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Abstract
Tuberculosis (TB) is one of the leading causes of childhood morbidity and death globally. Lack of rapid, effective non-sputum
diagnosis and prediction methods for TB in children are some of the challenges currently faced. In recent years, blood transcriptional
profiling has provided a fresh perspective on the diagnosis and predicting the progression of tuberculosis. Meanwhile, combined with
bioinformatics analysis can help to identify the differentially expressed genes (DEGs) and functional pathways involved in the different
clinical stages of TB. Therefore, this study investigated potential diagnostic markers for use in distinguishing between latent
tuberculosis infection (LTBI) and active TB using children’s blood transcriptome data.
From the Gene Expression Omnibus database, we downloaded two gene expression profile datasets (GSE39939 andGSE39940)

of whole blood-derived RNA sequencing samples, reflecting transcriptional signatures between latent and active tuberculosis in
children. GEO2R tool was used to screen for DEGs in LTBI and active TB in children. Database for Annotation, Visualization and
Integrated Discovery tools were used to perform Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes
pathway analysis. STRING and Cytoscape analyzed the protein-protein interaction network and the top 15 hub genes respectively.
Receiver operating characteristics curve was used to estimate the diagnostic value of the hub genes.
A total of 265 DEGs were identified, including 79 upregulated and 186 downregulated DEGs. Further, 15 core genes were picked

and enrichment analysis revealed that they were highly correlated with neutrophil activation and degranulation, neutrophil-mediated
immunity and in defense response. Among them TLR2, FPR2, MMP9, MPO, CEACAM8, ELANE, FCGR1A, SELP, ARG1, GNG10,
HP, LCN2, LTF, ADCY3 had significant discriminatory power between LTBI and active TB, with area under the curves of 0.84, 0.84,
0.84, 0.80, 0.87, 0.78, 0.88, 0.84, 0.86, 0.82, 0.85, 0.85, 0.79, and 0.88 respectively.
Our research provided several genes with high potential to be candidate genemarkers for developing non-sputum diagnostic tools

for childhood Tuberculosis.

Abbreviations: ADCY3 = Adenylate cyclase 3, ARG1 = Arginase 1, AUCs = area under the curves, CEACAM8 =
Carcinoembryonic antigen related cell adhesion molecule 8, DAVID = Database for Annotation, Visualization and Integrated
Discovery, DEGs = differentially expressed genes, ELANE = Elastase, neutrophil Expressed, FCGR1A = Fc fragment of IgG receptor
1A, FPR2 = Formyl peptide receptor 2, GEO = Gene Expression Omnibus, GNG10 = G protein subunit gamma 10, GO = Gene
Ontology, HP = Haptoglobin, KEGG = Kyoto Encyclopedia of Genes and Genomes, LCN2 = Lipocalin 2, LTBI = latent tuberculosis
infection, LTF = Lactotransferrin, MMP9 = Matrix metallopeptidase 9, MPO = Myeloperoxidase, PPI = protein-protein interaction,
ROC = Receiver operating characteristics, SELP = Selectin P, TB = Tuberculosis, TLR2 = Toll like receptor 2.
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1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by
mycobacterium tuberculosis (M.tb). Globally, it has the highest
mortality rate among single pathogens. When M.tb invades the
host, it reproduces in the resident site and causes infection,
triggering innate immunity. Various innate immune cells, such as
macrophages and dendritic cells, etc. further activate specific T cell
immune response by regulating effectors and signaling pathways,
thereby killing M.tb and preventing its replication.[1,2] Among
them, most of M.tb will be swallowed by macrophages, which
could recruit other immune cells to gather organized and form
granulomatous lesions to curb the reproduction of M.tb, but the
granulation tissue cannot completely eradicate M.tb.[3] At this
point, the infection may become stationary or dormant and is
considered latent tuberculosis infection (LTBI). Under conditions
of failing immune surveillance, approximately 5% to 10% of
infected individuals will develop active TB during their lifetime.[4]

Due to the diversity of potential states and outcomes, we currently
lack reliable methods to identify people who might develop active
TB.[5,6] Previous studies have mainly focused on the development
of new diagnostic tools for adult tuberculosis, while childhood TB
has relatively been neglected. For most childhood cases, the
detection rate is about 35% due to lack of effective diagnostic
methods especially in early-stage TB and in some cases, the smears
and cultures give false positives and negatives.[7,8] One of the
unique features of childhood TB is its speedy development into the
disease which typically occurs within the first year following
infection because of the immature immune system. This is unlike in
adults where an M.tb infection could last for decades without
worsening.[9] Although extensive preclinical research models have
achieved encouraging results in the diagnosis, treatment, and
immunological pathogenesis of TB, none of them could perfectly
summarize human tuberculosis syndrome.[3,10] Therefore, there is
an urgent need to explore potential biomarkers for use in
distinguishing between LTBI and active TB in children for early
and accurate diagnosis and treatment.
Currently, genome-wide differential expression genes studies,

typically host blood transcriptome signatures combined with
bioinformatics analysis, have enabled the analysis of RNA
expression changes during the progression of childhood TB.[11,12]

However, the high rate of false positives in independent
microarray analysis has made it difficult to obtain reliable
results.[13] Therefore, the current study compared the differen-
tially expressed genes (DEGs) in LTBI and active TB blood in
children (aged <15 years) from multiple regions using two gene
expression profile data downloaded from Gene Expression
Omnibus (GEO). This enabled the identification of potential
biomarkers that can distinguish between LTBI from active TB in
children hence used in the diagnosis and as potential therapeutic
targets.
2. Materials and methods

2.1. Microarray data

The microarray dataset (GSE39939 and GSE39940) were
downloaded from the GEO database (https://www.ncbi.nlm.
2

nih.gov/geo/), a public functional genomics data repository. The
two gene expression datasets were obtained based on the
Illumina GPL10558 platform (Illumina HumanHT-12 V4.0
expression beadchip) which was last updated on August 13,
2018.Unlike in the original study, blood transcriptome of human
immunodeficiency virus (HIV) negative children was analyzed
and the focus was on the influence of the immune response on
LTBI and active TB (sputum culture-positive children). The
GSE39939 dataset contained 25 HIV- TB samples and 14 HIV-
LTBI samples from Kenya while GSE39940 contained 70 HIV-
TB samples and 54 HIV- LTBI samples from South Africa
and Malawi.
2.2. Identification of DEGs

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) was used to
screen for DEGs in latent and active tuberculosis in children.
GEO2R is an online analysis tool which allows users to compare
two or more groups of samples for identification of DEGs across
experimental conditions. The adjusted P values (adj. P value) <
.01 and jlogFCj (fold change) >1 were considered to be
statistically significant. Venn diagram web tool (http://bioinfor
matics.psb.ugent.be/webtools/Venn/) was used to visualize the
overlaps and R pheatmap package was used to perform the
expression changes of overlapping DEGs.
2.3. GO and KEGG pathway analysis of DEGs

GO functional annotation and KEGG pathway enrichment
analysis of DEGs were performed using Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) (https://
david.ncifcrf.gov/home.jsp) (version 6.8) tools. DAVID provides
a comprehensive set of functional annotation tools which help in
understanding the biological meaning behind large list of genes.
GO analysis describes DEGs in a standardized way from its
biological process (BP), molecular function (MF), and cellular
component (CC). KEGG Pathway analysis refers to the metabolic
pathway analysis of DEGs which helps to understand the
metabolic pathways significantly changed in different disease
states and mechanisms. In this study, P value < .05 was
considered to be statistically significant. The value of P valuewas
converted to �log10 and the larger the �log10 P value, the
greater the statistically significant.
2.4. PPI network construction and modules analysis

STRING database (https://string-db.org/) is an online tool used to
predict protein-protein interactions. The DEGs were mapped to
STRING to assess the relationships between proteins, and a
composite score >0.4 was set to ensure that the interactions had
significant statistical significance. Cytoscape software (version
3.6.1) was used to visualize the molecular interaction networks.
Molecular Complex Detection (MCODE) in Cytoscape is an app
used to screen the most important modules in PPI networks and
all the selected parameters were set as default, apart from the
MCODE scores >6. The R-package cluster Profiler (version
3.10.1) was used to perform enrichment analyses.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://bioinformatics.psb.ugent.be/webtools/Venn/
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https://string-db.org/


Figure 1. Venn diagram and heat map with two overlapping data sets. (A) Upregulated genes, (B) Downregulated genes, (C) The fold change (logFC) of the top 20
up-and down-regulated DEGs. Each row represents one gene and each column represents one dataset; The color in each rectangle corresponds to the logFC
value; Red indicates upregulated genes; Blue indicates downregulated genes.
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2.5. Hub gene identification and analysis

Cytoscape software identified the 15 top key genes in the PPI
networks, with a degree ≥10. R-package cluster Profiler (version
3.10.1) conducted and visualized the functions enrichment and key
genes pathways. The gene expression profiles of HIV- LTBI and
active TB in the two data sets were downloaded from GEO.
Receiver operating characteristics (ROC) curve was used to
estimate the hub genes reliability in diagnosis, and to determine the
optimal cutoff value (with the highest sensitivity and specificity).
The significance level was set to .01. The area under the curve
(AUC) was calculated to evaluate the ability of a single candidate
gene to predict clinical diagnostic effects. SPSS statistical software
version 20.0 was used to perform these analyses.
2.6. Ethical review

All analyses in our study were based on GEO, an international
public repository, and therefore ethical approval and informed
consent are not required.
3. Results

3.1. Identification of DEGs

DEGs (590 in GSE39939 and 937 in GSE39940) were identified
based on the screening conditions: the absolute value of logFC >
3

1, adj. P value< .01. Comparison of active TB samples with LTBI
samples from HIV-negative pediatric patients revealed that a
total of 265 genes showed differences in expression in the two
datasets, of which 79 were significantly upregulated (logFC > 0)
and 186 were downregulated (logFC < 0) genes as shown in the
Venn diagram (Fig. 1A and B). We further listed the top 20 up-
and down-regulated genes of overlapping DEGs by integrating
the analysis results of the two data sets (Fig. 1C, the complete list
of 265 genes was shown in supplementary Table 1, http://links.
lww.com/MD/F321).

3.2. KEGG pathway and Enrichment function analysis of
DEGs

The screened DEGs were uploaded onto DAVID to assess their
biological classification. The results revealed that changes in BP
were mainly enriched in innate immune response, antibacterial
humoral response, innate immune response in mucosa, inflam-
matory and immune response (Fig. 2A). Changes in CC were
mainly involved in the integral component of the plasma
membrane, extracellular exosome, plasma membrane, extracel-
lular space and nucleosome (Fig. 2B). For MF, the DEGs were
mainly associated with carbohydrate-binding, receptor activity,
protease binding and serine-type endopeptidase activity (Fig. 2C).
KEGG pathway analysis showed that there was notably
enrichment in complement and coagulation cascades signaling

http://links.lww.com/MD/F321
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Figure 2. The GO functional annotation and KEGG pathway enrichment analysis of DEGs. (A) Biomedical process (BP), (B) Cell component (CC), (C) Molecular
function (MF), (D) KEGG pathway.
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pathway, phagosome signaling pathway, leishmaniasis and
staphylococcus aureus infection signaling pathway (Fig. 2D).

3.3. PPI network construction and module analysis

STRING database predicted the PPI network of the DEGs which
revealed 257 nodes and 573 edges (Fig. 3). The interactive
information was then into the Cytoscape software and the top
two modules with high scores were selected via the plug-in
MCODE (Fig. 4A and B). R-package cluster Profiler analyzed the
enrichedmodules. The results revealed that the genes were mainly
associated with cell chemotaxis, adenylate cyclase-modulating G
protein-coupled receptor signaling pathway, second-messenger-
mediated signaling, and calcium-mediated signaling in module1.
Module 2 was highly connected to neutrophil degranulation and
activation, neutrophil activation involved in immune response
and defense response to the bacterium (Fig. 4C and D).

3.4. Hub gene identification and analysis

CytoHubba in the Cytoscape software identified the candidate
hub nodes in the PPI network, and a subnetwork of the top 15
hub genes with the highest connectivity (Fig. 5A and B) was
obtained. These included: TLR2, FPR2, MMP9, MPO, CEA-
CAM8, ELANE, CTLA4, FCGR1A, ASELP, ARG1, GNG10,
HP, LCN2, LTF, ADCY3. The names and basic functions of the
key genes are shown in Table (Table 1). A total of 15 core genes
except TLR2, CTLA4, FCGR1A and SELP were contained in the
4

top two modules, which suggested that these modules might
significantly represent the key biological characteristics in the PPI
network. This defined the 15 nodes as the major hub genes
distinguishing between LTBI and active TB in children. GO
enrichment analysis revealed that all the hub genes were
associated with neutrophil degranulation and activation of an
immune response, response to bacterial molecules and defense
response to the bacterium (Fig. 5C). KEGG pathway analysis
revealed connection to staphylococcus aureus infection signaling
pathway, and phagosome signaling pathway (Fig. 5D).
We further validated the predictive value of hub genes

identified from this study in an independent cohort of children
with LTBI and TB. ROCs analysis showed that 15 hub genes
including TLR2, FPR2, MMP9, MPO, CEACAM8, ELANE,
CTLA4, FCGR1A, SELP, ARG1, GNG10, HP, LCN2, LTF,
ADCY3, are potential biomarkers to distinguish LTBI from
active TB, and their corresponding AUCs were 0.84, 0.84, 0.84,
0.80, 0.87, 0.78, 0.26, 0.88, 0.84, 0.86, 0.82, 0.85, 0.85, 0.79,
and 0.88 respectively (Fig. 6). In addition, the findings revealed
that when single genes such as ADCY3, HP, LCN2, CEACAM8,
etc were used as biomarkers there was increased diagnostic
efficacy in distinguishing active TB from LTBI in children
(Table 2).

4. Discussion

Tuberculosis is an important disease that threatens children’s
health. According to the latest WHO report, at least a quarter of



Figure 3. The PPI network of the DEGs from STRING. The PPI network contained a total of 257 nodes and 573 edges. Colored nodes represent the first shell of
interactors; White nodes represent the second shell of interactors.
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the world’s population is infected with M.tb, and children with
TB account for about 11% of the TB population. However, the
number of children with tuberculosis exceeds previous estimates,
because the clinical manifestations of children infected with M.tb
lack specificity, the bacteria load is relatively small, and the
geographical limitations in health care in some areas make it
difficult to diagnose TB in children.[14,15] Several limitations have
been associated with the use of existing immunological methods,
such as tuberculin skin test and interferon-gamma release assays
in guiding clinical prevention and treatment of TB, especially in
children and immune-compromised individuals.[16,17] In recent
5

years, the analysis of gene expression profiles of adult
tuberculosis has improved on people’s cognition of the disease
pathogenesis. Relatively few studies exist on the use of gene
expression profiling to analyze childhood tuberculosis. There-
fore, it is crucial to investigate potential biomarkers through gene
expression profiling in children with LTBI and active TB to use
effective diagnosis and treatment.
This study relied on the use of transcriptional features present

in children’s whole blood to identify key or potential genes that
distinguish between LTBI and active TB. The screening was
performed on 2 mRNA microarray datasets from the GEO

http://www.md-journal.com


Figure 4. The two most significant modules in the PPI network and GO enrichment analysis. (A) module 1, (B) module 2, (C) The GO enrichment analysis of module
1, (D) The GO enrichment analysis of module 2. Upregulated genes are represented by red nodes; Downregulated genes are represented by colored nodes, and the
color of nodes from a bright color to dark color corresponds to genes with low to high connectivity in the PPI network.
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database where 79 upregulated and 186 downregulated DEGs
were obtained. The biological classification of DEGs indicated
that they were mainly enriched in innate immune response,
antibacterial humoral response, inflammatory and immune
response, extracellular exosome, complement and coagulation
cascades, and phagosome signaling pathway. Previous studies
have shown that these factors play essential roles in TB
progression.[18–20] Other studies have shown that exosomes
are closely related to the development of LTBI and active TB with
the different stages ofM.tb infection and as selective packaging of
miRNA enters the exosomes.[21,22]

In the PPI network, the first 15 central genes were identified
and included TLR2, FPR2, MMP9, MPO, CEACAM8, ELANE,
CTLA4, FCGR1A, SELP, ARG1, GNG10, HP, LCN2, LTF, and
ADCY3. The results showed that hub genes were involved in
neutrophil degranulation, neutrophil activation involved in
immunoreaction, response to bacterial molecules, and so forth.
KEGG enrichment analysis demonstrated that the hub genes were
also highly associated with staphylococcus aureus infection,
phagosome, and malaria signaling pathway. Besides, ROC
results showed that TLR2, FPR2, MMP9, MPO, CEACAM8,
ELANE, FCGR1A, SELP, ARG1, GNG10, HP, LCN2, LTF,
6

ADCY3 had distinguishing ability between LTBI and active TB,
suggesting that the state of M.tb infection may be closely related
to neutrophil-associated immune response. A recent study on
neutrophil-driven IFN-induced blood transcript characteristics
by Tobias et al. further supports our view.[23] Therefore, in-depth
research on identified DEGs may provide new insights into the
progression of LTBI to active TB and their use in diagnosis and
treatment of pediatric TB.
TLR2 has been shown to play an important role in pathogen

recognition and innate immune activation.[24] It was reported
that M.tb suppresses innate immune response by masking the
interaction between TLR2 agonists on M.tb and TLR2 on
macrophages, allowing it to escape the early detection of the host,
thereby delaying the onset of adaptive immune response, which
explains the low expression of TLR2 in LTBI in our analysis
results.[25,26] The latest research found that TLR2 polymor-
phisms are important genetic factors related to disease, and can
be considered as predictive biomarkers for identifying high-risk
individuals with TB.[27] FPR2 is mainly involved in antibacterial
host defense and inflammatory response and it is a powerful
neutrophil chemokine. Neutrophils in active tuberculosis patients
have been reported to flow into the chronic inflammation sites



Table 1

Top 15 hub genes with a higher degree of connectivity.

NO. Gene symbol Full name Function

1 TLR2 Toll like receptor 2 Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other
microbial cell wall components.

2 FPR2 Formyl peptide receptor 2 Binding of FMLP to the receptor causes activation of neutrophils.
3 MMP9 Matrix metallopeptidase 9 May play an essential role in local proteolysis of the extracellular matrix and in leukocyte migration.
4 MPO Myeloperoxidase Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal

activity against a wide range of organisms.
5 CEACAM8 Carcinoembryonic antigen related

cell adhesion molecule 8
Belongs to the immunoglobulin superfamily; CEA family.

6 ELANE Elastase, neutrophil expressed Neutrophil elastase; Modifies the functions of natural killer cells, monocytes and granulocytes.
7 CTLA4 Cytotoxic T-lymphocyte associated protein 4 Inhibitory receptor acting as a major negative regulator of T-cell responses.
8 FCGR1A Fc fragment of IgG receptor 1A High affinity receptor for the Fc region of immunoglobulins gamma.
9 SELP Selectin P Belongs to the family of cell adhesion molecules. Mediates the interaction of activated endothelial

cells or platelets with leukocytes.
10 ARG1 Arginase 1 Key element of the urea cycle, which are vital bioenergy pathways for driving collagen synthesis

and cell proliferation.
11 LTF Lactotransferrin Lactoferricin binds to the bacterial surface and is crucial for the bactericidal functions.
12 HP Haptoglobin Haptoglobin captures, and combines with free plasma hemoglobin to allow hepatic recycling of

heme iron and to prevent kidney damage.
13 LCN2 Lipocalin 2 Iron-trafficking protein involved in multiple processes such as apoptosis, innate immunity and renal

development.
14 GNG10 G protein subunit gamma 10 Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in

various transmembrane signaling systems.
15 ADCY3 Adenylate cyclase 3 Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling.

Figure 5. Subnetwork of top 15 hub genes from the PPI network. (A) The top 15 hub genes, (B) MCODE Score and Gene score of the top 15 hub genes, (C) The
GO analysis of the top 15 hub genes, (D) The KEGG enrichment analysis of top 15 hub genes.
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Figure 6. ROCs for discriminating between LTBI and active TB cases using a single hub gene. (A) ROC of the first 8 genes of key genes, (B) ROC of the last 7 genes
of the key genes. AUC = area under the curve, ROC = receiver operating characteristics.
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where they release a wide range of inflammatory factors leading
to tissue damage.[28] Carmen et al reported that FPR2 can
distinguish LTBI from active tuberculosis in cases with non-
insulin-dependent diabetes mellitus.[29] Adane et al reported that
MMP9, FCGR1A, and LTF had significant identification ability
for sputum smear-positive TB cases and household contacts
based on the complexity of the infection process and the
outcomes of MTB exposure and infection.[30] LTF enhances
macrophages and dendritic cells as antigen carriers to activate
CD4+T cells and regulate T cell polarization.[31]The Addition of
lactoferrin to BCG-infected macrophages can significantly
increase the expression of MHC II.[32] Studies on mouse models
have shown that susceptibility to TB could be reduced by
avoiding iron overload using LTF.[33] MMP9 has been shown to
be involved in the pathogenesis of various inflammatory diseases
Table 2

Diagnostic value of top 15 hub genes.

Gene symbol AUC (95%CI)

TLR2 0.842 (0.783–0.902)
FPR2 0.842 (0.781–0.903)
MMP9 0.837 (0.776–0.899)
MPO 0.802 (0.731–0.872)
CEACAM8 0.865 (0.805–0.924)
ELANE 0.782 (0.707–0.857)
CTLA4 0.251 (0.176–0.326)
FCGR1A 0.872 (0.819–0.925)
SELP 0.838 (0.778–0.898)
ARG1 0.860 (0.805–0.914)
GNG10 0.824 (0.761–0.888)
HP 0.854 (0.796–0.912)
LCN2 0.849 (0.785–0.912)
LTF 0.793 (0.724–0.863)
ADCY3 0.879 (0.825–0.933)

AUC = area under the curve, CI = confidence interval, ROC = receiver-operating characteristics.

8

and is highly expressed in both human tuberculosis and mouse
tuberculosis models.[34] MMP9 also participates in the molecular
mechanism of granuloma formation induced by M.tb infection
and promotes macrophage recruitment and tissue remodeling.[35]

Recent studies have shown that MMP9 may be used to
distinguish LTBI from newly infected cases and it may also be
used to prevent the TB epidemic.[36] FCGR1A plays a central role
in endocytosis, phagocytosis, etc. TGFB1 is involved in the
induction of fibrosis, and excess TGFB1 has been reported in TB-
HIV patients where it enhances T cell suppression, the
transmission of HIV and TB.[37] Research by Gebremedhin
et al proved that the expression profile of FCGR1A could
accurately distinguish LTBI and both active TB and non-
tuberculosis mycobacterium infection in HIV-positive
patients.[37] Moreover, hemodynamic analysis of tuberculosis
P Sensitivity Specificity

<.001 67.40% 92.60%
<.001 74.70% 86.80%
<.001 82.10% 75.00%
<.001 75.80% 76.50%
<.001 77.90% 86.80%
<.001 75.80% 76.50%
<.001 10.30% 89.70%
<.001 67.40% 89.70%
<.001 77.90% 79.40%
<.001 73.70% 83.80%
<.001 67.40% 88.20%
<.001 81.10% 82.40%
<.001 85.30% 79.40%
<.001 60.00% 91.20%
<.001 82.10% 89.70%
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transcriptome in children’s thorax revealed that FCGR1A, FPR1,
and MMP9 showed a positive correlation with the extent of the
disease, suggesting that these genes may be characteristic markers
of different stages of TB.[38] MPO is responsible for the
bactericidal activity against various microorganisms. ELANE
has been implicated in the protective response against infections,
including experimental mycobacterial infections. Kadar et al
revealed the plasma level of MPO and ELANE in pulmonary
tuberculosis patients were significantly higher than that in LTBI,
and these changes were reversed after antituberculosis treat-
ment.[39] In this study, FCGR1A, FPR1, MMP9, MPO, and
ELANE showed higher diagnostic efficacy in children TB and this
confirmed the reliability of our findings and their potential use in
clinical applications.
CTLA4 is an immune checkpoint molecule that prevents

immune-driven pathology. It has been reported that the
expression of CTLA-4 (on regulatory t cells) is increased in
active TB and LTBI compared with healthy subjects. However,
the difference in the expression of CTLA4 between LTBI and
active TB has not been reported.[40] Unlike other genes, CTLA4
expression is reported to be higher in LTBI than in active TB, and
its specificity for identifying TB is higher while the sensitivity is
lower, hence there is a need for further research to confirm our
results. CEACAM8 is a highly glycosylated protein expressed
and released by human granulocytes. Current research on
CEACAM8 has focused on cell proliferation, tumor inhibition
and survival, but there are no studies on tuberculosis
pathogenesis. In this study’s PPI network, CEACAM8 showed
a higher nodal degree (degree=23). Granulocytes have been
reported to secrete CEACAM8 to reduce respiratory tract
inflammation in bacterial infections.[41] However, granulocyte
reaction is related to TB pathogenesis and therefore, this may
provide a new direction in the study of childhood tuberculosis.
SELP controls lymphocyte metastasis to lymph nodes and
leukocyte transport to acute inflammation sites. Studies have
confirmed that soluble adhesion molecules, especially sE-selectin,
sP-selectin, sLCAM-1 are the most sensitive clinical indicators of
active TB severity.[42] ARG1 plays a central role in inhibiting
tissue damage within granulomas in TB.[43]Additionally, lung
injury has been associated with increased serum activity of
arginase-1 in patients with TB.[44] These findings suggest that
modulation of ARG1 activity is a potential treatment for
tuberculosis. Studies have found that GNG10 was involved in
human cytomegalovirus infection. ADCY3 has been reported to
be an important mediator of energy homeostasis and its deletion
mutation leads to severe obesity. However, studies on GNG10
and ADCY3 in TB have not been reported.[45] HP is associated
with various infectious and non-infectious diseases such as
malaria and tuberculosis. Research has shown that haptoglobin
expression increased by nearly twice in patients with latent status
to active TB in the malnourished population.[46] LCN2 plays an
antibacterial role by combining with iron carriers required for
bacterial growth. Other studies have shown that mycobactin-
mediated iron uptake is a prerequisite for intracellular mycobac-
terial growth.[47,48] DuringM.tb infection, neutrophils inhibit the
growth ofM.tb by secreting LCN2. Recent studies have indicated
that LCN2 promotes the growth of M.tb in the early stage of
infection, suggesting that LCN2 is related to different stages of
M.tb infection.[49] Currently, limited research exists on the
mechanism of action of CEACAM8, GNG10, andADCY3 in TB.
This study revealed that the key genes identified could be used

to distinguish LTBI and active TB and this was reflected in
9

neutrophil activation and defense response to bacterial mole-
cules. But research onwhether neutrophils are associatedwith the
host state of M.tb infection is relatively deficient. What excites us
is that we found new gene markers CTLA4, CEACAM8, ARG1,
GNG10, LCN2, and ADCY3 which are different from the
previous researches and therefore, this study proposes a new
research direction for future diagnosis and treatment of
tuberculosis in children.
In conclusion, our study identified DEGs that can be used to

distinguish LTBI from active TB in children through bioinfor-
matics analysis. A total of 265 DEGs were identified, which may
play an irreplaceable role in different clinical stages of TB. Our
research provided a class of hub genes with high potential to be
candidate gene markers for developing non-sputum diagnostic
tools for childhood TB. Future experiments are advocated to
study the biological functions of the identified DEGs in childhood
tuberculosis.
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