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Abstract: Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-
binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product
synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for
microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact
with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent
years, with the development of bioinformatics and synthetic biology, several novel physicochemical
properties and metabolic regulatory effects of VHb have been discovered and numerous strategies
have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes
its applications in biotechnology. Thus, in this review, the new information regarding structure,
function and expressional tactics for VHb is summarized to understand its latest applications and
pave a new way for the future improvement of biosynthesis for other products.

Keywords: Vitreoscilla hemoglobin; high-cell-density fermentation; physicochemical properties;
metabolic regulation; expressional tactics; applications

1. Introduction

Vitreoscilla hemoglobin (VHb) is the first bacterial hemoglobin discovered in gram-
negative bacterium Vitreoscilla sp. C1 [1]. Vitreoscilla was found in oxygen-limited condi-
tions like stagnant ponds and decaying vegetable matter [2,3], but it is strictly aerobic based
on the special VHb to adapt to hypoxic conditions. VHb was originally named “cytochrome
o (Cyo)” because of some similar properties with cytochromes [4,5]. Subsequently, the
amino acid sequencing of “Cyo” was completed and showed that it had a high homology
with eukaryotic hemoglobins [2].

VHb is a single-domain hemoglobin (SDHb) that is different from the two other two
kinds of bacterial hemoglobins, FHbs (flavohemoglobins, a VHb-like globin fused with
flavin-binding domain) and trHbs (truncated hemoglobins, a single-domain hemoglobin
approximately 20% smaller than SDHb) [6]. Based on the unique structure of VHb, it
can efficiently bind and transport oxygen to the respiratory chain by interacting with
terminal oxidase, especially under oxygen-limited conditions [6]. In addition, VHb also
can interact with transcriptional regulators responsible for oxygen response, triggering
oxidative phosphorylation in the cells [6].

Based on its powerful oxygen transport capacity, VHb has been widely applied in the
field of metabolic engineering for microorganisms, plants and animals. By enhancing the
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regeneration of ATP and NAD+ and improving the activity of the TCA cycle [7,8], VHb
can be used to promote the growth of microbial, plant and animal cells [7,9], improve the
synthesis of target products under oxygen-limited conditions [10], and increase the effect
of microorganisms on bioremediation [11].

In recent years, with the development of bioinformatics and synthetic biology, several
novel physicochemical properties and functions of VHb were discovered and numerous
strategies were utilized to enhance the expression level of VHb in various hosts, resulting in
its wide application in biotechnology. Therefore, in this review, the information of structure
and functions for VHb are summarized to make VHb become a promising and practical
tool in metabolic engineering.

2. Biochemical Function of VHb
2.1. The Oxygen-Binding Property of VHb

VHb is a homodimer composed of two identical subunits (146 amino acids for each
subunit) and two molecules of b-type heme. In the early studies, VHb was considered as
a cytochrome o [1]. Subsequently, researchers gradually recognized that VHb is a kind
of hemoglobin based on its primary structure, spectral properties, and oxygen binding
kinetics [2]. Under different environmental conditions, VHb can present in three different
states: oxidized state, reduced state, and oxygenated state. When the iron atom in the heme
of VHb is in the ferrous state, it presents in a reduced state and can reversibly combine
with the oxygen. The oxygenated state is the transition state between the reduced state
and oxidized state and is also the most important stable state that participates in oxygen
related metabolic pathways and improves the efficiency of oxidative phosphorylation in
the respiratory cells [12,13].

Compared with other eukaryotic hemoglobins, the rate constant of VHb binding to
oxygen (kon = 78 µM−1s−1) is in the average level, but the dissociation rate constant of VHb
and oxygen (koff = 5000 s−1) is hundreds of times higher, meaning VHb is apt to release a
large amount of oxygen [13]. In Vitreoscilla and Escherichia coli, the cellular VHb localizes
in the periplasmic space and close to cell membrane, which facilitates it functioning as
a respirator to transport oxygen to the cell membrane under hypoxic conditions [14].
Whereas in yeast, it was confirmed by two-hybrid experiments that VHb can interact with
subunit I of cytochrome bo ubiquinol oxidase and enhance its activity [15].

2.2. The Activity of Terminal Oxidase and Peroxidase

On the one hand, as early as thirty years ago, it has been verified that VHb has terminal
oxidase activity. After the vgb gene (Vitreoscilla hemoglobin gene) was transformed, under
the condition of succinate or lactate for substrates, the E. coli mutant that lacks cytochrome o
and d terminal oxidases could perform aerobic respiration and grow normally [16]. On the
other hand, the activity of peroxidase was detected for VHb through in vitro experiments,
and many factors (pH, temperature, etc.) can affect its activity [17,18]. In the following, in
order to enhance the peroxidase activity of VHb for the application in biomedicine and
dye decolorization, several mutated VHb that presenting high peroxidase activity under
specific pH conditions were obtained [19]. Based on these mutants of VHb, it was found
that the conserved amino acid residues 53 and 54 (glutamine and proline) in the distal
pocket of VHb are closely related to its peroxide activity. Aiming for these two key catalytic
sites, more and more designed mutants (P54R or Q53H/P54C) with higher peroxidase
activity were obtained by site-directed mutations [20,21].

2.3. The Potential Sulfide Receptor and Storage

Different from the classic H2S-binding monomeric hemoglobin from Lucina pecti-
nate [22], VHb exhibits unusual characteristics in its reactivity with H2S, such as steric
constraints at position E11 (Leu), that play important roles in regulating the binding stabil-
ity of H2S and VHb. The kinetic parameters for interaction between VHb and H2S were
determined by UV-visible spectroscopic analysis and Resonance Raman (RR) spectroscopic
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analysis (Kon = 1.2 × 105 M−1S−1 and Koff = 2.5 × 10−4 S−1), indicating that VHb serves as
a potential sulfide receptor and has a storage function in the cells [23].

2.4. Other Functions

Besides the functions mentioned above, VHb also has the properties of lipid binding.
VHb not only can interact with the monolayers formed by natural phospholipids but
also reversibly binds to free fatty acids [24]. Since the binding site is located in the distal
pocket of the heme, combination with lipids may affect the oxygen affinity of VHb and
its physiological functions [24]. In addition, VHb can also interact with other intracellular
enzymes or transcriptional regulators to increase their activities or activate the downstream
metabolic pathways (Table 1).

Table 1. Interactions between VHb and intracellular enzymes or regulators.

Enzymes/Regulators Functions References

Flavoreductase Relieve nitrosative stress [25]
Transcriptional regulators (OxyR, Fnr, ArcA, Crp) Transcriptional regulation [26]

2,4-dinitrotoluene dioxygenase Enhance dioxygenase activity [27]
OxyR: oxidative stress regulator; Fnr: fumarate and nitrate reductase; ArcA: aerobic respiration control A; Crp:
catabolic repressor protein.

3. Structure and Bioinformatics Analysis of VHb and Its Mutants
3.1. The Structure of VHb and Its Mutants

Based on the analysis of crystal structure, VHb forms six α-helix regions (A, B, E, F, G
and H), which is different from other eukaryotic hemoglobins with eight α-helix regions (A,
B, C, D, E, F, G and H), and has a unique distal heme pocket [28]. In addition, there are four
residues (TyrB10, GlnE7, ProE8 and LeuE11) that are closely related to the oxygen-binding
property [29]. Notably, unlike most eukaryotic hemoglobins, the distal His (E7) residue in
VHb is substituted by Gln residue, which cannot form hydrogen bonds with oxygen [30].
Furthermore, the Gln (E7) residue in VHb is responsible for the disorder of the D-helix
region that forms between the polypeptide segment from Phe-43 (CD1) to Leu-57 (E11),
leading to the weaker affinity to oxygen, higher oxygen dissociation constant (Koff) and
rapid rate of oxygen transfer [30].

Apart from the wild-type VHb, the effect of key amino acid residues on the structure
and function of VHb mutants was studied through site-directed mutagenesis. At first, the
Tyr-29 (B10) played an important role in maintaining the stability of oxygen binding [31].
Next, the structure of the TyrB10Phe mutant is almost indistinguishable from the wild type,
and the structure related to D-region ordering and E7 chain of the TyrB10Ala mutant is
significantly different from the wild type [31]. Moreover, VHb also had a unique proximal
heme pocket, with the structure being formed by a hydrogen-bonding network consisting
of HisF8-TyrG5-GluH23 and TyrG5-TyrH12 [32]. In addition, the TyrG5Phe and TyrG5Leu
mutants cannot form a stable oxygenated state and do not exhibit any nitric oxide dioxyge-
nase activity [32]. However, the TyrH12Phe and TyrH12Leu mutants showed little effect
on the oxygen-binding capacity, which is inconsistent with the previous predicted results
that TyrH12Leu mutation could enhance oxygen diffusion and accumulation [32].

3.2. The Homology Analysis of VHb

It has been reported that VHb has a lower homology with eukaryotic hemoglobins and
the highest homology only can reach 24% (leghemoglobin from Lupinus luteus). However,
after the alignment of amino acid sequence between VHb and prokaryotic proteins, eight
categories of bacterial homologous proteins were found, including bacitracin resistance
protein BacA, hemoglobins (Hb), hypothetical protein (HP), NO-inducible flavohemopro-
tein (NOIFHP), flavohemoprotein (FHP), cytochrome o (Cyo), nitric oxide dioxygenase
(NOD) and dihydropteridine reductase (DHPR).
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Among eight homologous categories, the proteins with highest homology with VHb
were selected, including BacA from Clostridium paraputrificum (WP_027099064.1, 73.05%),
Hb from Clostridium sp. CAG:221 (CDB15533.1, 71.63%), HP from Intestinibacter bartlettii
DORA_8_9 (ETI93048.1, 68.79%), NOIFHP from Ureibacillus sp. Re31 (WP_191706693.1,
66.67%), FHP from Lysinibacillus sphaericus C3-41 (ACA41869.1, 65.97%), Cyo from Clostrid-
ium sp. (SCK00776.1, 65.73%), NOD from Caryophanon latum (WP_066464548.1, 65.28%),
and DHPR from Bacilli bacterium VT-13-104 (KKE77556.1, 59.86%) (Figure 1).
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Figure 1. The homology analysis of VHb. The accession numbers in GenBank of eight homologous proteins and their
homology with VHb: BacA from C. paraputrificum (WP_027099064.1, 73.05%), Hb from Clostridium sp. CAG:221 (CDB15533.1,
71.63%), HP from I. bartlettii DORA_8_9 (ETI93048.1, 68.79%), NOIFHP from Ureibacillus sp. Re31 (WP_191706693.1, 66.67%),
FHP from L. sphaericus C3-41 (ACA41869.1, 65.97%), Cyo from Clostridium sp. (SCK00776.1, 65.73%), NOD from C. latum
(WP_066464548.1, 65.28%), and DHPR from B. bacterium VT-13-104 (KKE77556.1, 59.86%). Hb: hemoglobin; BacA: bacitracin
resistance protein; HP: hypothetical protein; NOIFHP: NO-inducible flavohemoprotein; FHP: flavohemoprotein; Cyo:
cytochrome o; NOD: nitric oxide dioxygenase; DHPR: dihydropteridine reductase; VtHb: VHb, Vitreoscilla hemoglobin;
SDgb: single-domain globin; PPK13289: belongs to the superfamily cl36224 and may span more than one domain. FAD:
flavin adenine dinucleotide; NAD: nicotinamide adenine dinucleotide; Yhb1-globin_like: a globin domain such as the globin
domain of the Saccharomyces cerevisiae flavohemoglobin (Yhb1p). Different colors represent different proteins or domains.

Based on the analysis of conserved domains, the results show that BacA from C. para-
putrificum, Hb from Clostridium sp. CAG:221, and FHP from L. sphaericus C3-41 all contain
heme binding sites. Particularly, there are NAD (nicotinamide adenine dinucleotide) and
FAD (flavin adenine dinucleotide) binding sites on FHP from L. sphaericus C3-41, which are
very similar to the structure of VHb. BacA from C. paraputrificum and Hb from Clostridium
sp. CAG:221 belong to the VtHb-like_SDgb (VHb-like_SDgb) protein family. BacA has
the activity of undecaprenyl pyrophosphate phosphatase that is involved in the cell wall
synthesis [33]. In addition, BacA can interact with lipids, which is similar to the function of
VHb [24]. HP from I. bartlettii DORA_8_9, NOIFHP from Ureibacillus sp. Re31, FHP from
L. sphaericus C3-41, and DHPR from B. bacterium VT-13-104 belong to PPK13289, a member
of the cl36224 protein superfamily and may span more than one domain. Although no
conserved domain was obtained by alignment, the function of NO-dioxygenase (NOD)
from C. latum and Cyo from Clostridium sp. is similar with VHb [16,25], indicating some
potential functional domains still remain to be discovered.
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4. The Heterologous Expression of VHb
4.1. The Regulation of VHb Expression by Its Native Promoter

After the vgb gene encoding VHb was identified in Vitreoscilla [2], VHb was first
heterologously expressed by its native promoter in E. coli [3]. It is worth noting that the
expression of VHb was induced under hypoxic conditions both in Vitreoscilla and E. coli,
indicating the oxygen-sensitive regulatory mechanism for its native promoter. In the
following, it is found that there are binding sites of the oxygen-responsive transcriptional
regulators OxyR, Fnr, ArcA, and Crp on the vgb promoter. Under oxygen-limited conditions,
Fnr, ArcA, and Crp activate the expression of the vgb gene independently or in combination
to promote oxygen supply and enhance respiratory activity [34]. Under high aeration,
OxyR can not only down-regulate the transcription of the vgb gene by binding to the vgb
promoter, but also interacts with VHb to convert it into an oxidized state that can positively
regulate the expression of genes involved in oxidative stress and enhance the ability of
cells to resist oxidative stress [26].

4.2. The Strategies to Improve VHb Expression

Due to the promising effect of oxygen delivery on the growth of strains and the
synthesis of useful products, the expression levels of VHb should be adjusted for different
kinds of microbial hosts [35]. At present, three factors that can significantly influence VHb
expression have been optimized, including the copy number of the vgb gene, the vector
copy number, and the promoter strength (Table 2).

Table 2. The strategies of VHb expression.

Strain Expression Strategies References

Escherichia coli Free; inducible; vgb promoter [36]
E. coli Free; inducible; vgb promoter [35]
E. coli Free; inducible; P8vgb [37]

E. coli, Halomonas bluephagenesis
and Halomonas campaniensis Free; inducible; P8vgb [38]

E. coli Integrative; constitutive; trc promoter [39]
E. coli Integrative; inducible; trc promoter [40]
E. coli Free; inducible; tac promoter [41]

Thialkalivibrio versutus Free; constitutive; tac promoter [42]
E. coli Free; constitutive; tac promoter [43]

Cupriavidus necator Free; constitutive; PphaC1-j5 promoter [44]
Bacillus subtilis Free; constitutive; P43 promoter [45]

Aurantiochytrium sp. Integrative; constitutive; tubulin promoter [46]
Streptomyces sp. Integrative; constitutive; ermE promoter [47]
Pichia pastoris Integrative; inducible; AOX1 promoter [48]

P. pastoris Integrative; inducible; AOX1 promoter [49]
Arabidopsis and Zea mays L. Integrative; constitutive; CaMV35S promoter [9]

Hyoscyamus niger Integrative; constitutive; CaMV35S promoter [50]
Free: intracellular free expression by plasmid; Integrative: intracellular integrative expression by chromosomally
integration; Inducible: intracellular inducible expression by the addition of inducers; Constitutive: intracellular
constitutive expression that do not need inducers. P8vgb: eight-tandem vgb promoter; trc promoter: trp and lac
UV5 promoter hybridized; tac promoter: a hybrid between the trp and lac promoters; PphaC1-j5 promoter: a hybrid
between PphaC1 and Pj5 promoter; tubulin promoter: a promoter amplified from the genome of Aurantiochytrium
sp.; ermE promoter: a strong constitutive promoter commonly used in Streptomyces sp.; AOX1 promoter: methanol-
inducible promoter commonly used in P. pastoris; CaMV35S promoter: the 35S promoter from the plant pathogen
cauliflower mosaic virus.

At first, based on the effect of different VHb expression levels on the growth of E. coli,
the suitable copy number of the vgb gene was determined. The result showed that the
increased integrated copies of the vgb gene under the control of the vgb promoter cannot
improve cell growth [36]. Therefore, the single copy of vgb gene was generally adopted
in the following metabolic engineered strains. Next, three different recombinant E. coli
strains (harboring low, middle, and high copy numbers of vectors containing the vgb gene,
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respectively) were constructed to improve the titer of ethanol. The results showed that the
titer of ethanol was inversely proportional to the expression level of VHb and the highest
titer of ethanol was obtained by the lowest VHb co-expression [35].

At last, the efficient expression of the vgb gene was achieved by selecting appropriate
promoters. The native vgb promoter works in several Gram-negative bacteria, including
eight-tandem vgb promoter P8vgb in E. coli, Halomonas bluephagenesis and Halomonas cam-
paniensis [37,38]. The specific promoters that have been chosen for other bacteria include
trc promoter in E. coli [39,40], tac promoter in E. coli and Thialkalivibrio versutus [41–43],
PphaC1-j5 promoter in Cupriavidus necator [44], and P43 promoter in Bacillus subtilis [45].
Fungal promoters that have been used for expression in fungi include: tubulin promoter in
Aurantiochytrium sp. [46], constitutive ermE promoter in Streptomyces sp. [47], and AOX1
promoter in Pichia pastoris [48,49]. In addition, the CaMV35S promoter has been chosen in
higher plant systems [9,50].

5. The Effect of VHb Expression on Cell Metabolism

The result of transcriptomics showed that the expression of VHb can affect hun-
dreds of genes in E. coli, especially for the genes involved in central carbon and energy
metabolism [41]. In addition, under the conditions of limited oxygen and glucose as the
sole carbon in E. coli, the analysis of metabolic flux distribution further demonstrated that
the expression of VHb leads to dominant carbon flux in the pentose phosphate pathway
(PPP), while the remaining carbon flux is guided toward the tricarboxylic acid (TCA)
cycle [51]. Further research showed that the TCA cycle in vgb+ cells of E. coli can func-
tion in a branched manner under hypoxic conditions [52]. Along with the increasing
carbon flux in PPP, more NADPH was produced and a net NADH flux is generated by
the NADH/NADPH transhydrogenase in vgb+ cells under microaerobic conditions [51].
Moreover, VHb delivers oxygen to the respiratory chain, the respiratory activity was en-
hanced, the ratio of NAD+/NADH and ATP generation was improved [7,53]. Furthermore,
by-products in the fermentation process were significantly reduced (acetate ~25%, ethanol
~49%, formate ~68%, lactate ~72%, and succinate ~50%) and growth yield increased 35% in
vgb+ cells [51]. Especially for acetate, the following transcriptional analysis showed that
the transcriptional levels of the glyoxylate shunt genes were also decreased [54].

6. Applications of VHb in Biotechnology

Dependent on the robust capacity of oxygen transport under hypoxic conditions, VHb has
been widely used for the improvement of biosynthesis, cell growth and bioremediation (Figure 2).
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6.1. VHb in Biotechnological Productions

VHb has been used for some important value-added products such as acetoin, bu-
tanediol and L-asparaginase under hypoxic conditions. For acetoin and butanediol, the
vgb+ engineered Enterobacter aerogenes showed an enhancement of 83% in accumulation
of acetoin and butanediol compared to the control strain without vgb [59]. In addition,
an increase of 70% on the production of L-asparaginase was achieved in Pseudomonas
aeruginosa by introducing the vgb gene [60]. Furthermore, many processes of ethanol
production from pure sugars and industrial waste (corn, molasses, whey, whey powder,
etc.) can be enhanced by VHb expression [61]. By combining immobilization with VHb,
the immobilized engineered E. coli increased by 47% in the medium with an intermediate
concentration of lactose from whey powder [62]. After the optimization of immobilization
conditions (10% bead inoculation) and the medium composition (8% lactose from whey
powder), the vgb+ immobilized E. coli displayed a higher titer of ethanol to 4.64% [63].

Besides the above-mentioned products, the production of other target products, in-
cluding antibiotics, enzymes, organic acids and polysaccharides, can also be significantly
increased through heterologous expression of VHb (Table 3). For antibiotics, the synthesis of
pyocyanin and rifamycin B can be increased 3-fold in E. coli [64] and 2.2-fold in Amycolatopsis
mediterranei [65], respectively. For enzymes, the expression of lipase 2, coenzyme Q10 and
xylanase can be enhanced by 87.84% in P. pastoris [48], 71% in Rhodobacter sphaeroides [66]
and 31% in P. pastoris [49], respectively. For organic acids, the VHb expression has a greater
effect on arachidonic acid (8-fold) in Mortierella alpina [67], docosahexaenoic acid (2.74-fold)
in Aurantiochytrium sp. [68], and ganoderic acid (1.4-fold) in G. lucidum [69]. For polysaccha-
rides, several complex compounds, including bacterial cellulose (58.6%) in Gluconacetobacter
xylinus [70], pullulan (42.08%) in Aureobasidium melanogenum [71], β-glucan (12.9–24.0%)
in Lentinula edodes [72], and 6-(N-hydroxyethyl)-amino-6-deoxy-alpha-l-sorbofuranose
(11.89%) in Gluconobacter oxydans [10] can be efficiently obtained, respectively.

Table 3. The titer of products increased by the expression of VHb.

Products Enhancement Strain References

Alcohols
Ethanol

~362% E. coli [73]
~118% E. coli [35]
~60% E. coli [74]
~47% E. coli [62]

~(41-83%) E. coli [63]
Butanediol ~83% Enterobacter aerogenes [59]
Erythritol ~26.13% Yarrowia lipolytica [75]

Antibiotics
Pyocyanin ~3-fold E. coli [64]

Rifamycin B ~2.2-fold Amycolatopsis mediterranei [65]

Enzymes

Lipase 2 ~87.84% P. pastoris [48]
Coenzyme Q10 ~71% Rhodobacter sphaeroides [66]

Xylanase ~31% P. pastoris [49]
L-asparaginase ~70% Pseudomonas aeruginosa [60]

Acids

Arachidonic acid ~8-fold Mortierella alpina [67]
Docosahexaenoic acid ~2.74-fold Aurantiochytrium sp. [68]

Ganoderic acid ~1.4-fold Ganoderma lucidum [69]
S-adenosylmethionine ~67% S. cerevisiae [76]

Glucaric acid ~28.76% S. cerevisiae [77]
L-phenylalanine ~16.6% E. coli [43]

Polysaccharides

Bacterial cellulose ~58.6% Gluconacetobacter xylinus [70]
Pullulan ~42.08% Aureobasidium melanogenum [71]
β-glucan ~(12.9–24.0%) Lentinula edodes [72]

6-(N-hydroxyethyl)-amino-6-deoxy-
alpha-l-sorbofuranose ~11.89% Gluconobacter oxydans [10]

Others
Polyhydroxybutyrate ~71.5% C. necator [44]

Acetoin ~83% Enterobacter aerogenes [59]

Enhancement: the ratio of the increase in the product titer of vgb+ strain relative to the control (% or fold).
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6.2. VHb in Plants

The expression of VHb was also used to improve the waterlogging tolerance of higher
plants. Under waterlogging conditions, VHb expressed in Zea mays L. seedlings can induce
a higher activity of peroxidase and alcohol dehydrogenase 1 that are correlation with
tolerance to oxidative stress and enhance the growth performance of plants (seedling
height, root dry weight, primary root length, etc.) [9]. In addition, the expression of VHb
can regulate the transcription of endogenous genes that refer to antioxidant biosynthe-
sis and oxygen metabolism in plant cells, and protect cells from oxidative damage [57].
Furthermore, the biosynthesis of ascorbate and the tolerance to photo-oxidative stress
were enhanced in VHb-expressing Arabidopsis cells [57]. VHb also plays a positive role in
some other higher plants, including the enhancement of productivity and resistance to the
herbicide glyphosate in Oryza sativa L. [78], and the improvement of seed germination and
tolerance to submergence stress in cabbage (Brassica oleracea var. capitata L.) [79]. However,
the expression of VHb does not always have a positive effect on plants. In the case of
Hordeum vulgare, it exhibited a slower germination rate and impaired rooting of seedlings,
which may be attributed to the removal of a significant signaling molecule (NO) related
to seed germination and root formation by VHb [80]. In addition, the introduction of the
vgb gene into Populus alba L. did not improve tolerance to submergence, oxidative and
nitrosative stresses [81]. Therefore, it is necessary to carefully investigate the influence of
the genetic manipulation of oxygen metabolism of higher plants on the physiological and
biochemical characteristics of cells in order to evaluate the true value of VHb application
for higher plants.

6.3. VHb in Mammalian Cells

There are also several successful reports on the application of VHb engineering in
animal cells, including increased tissue plasminogen activator (~40–100%) in Chinese
hamster ovary cells [82], increased survival rate (vgb+-34.57~92% and vgb−-15.69~65%) in
Danio rerio [58], and increased biomass yields by 60% and lactate decrease of 40% in Chinese
hamster ovary cells [7]. Since the metabolism of animals is much more complicated than
that of microorganisms, the application of VHb in the field of animals has been relatively
slow in recent years.

6.4. VHb in Biodegradation Applications

VHb expression was frequently applied in biodesulfurization, degradation of pesti-
cides, and wastewater treatment (Table 4). Dependent on the function of sulfide receptor
and storage [23], the expression of VHb in Rhodococcus erythropolis (desulfurization bac-
terium) presented a higher desulfurization ratio than the control (vgb+-37.5% and vgb−-
20.5%) under hypoxic conditions [83]. In the following, an increase of 11.7 ± 1.8% on the
rate of thiosulfate scavenge was achieved in T. versutus by introducing the vgb gene [42]. In
addition, the co-culture of desulfurization bacteria is also an effective sulfur degradation
method [84]. For example, co-culture of Paenibacillus strains (vgb+) showed a stronger
growth than the control (vgb−) under the conditions of dibenzothiophene [11]. Moreover,
introduction of the vgb gene into Pseudomonas putida can improve its pesticide degradation
function under oxygen-limited conditions, including simultaneous degradation of methyl γ-
hexachlorocyclohexane and parathion [85], the removal of 1,2,3-trichloropropane [86], and
the simultaneous elimination of carbamates, pyrethroids, and organophosphates [87]. As
for wastewater treatment, the vgb+ engineered Burkholderia cepacia strain was first applied
with a parallel membrane bioreactors system and displayed a significant increase in the
degradation efficiency of 2-chlorobenzoic acid (vgb+ ~94–97% and vgb− ~67–85%) [88]. In
addition, based on the activity of peroxidase, one of the VHb variants (Q53H/P54C) shows
excellent prospects for treating wastewater contaminated by textile dyes [21]. Furthermore,
the b-type heme derived from VHb is quite beneficial for the activity of hemoglobin in
activated sludge, which functions as oxidase or peroxidase and plays an important role in
traditional aerobic wastewater treatment [89].
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Table 4. The applications of VHb in biodegradation.

Compounds Strain References

Dibenzothiophene Rhodococcus erythropolis [83]
Thiosulfate T. versutus [42]

Dibenzothiophene Paenibacillus [11]
Pesticides Pseudomonas putida [85–87]

2-chlorobenzoic acid Burkholderia cepacia [88]
Benzene, toluene and xylene Pseudomonas aeruginosa [90]

Cadmium Enterobacter aerogenes [91]

7. Conclusions and Future Perspectives

VHb is a special bacterial hemoglobin that can interact with terminal oxidase to
provide enough oxygen for cell growth. Based on analyses of its properties and crystal
structures, VHb has been applied in the field of metabolic engineering for microorganisms,
plants, and animals to achieve high-cell-density fermentation and to enhance product
synthesis and stress tolerance under oxygen-limited conditions. By the optimization of its
expression strategies, the effect of VHb was further improved, allowing VHb technology to
be used for more and more products.

In the future, there are four possible directions for the development of VHb application.
Firstly, the precursors of heme (5-aminolevulinic acid) could be supplemented or the
biosynthesis of heme could be enhanced to increase the activity of VHb because many
microorganisms cannot supply enough heme for VHb expression. In the case of eukaryotic
hemoglobins, the active Arenicola Marina globin chains were efficiently expressed by the
addition of 5-aminolevulinic acid in E. coli [92]. In addition, an improvement of human
hemoglobin production was obtained in S. cerevisiae with an enhanced heme synthesis
pathway [93]. Secondly, the addition of iron and transport of iron over cell membranes
also have a positive effect on hemoglobin production. The hemoglobin of β-thalassemic
mice was increased with the exogenous addition of iron [94]. Thirdly, more and more
VHb mutants with improved characteristics can be selected by protein engineering and
high throughput screening. Furthermore, the expression of VHb will also contribute extra
metabolic burden, but the optimization of promoter, substrate and inducer can significantly
relieve this adverse effect on the host [95,96]. Finally, more research on the regulatory
mechanism of VHb on oxygen-response is needed to expand its application in other areas.
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