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Abstract: Curcumin has been demonstrated to have biological activities and its fortification in food
products is an important strategy to deliver bioactive ingredients at target sites. However, studies
have documented a curcumin low bioavailability and low intake. Hence, combining functional
ingredients with food should be needed to prevent widespread nutrient intake shortfalls and associ-
ated deficiencies. Thus, curcumin was encapsulated in calcium-alginate and their characteristics as
well as in vitro release behavior of curcumin hydrogel beads (CHBs) was studied. Moreover, CHBs
were fortified in development of functional Kulfi and their quality characteristics were studied. The
encapsulation efficiency was up to 95.04%, indicating that most of the curcumin was entrapped.
FTIR shifts in the bands were due to the replacement of sodium ions to the calcium ions. In vitro
release (%) for CHBs was found to be 67.15% after 2 h, which increased slightly up to 67.88% after
4 h. The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h in PBS
(pH 7.40). Control and Kulfi fortified with CHBs showed no significant difference (p > 0.05) in colour
(L = 73.03 and 75.88) and the melting rate (0.88 mL/min and 0.63 mL/min), respectively. Standard
plate count was reduced in the Kulfi fortified with CHBs (13.77 × 104 CFU/mL) with high sensory
score for overall acceptability (8.56) compared to the control (154.70 × 104 CFU/mL). These findings
suggested the feasibility of developing CHBs to mask the bitterness, enhance the solubility, and
increase the bioavailability in gastrointestinal conditions. Additionally, Kulfi could be a suitable dairy
delivery system for curcumin bioactive compounds.

Keywords: curcumin; hydrogel beads; encapsulation efficiency; in vitro release; fortification;
functional Kulfi; sensory evaluation

1. Introduction

Natural antioxidants from plants are important for cancer prevention due to their
capacity to neutralize free radicals in the human body. This is the reason why many
traditional nutraceutical foods have been developed by combining food with functional
ingredients. Consumer demand for health-promoting foods containing natural antioxidants
are growing with a particular interest in natural functional ingredient(s) [1]. Turmeric
(Curcuma longa) is a culinary spice and has a very long medicinal history that started
nearly 4000 years ago. The major advantage of curcumin is that it lowers the toxicity even
when it is taken in relatively high doses. However, a study addressed the low curcumin
bioavailability in serum or tissue after oral administration [2].
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The low bioavailability of curcumin resulted in poor solubility (under acidic and/or
neutral conditions) due to poor absorption, chemical instability, rapid metabolism, and
rapid systemic elimination [3,4]. Therefore, curcumin bioavailability studies, particularly
delivery systems, are needed to improve the solubility of curcumin and facilitate the
targeted release of curcumin within the gastrointestinal environment. The novel way to
improve the curcumin bioavailability is by the application of encapsulation technology [5].
Generally, spray drying is the most commonly used method for the encapsulation of active
ingredients; however, spray drying is an expensive method and needs a lot of time. This
indicated a need to develop an alternate encapsulation method; thus, we developed an
in-house microencapsulator [6–8].

Dairy desserts are well accepted by a wide variety of age groups and can be formulated
with several functional ingredients. For instance, Kulfi is a popular traditional frozen Indian
dairy dessert, which resembles the same composition as ice cream (also called a traditional
Indian ice cream) with concentrated sweetened milk [9,10]. To date, no report has been
highlighted to increase the bioavailability of dairy products (particularly, Kulfi) using
encapsulated curcumin hydrogel beads. Moreover, our experience in working with food
product development and microencapsulation was collectively motivated for this research.

Therefore, the objective of this study was to develop calcium-alginate hydrogel beads
for the encapsulation of curcumin by ionotropic gelation method. Moreover, characteristics
and in vitro release behavior of curcumin hydrogel beads (CHBs) were studied. To increase
the functionality of CHBs, we developed CHBs-fortified functional Kulfi and studied its
quality characteristics, including physical, microbial, and sensory attributes. The present
study outcomes are expected to raise the possibility of using a microencapsulation system
in fortification of curcumin bioactive compounds and application in dairy foods without
affecting their quality and sensory acceptability.

2. Materials and Methods
2.1. Materials

Curcumin (food-grade; 98%) and sodium alginate (food-grade; 95%; molecular weight:
216.12 g/mol) were obtained from SD Fine Chemicals (Mumbai, Maharashtra, India). Liq-
uid soy lecithin and whey protein concentrate (80%) were purchased from Sonic Biochem Ex-
tractions Ltd. (Indore, Madhya Pradesh, India) and Davisco Foods International (Le Sueur,
MN, USA), respectively. Calcium chloride (97%) and the rest of chemicals or reagents
used were of analytical/food grade and were procured from Sigma-Aldrich® (Mumbai,
Maharashtra, India). Other ingredients for Kulfi preparation were procured from Verka
Milk plant, Ludhiana, Punjab, India.

2.2. Preparation of Curcumin Emulsions

To formulate coarse emulsion, curcumin (4%) and lecithin (0.50%), an emulsifier, were
dissolved in distilled water by slow dissolution at room temperature under mechanical
stirring using high-speed mechanical stirrer with a 3-bladed propeller at 1600 rpm (IKA,
Staufen, Germany) for 10 min, followed by addition of stabilizer, whey protein concentrate
(2%), by stirring (1600 rpm/10 min) and then sonicated (Vibra cell, VCA 500, Sonics &
Materials Inc., Newtown, CT, USA) for 60 min (10 sec on/off). Finally, the obtained coarse
emulsion was sonicated for 20 min to form fine emulsion and stored in amber colored
scintillation vials at 4 ◦C for further experimental analysis.

2.3. Characterization of Emulsions
Particle Size Distribution and Apparent Viscosity

The average particle size distribution of the sample was measured by a nanoparticle
size analyser (Malvern Panalytical Ltd., Malvern, UK) according to Kairam, et al. [8], while
the apparent viscosity of samples was recorded by a dynamic shear rate rheometer (Physica
HBR 101, Anton Paar, Graz, Austria) at 25 ◦C with a sample volume of 5 mL operating at
varying shear rates from 0.01 to 300 (1/s) by using a 50 mm stainless steel parallel plate.
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2.4. Encapsulation Process

Liquid coarse emulsions were mixed with sodium alginate (2%) at 1600 rpm/45 min
and sprayed by ionotropic gelation method with an in-house developed microencapsulator,
which was patented by our research group [6,7]. The unit consisted of a peristaltic pump
(flow rate of 80 mL/min), orifice with inner and outer nozzles (inner nozzle diameter: 1 mm
with 1.30 mm annular space (carrying pressurized air) between inner and outer nozzle),
air compressor (0.75 bar) and magnetic stirrer. The experimental process is illustrated in
Figure 1 and the ionotropic gelation process was conducted at room temperature. The
hardened samples were sieved, washed with deionized water to remove the residues of
unreacted CaCl2, and then air dried. The samples were stored at room temperature in a
laboratory vacuum-desiccator until further experimental analysis (usually within 2 weeks).
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Figure 1. Preparation of CHBs by ionotropic gelation method. CHBs, curcumin hydrogel beads.

2.5. Characterization
2.5.1. Morphology and Colour

Compound microscope (Motic, Kowloon, Hong Kong) with a calibrated stage mi-
crometer at 4× magnification (Motic EF-N Plan 4× lens) was used to determine the size
distribution of 10 random CHBs. BioVis Image Plus (Expert Vision Labs Pvt. Ltd., Mumbai,
Maharashtra, India) software was used to determine the size distribution of the CHBs after
calibration. The colour values (L, a, b, and ∆E, representing intensities of lightness, redness,
yellowness, and colour difference, respectively) among the control as well as samples
were measured using a colorimeter (MiniScan XE Plus, HunterLab, Reston, VA, USA) after
calibration with a standard white plate. Three measurements were taken from each sample
and the ∆E was calculated according to the Formula (1).

∆E =
[
∆L2 + ∆a2 + ∆b2

] 1
2 (1)

where, ∆L, ∆a, and ∆b = colour indices
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2.5.2. Encapsulation Efficiency (%)

Encapsulation efficiency was determined from the amount of curcumin actually encap-
sulated in CHBs (determined by UV–VIS spectrometry) with the initial amount of curcumin
added to the emulsion. The encapsulation efficiency was calculated from the following
Equation (2).

Encapsulation efficiency (%) =

[(
Actual amount of curcumin content in CHBs (g)

Initial amount of curcumin (g)

)
× 100

]
(2)

Here, the actual loading content was measured by subtracting free curcumin content
to the initial loading content according to Equation (3).

Actual curcumin content in CHBs (g) = [Initial amount of curcumin (g)− free curcumin content (g)] (3)

Free curcumin content was calculated by taking absorbance at 425 nm of the CaCl2
solution after harvesting using a double beam spectrophotometer (UV 1800, Shimadzu,
Kyoto, Japan).

2.5.3. Fourier Transform Infrared (FTIR) Spectroscopy

The interaction among the materials was determined at room temperature by ATR-
FTIR (Bruker BioSpin GmbH, Ettlingen, Germany) within the wavenumber range of
4000 to 400 cm−1 with 24 scans at a resolution of 2 cm−1.

2.5.4. Scanning Electron Microscopy (SEM)

Samples were analyzed using SEM according to Patra and Sleem [11] with minor
modifications. Both curcumin and blank HBs were placed on the SEM stubs and then
sputter coated with gold under vacuum during 30 s. The SEM images were then taken
under the voltage of 15 kV.

2.5.5. Swelling Index

The swelling properties of CHBs were determined using phosphate buffer saline
(pH 7.40) at 37 ◦C according to Equation (4) based on the study investigated by El-Gibaly [12].

Swelling index =

[
Swollen weight of CHBs − initial weight of dried CHBs

Initial weight of dried CHBs

]
(4)

2.5.6. In Vitro Release Behavior in Phosphate Buffer at pH 7.40

In vitro release behavior of CHBs was investigated according to Bisht, et al. [13] with
minor modifications. Briefly, samples (200 g) were placed in phosphate buffer (20 mL,
pH 7.40 ± 0.10) in a 50 mL conical flask over an orbital shaker at 37 ◦C. Aliquots were
taken at predetermined intervals of time (i.e., every 30 min) and centrifuged at 3000 rpm
for 10 min and 25 ◦C. The respective aliquots were immediately replaced with the same
amount of fresh phosphate buffer. The precipitate (released curcumin) was immediately
re-dissolved in ethanol and the absorbance was measured at 425 nm using a double beam
spectrophotometer. The concentration of curcumin was calculated using curcumin standard
curve and the released curcumin (%) was calculated according to the Equation (5).

Release (%) =

[(
(Curcumin)rel
(Curcumin)tot

)
× 100

]
(5)

where, [Curcumin]rel = concentration of released curcumin at time t and [Curcumin]tot = total
amount of curcumin.

2.6. Preparation of CHBs-Fortified Functional Kulfi

The CHBs-fortified functional Kulfi was prepared according to Rohini, et al. [9] and
the methodology is illustrated in Figure 2. Samples were coded as control (Kulfi fortified
with mango pulp), curcumin Kulfi (Kulfi fortified with free curcumin (1 g) without mango
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pulp), and CHBs-fortified Kulfi (Kulfi fortified with microencapsulated curcumin (1 g)). All
the experiments were performed in three independent determinations.
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2.7. Physical Characteristics
2.7.1. Colour

The colour values (L, a, b, and ∆E) among the control as well as samples fortified with
free curcumin and CHBs were measured using a colorimeter and the ∆E was calculated
according to Equation (1).

2.7.2. Melting Rate

The melting rate of functional Kulfi was analyzed by the method according to
Giri, et al. [14]. Briefly, a sample (50 g) was placed on a wire screen (6 holes/cm) over a
funnel that was attached to a food-grade conical flask (500 mL). The time (min) taken by
the sample for melt-down and dripped volume was recorded at 26 ± 1 ◦C. The melting
rate was expressed as mL/min.

2.8. Microbiological Analysis

Generally, food safety management of any final food product is an important strategy,
especially dairy-based food products like functional Kulfi. This dairy-based product being
a nutritious food may serve as a good medium for the microbial growth that can cause the
spoilage of the food product; thus, we performed microbiological analyses of functional
Kulfi using pour plate method. Briefly, sample (11 g) was aseptically mixed with 99 mL
sterile water and the mixture was homogenized, followed by serial dilutions (10−1 to 10−6)
containing 0.90% sodium chloride. All the samples were determined for standard plate
count (SPC), coliform, as well as yeast and mold counts according to an Indian Standards
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Institute method [15]. Microbiological analyses were recorded after incubation for 24 h
(SPC and coliform) and 48 h (yeast and mold) and expressed as colony forming units (CFUs)
per mL.

2.9. Sensory Evaluation

Sensory evaluation of functional Kulfi was performed with 15 trained voluntary panel-
lists (7 female and 8 male), having prior experience in sensory profiling and were completely
familiar with dairy sensory attributes. Panelists evaluated the colour & appearance, body
& texture, flavor & taste, melting rate, and overall acceptability of the control and Kulfi
fortified with free curcumin (1 g) and CHBs (1 g). Marketed Kulfi was compared with Kulfi
fortified with CHBs.

2.10. Statistical Analysis

All experiments were performed at least in triplicate and the data was presented as an
average ± standard deviation (SD). Data were subjected to statistical analysis by analysis of
variance (ANOVA) and Duncan’s multiple range tests at p < 0.05 using GraphPad Prism®

5.0 (GraphPad Software, San Diego, CA, USA). Graphs were constructed using Microsoft®

Office Professional Plus 2019 (Microsoft Co., Ltd., Redmond, WA, USA).

3. Results and Discussion
3.1. Particle Size and Apparent Viscosity

The hydrodynamic radius and polydispersity index of curcumin emulsion were found
to be 2152.33 ± 374.16 nm and 0.349 ± 0.02, respectively (data not shown). The apparent
viscosity of curcumin emulsion with alginate decreased from 0.90 to 0.37 Pa·s with increase
in the shear rate (data not shown), indicated non-Newtonian shear thinning (pseudoplastic)
behavior; however, the apparent viscosity of the curcumin emulsion without alginate and
control (emulsion without curcumin and alginate) increased from −0.00089 to 0.000429 Pa·s
and −0.0076 to 0.000162 Pa·s, respectively. A recent study demonstrated the increase in
viscosity when polysaccharide was added to emulsion samples [16]. This proved the role
of alginate in changing the viscosity of emulsion samples due to its high molecular weight
or the formation of a gel network. This kind of behavior was the most common type of
non-ideal behavior exhibited by emulsions.

3.2. Characterization of CHBs
3.2.1. Size of the CHBs and Color

The size of 10 randomly selected fresh CHBs from different batches was found to
be in the range of 1349.60 to 1834 µm, whereas after 24 h of drying at room temperature,
the CHBs size was about 753.35 to 1120.25 µm. The average particle size of the fresh and
dried CHBs was found to be 1393.58 ± 175.44 µm and 889.71 ± 191.19 µm, respectively. It
seems possible that the encapsulation process might have influenced on the variation of
CHBs particle size. A study documented the encapsulation method (i.e., air atomization
technique), concentration of core & wall material, and air pressure had an influence on the
size distribution of alginate poly-L-lysine microparticles [17]. Another study optimized the
minimum value of air and liquid pressure to be 0.50 bar and 0.60 bar to ensure the flow
break up, thereby formation of smooth and micronized capsules [18]. In the same study,
it was reported that the air and liquid pressure were close to 1 at high and low pressures,
microcapsules had a small size, while air and liquid pressure changed to intermediate
values resulted a bigger microcapsules [18]. Likewise, Cui, et al. [17] observed the slightly
decreased microcapsule particle size when sprayed at too short or too long a distance. Thus,
atomization conditions may play a vital role in production of different size HBs.

The ∆E value was found to be 32.00 ± 1.88, which indicated a great difference in the
colour, was observed between the curcumin and control CHBs (Table 1). The ‘a’ and ‘b’
values were significantly higher in CHBs (19.95 ± 0.30 and 46.46 ± 2.71) when compared
to the control HBs (8.41 ± 0.30 and 28.74 ± 0.65). This striking difference between control
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and CHBs might be related to fluorescent yellow colour of curcumin, which contributed to
intense increase in the a (red to green) and b (blue to yellow) parameters. The L value was
higher in control HBs (62.24 ± 1.00), which represented a whiter colour as compared to
CHBs (38.31 ± 0.29). The pale yellow to white colour in control HBs could be ascribed to
presence of whey protein concentrate and alginate, while darker colour of CHBs due to
the dominating presence of curcumin (Supplementary Figure S1). Moreover, slight yellow
colour of control HBs may be due to the presence of lecithin [19] and probably whey protein
fraction [20].

Table 1. Colour parameters of CHBs 1.

Sample
Colour Parameters

L a b ∆E

Control HBs 62.24 ± 1 b 8.41 ± 0.30 a 28.74 ± 0.65 a -
CHBs 38.31 ± 0.29 a 19.95 ± 0.30 b 46.46 ± 2.71 b 32 ± 1.88

1 All the data are mean ± standard deviation (n = 3) for three independent batches. Different superscript letters
in each column mean significant differences (p < 0.05) from each other. HBs, hydrogel beads; CHBs, curcumin
hydrogel beads; ∆E, total colour difference.

3.2.2. Encapsulation Efficiency (%)

The encapsulation efficiency of CHBs was found to be 95.04 ± 2.08%. The high en-
capsulation of curcumin could be related to the combination of lecithin, whey protein
concentrate, and calcium alginate, which collectively stabilized the curcumin within the
CHBs. The high encapsulation efficiency could be related to curcumin-sodium alginate in-
teractions, such as hydrophobic-hydrophilic or hydrophobic-hydrophobic interactions [21]
due to aromatic rings of curcumin and hydrophobic regions of wall material. Moreover,
H2 bonding between the carboxyl groups of the wall material and the hydroxyl groups of
the curcumin may play a vital role in binding the curcumin and wall material [22]. There
are, however, other possible explanations including interaction of the sodium and calcium
ions that may form the less rigid network, thereby high encapsulation efficiency [23]. Ad-
ditionally, the increase in encapsulation efficiency ascribed to the use of stabilizer, whey
protein concentrate that stabilized the curcumin during the emulsion preparation pro-
cess [24]. Similarly, a study reported the increased encapsulation efficiency of vitamin D3
loaded nano-niosomes with increase in different stabilizing agents [25]. These findings
were in line with studies that reported high encapsulation efficiency (83 to 97%) for sodium
caseinate [26], zein [27], and Persian gum based curcumin capsules [22]. Our findings
suggested that the high curcumin encapsulation efficiency could increase the loading of
active ingredients in the particles and further provide a stability against oxidation.

3.2.3. Fourier Transform Infrared (FTIR) Spectroscopy

In the spectrum of pure curcumin (Figure 3A), the characteristic peak at 3510 cm−1,
corresponds to the –OH stretching vibration of curcumin. Peak at 1627 cm−1 corresponds
to stretching vibration of v(C=C) and v(C=O) characters, and at 1602 cm−1 attributed to
symmetric aromatic ring stretching vibrations of v(C=C). Similar peaks were recorded at
1626 cm−1 for v(C=C) as well as v(C=O), and at 1601 cm−1 for v(C=C) by Kolev, et al. [28]
and Bich, et al. [29]. The peak at 1509 cm−1 was assigned to C=O vibrations, peak at
1281 cm−1 attributed to the aromatic v(C–O), peak at 1028 cm−1 was assigned for v(C–O–C)
and peak at 1428 cm−1 was attributed to the olefinic (C–H) bending vibrations, which are
quite similar to the previously reported work [30,31].

The FTIR spectrum of CHBs (Figure 3B) observed with peak at 3509 cm−1 (pure
curcumin spectra), corresponds to the −OH, which was narrower/disappeared after encap-
sulation. The presence of a narrowed band could be explained by the addition of alginate
−OH and (C(=O) OH) groups, which formed the chelating structure and loss of H2 bonding
between −OH functional groups. Similarly, These results further support the FTIR analysis
investigated by Daemi and Barikani [32], where authors concluded the narrower of −OH
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peak was due to the presence of calcium alginate in CHBs. The stretching vibrations of the
aliphatic C–H group shifted towards higher wave numbers (2987 to 2910 cm−1) in CHBs
when compared to free alginate (2925 to 2854 cm−1).
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For the sodium alginate samples, asymmetrical and symmetrical stretching (C(=O)OH)
bonds were detected at 1609 and 1416 cm−1, which were documented in our previous
investigation [8]. Moreover, stretching vibrations of aliphatic C–H groups were found at
2925 to 2854 cm−1 [32]. Moreover, polysaccharide structural groups, including C–O and
C–O–C stretching were recorded at 3438 cm−1 [33], 1302 cm−1, 1095 cm−1, 1030 cm−1,
and 947 cm−1.

The stretching vibrations of primary and secondary hydroxyl groups were also present
at 1076 to 1055 cm−1 [34]. The peaks in CHBs demonstrated a disappearance of carboxylate
ion at 1609 cm−1 in sodium alginate, while shifted carboxylate ion was observed from
1416 cm−1 to 1407–1381 cm−1, indicated the effect of sodium-calcium ions replacement in
CHBs. Moreover, a possible explanation for the shift in wavenumber may be the charge
density, radius, and atomic weight of the cations (Ca2+).

3.3. Scanning Electron Microscopy (SEM)

The SEM microphotographs of the blank and CHBs are shown in Figure 4. The capsules
formed the agglomerated structure with spherical shape, smooth, and covered with coating
material. Similar studies were reported by Patra and Sleem [11] on the encapsulation of
curcumin developed by poly (L-lysine) trisodium citrate and silica sol. Microcapsules were
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loaded with curcumin, which modified the surface appearance and became smooth [35].
There is no crack or fissure on the surface of CHBs. Similar reports were documented by
Cano-Higuita, et al. [36], in which external surfaces demonstrated the existence of solid
walls with no cracks or breaks. This indicated that the developed CHBs were suitable for
improved protection and retention of curcumin. Blank samples were rough on the surface
due to small inward dents that may have collapsed the HBs wall material [12]. Similar
results were observed by Nayak, et al. [37] and concluded the presence of an uneven or
irregular surface with a continuous wall and small pores on the outer wall of the HBs. It
seems possible that these results were due to loss of water molecules that resulted in the
shrinkage of the polymeric gel.
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3.4. Swelling Index

The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h
in PBS at pH 7.40. It signifies the CHBs were 37.92 times swelled from its initial size
after 12 h in PBS at pH 7.40. The drastic increase in the size of CHBs was observed from
0 to 6 h. Generally, the release behavior of encapsulated compounds is controlled by matrix
swelling, hydration, and polymer dissolution. Moreover, in this study, the curcumin release
is affected by the rate of water uptake (swelling rate) and the diffusion rate of the curcumin
through the swollen gel. A study by Chen, et al. [38] reported that the swollen systems may
increase gastric retention times, promote drug absorption within the stomach, and increase
controlled release rate of active substances in the gastrointestinal tract. Another study by
Arza, et al. [39] developed a swellable and floatable gastroretentive drug delivery system
and concluded that the high ability to swell showed a better gastroretentive abilities and
sustained drug release at a target site. Therefore, the swelling capacity in our study may
promote the high release of CHBs in the gastrointestinal tract.

3.5. In Vitro Release Behavior in Phosphate Buffer at pH 7.40

Curcumin was released at a faster rate of 51.72 ± 5.29% after 30 min and it was gradu-
ally increased up to 67.15 ± 2.65% after 2 h (Figure 5). However, Sari et al. (2015) concluded
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that over 90% of the nano-encapsulated curcumin using whey protein was retained in
emulsion during simulated gastric digestion (2 h). This may be due to the presence of
calcium alginate on the outer surface of CHBs in our work, which was easily solubilized
and facilitated enhanced bioavailability. The % release of curcumin was maximum after 2 h
and then the % cumulative release was increased slightly up to 67.88 ± 5.81 % after 4 h in
the phosphate buffer at biological pH (7.40) as shown in Figure 5. This may be due to the
solubility of the core material in the phosphate buffer (pH 7.40). In contrast, Tsai, et al. [40]
reported the slow release of curcumin nanoparticles loaded in poly(lactic-co-glycolic acid)
with biphasic releasing pattern and 59% release occurred after 12 h, which further increased
up to 89% at the end of 6 days. The findings further in lined with the earlier study, in
which microencapsulated curcumin in crosslinked jelly fig pectin exhibited a cumulative
release of 95.34% over 24 h [41]. Similarly, Reddy, et al. [23] observed the high release of
curcumin (45 to 65%) encapsulated in mixture of sodium alginate/montmorillonite into
the dissolution medium at pH 7.40. A report by Govindaraju, et al. [21] prepared a 0.20%
polysorbate 80 and alginate based nanosuspensions and reported a high cumulative release
in simulated colonic fluid within 24 h due to high digestibility of alginate under colonic
microflora. A more recent study documented the curcumin release of 43% at 120 min in the
short gastric residence time and 16% at 180 min in the long gastric residence time when
curcumin-whey protein microparticles enriched in yogurt [42].
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Generally, curcumin becomes a hydrophilic with high water solubility under alkaline
conditions due to deprotonation of hydroxyl groups [43]. In phosphate buffer at pH 7.40,
the cross-linking network may rupture and facilitate the water permeation into the sodium
alginate, thereby swelling of CHBs and then diffusion of curcumin into the dissolution
medium [21]. Another possible explanation for the higher release rate in phosphate buffer
could be related to the less interaction of carboxylic groups with phosphate buffer, allowing
the network to be loose that can facilitate the leaching of curcumin from the network into the
dissolution medium [23]. The use of lecithin as an emulsifier also contributed to the increase
in solubility of curcumin in alkali conditions. These results implied that the calcium-alginate
not only protected the curcumin but also controlled the release of curcumin under in vitro
gastrointestinal conditions. Moreover, CHBs could release curcumin more than 60% within
6 h in human intestinal conditions. Thus, the in vitro release showed no immediate burst
effect, indicating that the CHBs was mainly driven by a diffusion-controlled mechanism,
which can be useful in the controlled release applications.
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3.6. Physical Charecteristrics of Functional Kulfi
3.6.1. Colour

The increase in the L value (73.03 to 75.88) showed insignificant differences (p > 0.05)
in all samples, while there were significant differences (p < 0.05) in a (−1.40 to −4.97),
b (22.43 to 59.30) and the ∆E (11.60 to 27.07) values for both samples fortified with curcumin
compared to a control (a = −0.80 and b = 33.04) as shown in Table 2. Generally, surface
colour depends on the composition and other characteristics, such as ingredients and
processing conditions. The higher L value for all samples might be related to the presence
of ice crystals that reflected the light before melting the samples. The samples with curcumin
showed a higher average a value (a = −4.97) compared to control (a = −0.80) and the sample
fortified with CHBs (a = −1.40). Likewise, a sample with curcumin had a significantly
(p < 0.05) higher b value (559.30) than that of control (b = 33.04) and the sample fortified
with CHBs (b = 22.43). The higher a and b values for samples with curcumin are likely to be
related to the free availability of curcumin. The sample with curcumin had a higher average
∆E value (∆E = 27.07) compared to the sample fortified with CHBs (∆E = 11.60). Obviously,
this was expected due to the presence of curcumin, which was in yellow colour. Similarly,
it was observed that the encapsulation played a vital role in holding the curcumin samples
that effectively protected the encapsulated curcumin extract from release. In accordance
with the present results, a previous study by Park, et al. [44] demonstrated the change in
colour values by the addition of turmeric in dairy foods. Similarly, another study showed
the homogeneity in colour values for nanoencapsulated curcumin fortified in yogurt [45].
Herein, encapsulation masked the colour of samples (pale metanil yellow) compared to
unencapsulated control (dark yellow), indicating the use of encapsulation in development
of curcumin enriched dairy foods.

Table 2. Colour parameters of Kulfi fortified with CHBs 1.

Samples L a b ∆E

Control 73.03 ± 3.13 a −0.80 ± 0.14 b 33.04 ± 2.93 b -
Curcumin Kulfi 75.31 ± 1.66 a −4.97 ± 0.21 a 59.30 ± 2.68 c 27.07 ± 6 a

CHBs fortified Kulfi 75.88 ± 4.01 a −1.40 ± 0.31 b 22.43 ± 1.05 a 11.60 ± 2.10 b

1 Results were expressed as a mean ± standard deviation (n = 3). Superscripts with lowercase letters in the same
column are significantly different (p < 0.05, Duncan’s multiple range test) from each other. CHBs, curcumin
hydrogel beads.

3.6.2. Melting Rate

The melting rate of the functional Kulfi samples is shown in Table 3. Generally, the
melting rate of dairy products is influenced by factors, such as physical structure, ice crystal
size, fat network, air penetration, and ice phase volume [46]. All the samples insignificantly
(p < 0.05) showed the low melting rate (<0.89 mL/min), which agreed with a previous study
by Muse and Hartel [46], in which authors reported a lower melting rate (<1 mL/min) for
three ice-cream formulations. In general, presence of total soluble solids has been shown
to influence melting rate. For example, Salama [47] concluded that the presence of sugar
(ranged from 20 to 60%) resulted in a reduction in the melting rate of ice cream. Generally,
total soluble solids are related to the presence of mixed sugars (carbohydrates), which
have high water-holding capacity, thereby contributing to a lower melting rate [10]. In
frozen storage, the Kulfi samples may undergo partial coalescence, where clumps and
clusters of the fat globules may form a strong network by trapping air within the fat and
other components, hence decreased the melting rate of samples [48]. However, extremely
high concentration of fat content may cause faster meltdown of samples. In our study,
addition of curcumin (1 g) and CHBs (1 g) showed changes in melting rate of samples
fortified with curcumin and CHBs. A study by Giri, et al. [14] highlighted the decreased
melting rate as influenced by the addition of stevia (0.05 to 0.06%), while another study
by Prindiville, et al. [49] stated the increased melting rate with increased fat content in
chocolate ice cream. Overall, the study showed that curcumin fortified samples could melt
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slower than normal melting rate, thus promoting the good quality and body of dairy based
frozen food formulations using microencapsulation.

Table 3. Melting rate and microbiological analysis of Kulfi fortified with CHBs 1.

Samples Melting Rate
(mL/min)

Microbiological Analysis

Yeast and Mold
(×103 CFU/mL)

SPC †

(×104 CFU/mL)
Coliforms

(×102 CFU/mL)

Control 0.88 ± 0.29 a 105.40 ± 1.57 a 154.70 ± 5.07 a 10.16 ± 0.74 a

Curcumin Kulfi 0.89 ± 0.07 a 11 ± 3.58 b 17.84 ± 3.18 b 0.74 ± 0.88 b

CHBs fortified Kulfi 0.63 ± 0.23 b 8.07 ± 2.94 c 13.77 ± 4.55 c 0.45 ± 0.91 c

1 Results were expressed as a mean ± standard deviation (n ≥ 3). Superscripts with lowercase letters in the
same column are significantly different (p < 0.05, Duncan’s multiple range test) from each other. CHBs, curcumin
hydrogel beads; CFU, colony forming unit. † SPC = standard plate count.

3.7. Microbiological Analysis

The microbial growth (yeast and mold), including SPC and coliforms, of all samples is
shown in Table 3. Samples fortified with curcumin and CHBs resulted in a significant reduc-
tion (p < 0.05) of yeast and mold growth. The SPC in functional Kulfi samples fortified with
curcumin and CHBs, respectively recorded as 17.84 × 104 CFU/mL and 13.77 × 104 CFU/mL,
which was >8 and 11-times lower than the control (154.70 × 104 CFU/mL), respectively. Sim-
ilar tendency was observed in coliforms for samples fortified with curcumin and CHBs.
It was obvious to notice a lower microbial growth due to the well-known anti-microbial
properties of curcumin against a wide range of food spoilage bacterial species [50]. A
study highlighted the enhanced anti-microbial efficacy of curcumin after microencapsu-
lation [51], which could be related to controlled-release of curcumin on the microbial cell
surface and then penetration into cell membrane as well as tissues [52] by the quorum
sensing (QS) system, in which curcumin exert an inhibitory effect on the bacterial biofilm
formation process (an aggregation of microbial tissues wrapped in bacterial extracellular
macromolecules) [53]. According to the quality criteria assigned by Indian Standards
Institute [15], the acceptable bacterial growth for coliform and total bacteria count must
be <100 CFU/g and 2.50 × 105 CFU/g, respectively. Moreover, the high microbial growth
in the control sample could be related to rapid melting and other favourable conditions
that might have contaminated the samples. Therefore, our findings reported the lower
microbial count than the prescribed limits and thus these samples could be considered safe
for consumption. These findings broadly supports the investigation conducted by Wang,
et al. [51], where authors highlighted the high anti-bacterial and anti-fungal efficacy of the
encapsulated curcumin than unencapsulated curcumin. This could be related to microen-
capsulation, which enhanced the anti-bacterial and anti-fungal efficacy of the encapsulated
curcumin by controlled release into the cell membrane of pathogens, ultimately causing
cell death [10]. In brief, the findings concluded the lower viable counts of microorganisms
in functional Kulfi supplemented with encapsulated curcumin, indicating the potential
application of microencapsulation in development of curcumin enriched dairy products.

3.8. Sensory Evaluation

Mean sensory scores for control, marketed Kulfi, and samples fortified with curcumin
and CHBs are illustrated in Figure 6. Samples fortified with curcumin and CHBs showed
significant differences (p < 0.05) in colour and appearance as well as flavour and taste along
with overall acceptability when compared with the control sample (Figure 6). Samples
fortified with curcumin scored lower values for colour and appearance (7.13) than that of
control (7.86) and the sample fortified with CHBs (7.83). These results could be related to the
decolorization of curcumin and colour shift during processing, which was in line with our
visual observation and instrumental colour of samples. Interestingly, the body and texture
of samples fortified with CHBs had a lower score (7.60) that of control (8) and samples
fortified with curcumin (8), which may relate to the presence of CHBs that influenced the
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visual texture of the sample. Sample supplemented with curcumin resulted in slightly
lower values for flavour and taste (7.36) that of control (7.83) and sample fortified with
CHBs (8.33). The low flavour and taste values could be attributed to the presence of free
curcumin, while high values might be related to the encapsulated curcumin in the sample.
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Melting rate score showed a no significant difference (p < 0.05) among the samples
(~8) as shown in Figure 6. Sample fortified with CHBs reported the high overall accept-
ability (8.56), followed by sample supplemented with curcumin (7.96) and control (7.93).
Moreover, samples fortified with CHBs had similar sensory attributes as marketed Kulfi,
demonstrating the high similarity in acceptance of Kulfi fortified with CHBs in the consumer
market. Overall, fortification of CHBs showed high acceptable sensory properties, which
agreed with a previous investigation by de Campo, et al. [54], in which authors observed
that the addition of zeaxanthin nanoparticles in yogurt showed a no effect on the overall
acceptability of the yogurt samples. Shehata and Soliman [55] prepared caseinate-curcumin
nanoparticles and fortified in functional yogurt with improved body and textural proper-
ties, thereby received a high consumer acceptability. In another study, Ershadi, et al. [22]
prepared Persian gum based curcumin nanoparticles and incorporated in Indian traditional
dairy product, Kefir (1.50% of curcumin-loaded nanoparticles). This study reported a high
consistency of Kefir due to addition of curcumin-loaded nanoparticles and showed the
reduced low-density lipoprotein, total cholesterol, and triglycerides in the serum of rats fed
with fortified Kefir samples. Kumar, et al. [26] formulated sodium caseinate based curcumin
nanocapsules and fortified in development of functional ice-cream. The fortified functional
ice-cream exhibited no significant difference in sensory attributes between the control and
ice-cream fortified with curcumin nanocapsules. Likewise, Borrin, et al. [56] prepared the
pineapple ice-cream enriched with curcumin-loaded nanoemulsions without significant
change in sensory attributes of ice-cream fortified with or without curcumin-loaded na-
noemulsions. Previous studies have stated that the micro and/or nanoencapsulation has a
feasibility to be used in food fortification without affecting their sensory acceptability and
quality attributes [8,44]. Moreover, panellists were further complemented for receiving no
curcumin smell, indicating that the microencapsulation contributed to mask the curcumin
smell in samples supplemented with CHBs.

4. Conclusions

Ionotropic gelation method for encapsulating curcumin in the form of hydrogel beads
found a suitable delivery vehicle for encapsulation. The microphotographs indicated that
the hydrogel beads were spherical, discrete, and completely covered with coating material.
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The good % release of curcumin indicating that the controlled release under simulated
gastrointestinal conditions. Sample fortified with CHBs showed a negligible yellowness
due to the presence of encapsulated CHBs. Microbiological analyses showed a high
reduction for both the samples supplemented with curcumin and CHBs. Sensory analysis
of samples supplemented with CHBs reported a high score for colour & appearance,
flavour & taste, and overall acceptability, which was particularly related to the use of
microencapsulation. Therefore, our results showed the possibility of calcium-alginate
material for the entrapment of curcumin by gelation method and their fortification in
functional Kulfi. Moreover, functional Kulfi fortified with CHBs seemed to be used to
improve colour and reduce microbial load of frozen dairy desserts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11020182/s1, Figure S1: Visual observation of hydrogel beads. Control HBs (A) and
CHBs (B). HBs, hydrogel beads; CHBs, curcumin hydrogel beads.
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