrial, and two were found 
experimentally with no overlap. The experimentally found were At1g54280, a phospholipid 
transporting ATPase annotated to be located in the plasma membrane, and At4g33520, a copper-
transporting ATPase annotated to be located in the plastid envelope (as annotated in UniProt). Both 
would be very useful to have in the IMM. 

Figure 1. Arabidopsis mitochondrial transporters in Venn diagrams. (A) A total of 211 transporters
(17% of all the transporters in Arabidopsis) are either predicted to be or experimentally known to be
mitochondrial. Out of these, 61 are both predicted and experimental. (B) Nearly all (97%) Mitochondrial
Carrier (MC) family members have been experimentally identified in mitochondria, while only 50% are
predicted to be mitochondrial. (C) A total of 81 ATP-dependent transporters (28% of all ATP-dependent
transporters in Arabidopsis) are predicted to be or experimentally known to be mitochondrial. Out of
these, 24 (30%) are both predicted and experimental.

4.1. ATP-Dependent Transporters

4.1.1. ABC Transporters

A total of 13 ABC transporters are predicted by MU-LOC to be mitochondrial in Arabidopsis, while
only six ABC transporters have been experimentally found to date (Table 1, Table S1). Three proteins
were both predicted and found: iron-sulfur clusters transporter ATM1 (At4g28630), ATM2 (At4g28620),
and ATM3 (At5g58270). They all take part in the export of iron-sulfur clusters synthesized in the matrix
to the intermembrane space from where the clusters are distributed to the rest of the cell [32,33].

In fact, iron-storing ferritin and the entire iron-sulfur biosynthesis pathway were found in potato
mitochondria: frataxin, iron-sulfur cluster assembly proteins, iron-sulfur cluster scaffold protein,
iron-sulfur cluster co-chaperone protein, Cys desulfurase, and ferredoxin [18,34].

4.1.2. The Mitochondrial Protein Translocator (MPT) Family

The MPT family consists of subunits in the TOM and TIM complexes, where the majority of
the subunits have been identified and about half predicted (Table 1, Table S1) [35]. This transporter
family is the subject of another review in this Special Issue and will not be treated any further here.

4.1.3. F-ATPases

The Arabidopsis genome encodes 44 F-ATPase transporters belonging to the ATP synthase in
mitochondria and plastids as well as to the P-type ATPase in the vacuole. Of these, MU-LOC predicted
17 to be mitochondrial and 16 were found experimentally, while the overlap was about 50% (9 proteins).

4.1.4. P-ATPases

The Arabidopsis genome encodes 50 P-ATPase transporters belonging mainly to ATPases
in the plasma membrane. Of these, MU-LOC predicted four to be mitochondrial, and two
were found experimentally with no overlap. The experimentally found were At1g54280,
a phospholipid transporting ATPase annotated to be located in the plasma membrane, and At4g33520,
a copper-transporting ATPase annotated to be located in the plastid envelope (as annotated in UniProt).
Both would be very useful to have in the IMM.
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4.2. Secondary Transporters

This is by far the largest group of transporters in plants and in plant mitochondria (Table 1, Table
S1), where they are located in the IMM. These transporters are either symporters or antiporters, and use
the electrochemical gradient established across the IMM to move ions into or out of the mitochondrial
matrix. The size and diversity of transporters in this family reflect the metabolic complexity of
mitochondria and its importance as an energetic conduit for the cell [13,28,29].

4.2.1. The Mitochondrial Carrier (MC) Family

The MC family (MCF) is predicted to contain 58–60 members in Arabidopsis [28, TransportDB 2.0]
and 50–61 members in rice [24, TransportDB 2.0]. The majority of the MCF members are localized in
the IMM, although at least 10 are found in plastids, peroxisomes, endoplasmic reticulum, and plasma
membrane [29].

About half of all the MCF members are predicted to be found in the mitochondria of both
Arabidopsis (30 out of 60) and rice (33 out of 61) (Table S1). In Arabidopsis, 58 members have been
experimentally identified (including all the predicted), in other words, a very satisfying 97%, while in
rice 49 have been identified (including 29 of the predicted), producing an 80% ‘’recovery” rate (Tables
S1 and S2, Figure 1). The almost 100% recovery rate for MCF members in proteomic profiling of isolated
mitochondria means that most, if not all, of the MC members localized to other membranes [13,29] have
also been found in mitochondria. To what extent this is due to dual localization or to contamination of
the mitochondrial preparations is an open question.

The MC members catalyze the transport of numerous metabolic intermediates across
the IMM—nucleotides like ADP, ATP, and NAD+; coenzymes like coenzyme A, thiamine pyrophosphate,
and folate; di- and tri-carboxylic acids like malate, oxoglutarate, succinate, fumarate, and citrate; amino
acids like glutamate, aspartate, ornithine, citrulline, and carnitine; as well as phosphate and protons.
All these carriers have been admirably reviewed by Palmieri et al. [28] and Toleco et al. [36], so we will
not discuss them any further except briefly in connection with one important metabolite, ascorbate.

Ascorbate is very important in mitochondrial metabolism where it participates in
the ascorbate-glutathione cycle that removes H2O2 produced by the respiratory chain e.g., [37].
The last step in ascorbate biosynthesis takes place on the outer surface of the IMM [38], but to date no
ascorbate transporter has been identified in the IMM. Ascorbate transport was measured in plant and
rat liver mitochondria by Scalera et al. [39]. The protein responsible was in the size range 28–35 kDa,
which is where most of the MC family transporters are found, but the gene was not identified. An
ascorbate transporter has been identified in the chloroplast envelope [40], which could in principle
be dually targeted to IMM. However, since it is 60 kDa it could not be responsible for the transport
activity observed by Scalera et al. [39].

4.2.2. Transport of Inorganic Ions

Ca2+—Arabidopsis contains a Ca2+-cation antiporter family with 13 members out of which one is
predicted to be mitochondrial, none has been identified by proteomics. Rice contains a Ca2+-cation
antiporter family with 16 members, out of which three are predicted to be mitochondrial; none has been
identified in proteomics. One of the predicted antiporters may be involved in Ca2+/Na+ exchange.

K+—Arabidopsis mitochondria contain three members of the Monovalent Cation: Proton
Antiporter-2 (CPA2) Family. Two were found experimentally—At1g01790 K+ efflux antiporter
1, chloroplastic and At2g28180Cation/H+ antiporter 8—and one was predicted (At5g41610 cation-H+

antiporter (Table S1, UniProt)). Arabidopsis mitochondria also contain three members of The Monovalent
Cation: Proton Antiporter-2 (CPA2) Family. At5g41610 (Cation/H+ antiporter 18) was predicted but
not found, while At1g01790 (K+ efflux antiporter 1, chloroplastic) was found but not predicted. All of
these transporters could help the mitochondria regulate the K+ concentration in the matrix.
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Metal ions—two members of the Cation Diffusion Facilitator (CDF) Family in Arabidopsis have
been either found and predicted (At1g51610—Metal tolerance protein C4, tonoplast) or just predicted
(At2g47830—predicted Metal tolerance protein C1, tonoplast) (Table S1). Unless these are merely
contaminants in the isolated mitochondria, they could provide the mitochondria with the means of
transporting metal ions, like Pb2+, Ni2+, and Fe3+, across the IMM.

Sulfate—there are 14 members of the sulfate permease family in Arabidopsis, but only one
(At1g80310) is predicted to be mitochondrial by MU-LOC, and none was found by proteomics
(Table S1). The predicted mitochondrial transporter turns out to be a molybdenum transporter located
in the tonoplast (as annotated in UniProt).

Nitrite—nitrite is known to reach the mitochondrial matrix, where it can act as an alternative
electron acceptor under hypoxia/anoxia [41]. No nitrite carriers are listed in Table S1, but the nitrite
carrier found in the inner envelope in chloroplasts (At1g68570) is a member of the proton-dependent
oligopeptide transporter family [42]. This family has 18 members in Arabidopsis, and several of them
transport nitrate. However, none of them is predicted to be mitochondrial by MU-LOC, and none has
been found in proteomic studies (Table S1).

4.3. (Ion) Channels

4.3.1. Porin (VDAC or VIC)

The VDAC/VIC family has 36 members in Arabidopsis (as listed in TransportDB), and only one
has been predicted to be mitochondrial (Table S1). However, six VICs have been found in Arabidopsis
mitochondria experimentally (Table S2), and they are all bona fide VDACs according to UniProt, but
they are not listed in TransportDB (Table S1). The OMM in isolated mitochondria behaves as if it is
freely permeable to small molecules, so the VDACs do not appear to be actively gated, but it is possible
that porin is involved in tRNA transport [11,12,42].

4.3.2. Aquaporin

Aquaporins allow water, but also other small neutral molecules like hydrogen peroxide and
ammonia, to pass membranes in both directions going from higher to lower osmotic potential [43,44].
Contrary to the conclusion by Maurel et al. [44] that “plant mitochondria seem to be deprived of
aquaporins”, MU-LOC predicted that 7 out of 39 Arabidopsis aquaporins localized to the mitochondria,
and proteomic profiling of Arabidopsis and potato mitochondria found six aquaporins (only one overlaps
between prediction and experimental) (Table S1). It has long been known that (plant) mitochondria can
swell and shrink. For instance, the mitochondria swell rapidly when the osmotic potential decreases in
the matrix due to a rapid influx of osmolytes e.g., [45], which would only be possible if aquaporins are
present in the IMM.

The final steps in substrate oxidation take place in the TCA cycle in the mitochondrial matrix
where glycolytic end products are oxidized to CO2. One still unsolved question is how the CO2
leaves the mitochondria and in what form? Animal cells have Na+/bicarbonate symporters and
chloride/bicarbonate antiporters, but none of them are predicted to be mitochondrial by MU-LOC
(Table S1). So how does CO2 get out of the mitochondria? One intriguing possibility is through
aquaporins just like other small uncharged molecules [44].

4.3.3. Ion Channels

The Small Conductance Mechanosensitive Ion Channel (MscS) Family contains 11 members in
Arabidopsis, out of which At4g00290 (mechanosensitive ion channel protein 1, mitochondrial) was both
predicted and found, whereas At1g49260 was only predicted. It is possible that the mechanosensitive
ion channel protein 1 can catalyze ATP-dependent K+ channel activity by teaming up with one of
the ABC transporters [46].
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Two subunits of the calcium uniporter protein [47,48]—MCU1 (At4g36820) and MCU2
(At2g23790)—have been identified in plant mitochondria (Table S2), but they do not appear in
the TransportDB list (Table S1).

The list of Arabidopsis ion channels contains eight so-called chloride intracellular channel (CLIC)
homologs, out of which three are predicted to be mitochondrial (At1g19570, At5g16710, and At5g36270),
and one is both predicted and experimental (At1g75270). They are all annotated as glutathione
S-transferases with glutathione-dependent dehydroascorbate reductase activity and appear to be
able to transfer Cl- across membranes [49], possibly by a mechanism involving a redox reaction (as
annotated in UniProt).

5. Posttranslational Modifications of Transporters

Posttranslational modifications (PTMs) of proteins are a way of regulating cellular and
mitochondrial metabolism [37]. In shotgun proteomics, many mitochondrial transporters have
been observed to have PTMs of various types: (i) oxidations to give carbonylated side chains on
primarily Lys and Pro or sulfoxide on Met [18], although the latter is probably an analytical artefact
in some cases; (ii) phosphorylation of Ser, Thr, and Tyr [50–52]; (iii) acetylation of Lys [53]; and (iv)
conjugation of Lys side chains with oxidative degradation products of polyunsaturated fatty acids,
for instance, 4-hydroxynonenal (HNE) [54,55]. Many of these modifications are no doubt regulatory,
while others are damaging and lead to proteolytic degradation [37,56,57].

The modified transporters include the ATP, ADP-translocase, the phosphate transporter, and
the dicarboxylate carrier; the former two are both oxidized and acetylated on multiple sites [18,53].
The effect of the modifications is so far unknown. Plasma membrane aquaporins are known to
be gated by phosphorylation [44], but aquaporin phosphorylation has never been reported for
plant mitochondria.

6. Physiological Changes in the Mitochondrial Transporters

There has been a number of studies of individual mitochondrial transporters during development
or during the stress response, e.g., the Ca2+ uniporter [48], but very few where the whole mitochondrial
transportome has been considered.

6.1. Changes in Rice during Development

Taylor et al. [24] studied members of the MC family in rice. The expression of 44 of the 50 MC
genes in rice was quantified in different tissues during the time course of aerobic and anaerobic seed
germination, during seedling growth and in response to fungal infection. Several tissue-specific
carriers were identified in the shoots and flowers, and the expression of specific ATP/ADP transporters,
succinate/fumarate carriers, and a dicarboxylate/tricarboxylate carrier (DTC) increased during
fungal infection.

Taylor et al. [24] also used a targeted proteomic approach especially suited for identifying
integral-membrane proteins [20], and succeeded in identifying and quantifying five different MC
proteins in dry seeds and in seeds incubated under normoxia and anoxia. Significant differences in
protein abundance between the treatments were observed for the phosphate carrier and the basic
amino acid carrier.

6.2. Changes in Maize during Development

Wang et al. [25] studied mitochondrial development in developing maize seed embryos. They
purified mitochondria from 300–600 excised embryos (2–15 g fresh weight) at five time points during
the period 14–70 days after pollination (DAP) and did proteome profiling by a shot-gun method.
Altogether, they identified and quantified 931 mitochondrial proteins (including 31 transporters—Table
S2) and observed that the abundance of 286 proteins changed more than two-fold during embryo
development. The abundance of most of these peaked early during development either on day 14 (the
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first day investigated) or on day 21 after pollination. Out of the differentially abundant proteins, 11
were transporters, and 7 of these, including two DTCs, showed a pattern where the abundance peaked
on day 21, i.e., quite early in development.

7. Conclusions

Plant mitochondria contain more than 100 transporters of all classes and families, both as
determined by proteomics of isolated mitochondria and by prediction using the MU-LOC bioinformatics
tool with a good overlap between the two methods. By far the largest group is the secondary transporter
family Mitochondrial Carriers, which includes many of the well-known inner mitochondrial membrane
carriers of organic acids, amino acids, etc. Other well-represented families are the F-ATPases and
the Mitochondrial Protein Translocators, but plant mitochondria also contain ABC transporters, water
channels, and ion channels. There is a real need for targeted proteomic profiling of mitochondria
from a broader tissue spectrum, especially green tissues, but targeted profiling of roots and flowers
would also help to obtain a more complete picture of the mitochondrial transportome in plants. It
would also be useful to study the transportome under a variety of environmental conditions to identify
stress-responsive transporters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/8/1190/s1,
Table S1: List of Arabidopsis, rice, human and mouse transporters (from TransportDB - Elbourne et al. 2016), and
their MU-LOC prediction and mitochondrial proteomics, Table S2: List of proteomically/experimentally identified
Arabidopsis/rice/plant mitochondrial transporters.
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ABC ATP-binding cassette
DAP days after pollination
DTC dicarboxylate/tricarboxylate carrier
GO gene ontology
IMM inner mitochondrial membrane
MC mitochondrial carrier
MCF MC family
MPT mitochondrial protein translocase
OMM outer mitochondrial membrane
PTM posttranslational modification
TCA tricarboxylic acid
TIM translocase inner membrane
TOM translocase outer membrane
UCP uncoupling protein
VDAC voltage-dependent anion channel
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