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Abstract: Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural
network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in
terms of the best relative error and explore the influences of sum, tensor product, local unitary of
Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.
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1. Introduction

The quantum many-body problem is a general name for a vast category of physical problems
pertaining to the properties of microscopic systems made of a large number of interacting
particles. In such a quantum system, the repeated interactions between particles create quantum
correlations [1–3], quantum entanglement [4–6], Bell nonlocality [7–9], Einstein-Poldolsky-Rosen (EPR)
steering [10–12]. As a consequence, the wave function of the system is a complicated object holding
a large amount of information, which usually makes exact or analytical calculations impractical or
even impossible. Thus, many-body theoretical physics most often relies on a set of approximations
specific to the problem at hand, and ranks among the most computationally intensive fields of science.
Gordon [13] indicated that if one knows an accurate energy for the ground state (say from experiment),
then one can construct a sequence of upper and lower bounds to the overlap between the approximate
function and the true (but unknown) ground-state wave function. Wang [14] constructed a set of
intermediate resolvents from the intermediate Hamiltonians introduced by Weinstein. From these
intermediate resolvents they obtained a new formula for the lower bound of the overlap between
the approximate and exact wave functions of a quantum-mechanical system. Merkel [15] proposed
a method and tested it for approximating the integrals over H2 and H3 required by Weinhold’s
technique as products of integrals involving only H. Cioslowski [16] constructed a connected-moments
expansion for the overlap between the approximate and the exact (but unknown) wave function of
the ground state. Hornik [17] shown that LRV’s algorithm, with some relatively trivial modifications,
can estimate the overlap of an approximate with the exact wave function. Marmorino [18] derived
two methods from the t expansion of Horn and Weinstein to bound from above the magnitude
of the overlap of an approximate wavefunction with the ground state. Nomura [19] developed
a machine learning method to construct accurate ground-state wave functions of strongly interacting
and entangled quantum spin as well as fermionic models on lattices.

Artificial neural networks are important tools in machine learning due to their efficient
approximation ability [20–24]. Especially, Roux [25] proved that restricted Boltzmann machines
are universal approximators of discrete distributions.
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Applying neural networks in solving the quantum many-body problem, Carleo and Troyer in [26]
demonstrated the remarkable power of a reinforcement learning approach in calculating the ground
state or simulating the unitary time evolution of complex quantum systems with strong interactions.
Their idea consists in using neural networks as variational wave functions to approximate ground
states of many-body quantum systems. In this direction, the networks are trained or optimized by
the standard variational Monte Carlo method while a few different neural-network architectures
were tested [26–29], and the most promising results so far have been achieved with Boltzmann
machines [29]. In particular, state-of-the-art numerical results have been obtained on popular models
with restricted Boltzmann machines (RBM), and recent effort has demonstrated the power of deep
Boltzmann machines to represent ground states of many-body Hamiltonians with polynomial-size
gap and quantum states generated by any polynomial size quantum circuits [30,31]. Deng et al. [32]
show that the RBM can be used to describe topological states and constructed exact representations for
symmetry-protected topological states and intrinsic topologically ordered states. Glasser et al. [33]
show that there are strong connections between neural network quantum states in the form of RBM
and some classes of tensor-network states in arbitrary dimensions and obtain that neural network
quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall
state exactly. Gardas, Rams and Dziarmaga [34] show that the approach of Carleo and Troyer [26] can
be realized experimentally using quantum annealers and they conducted experimental simulations
of many-body quantum systems using a hybrid classical-quantum algorithm. Cai and Liu in [35]
demonstrated the expressibility of artificial neural networks in quantum many-body physics by
showing that a feed-forward neural network with a small number of hidden layers can be trained to
approximate with high precision the ground states of some notable quantum many-body systems.
In [36], Saito and Kato developed a variational method to obtain many-body ground states of the
Bose-Hubbard model using feed forward artificial neural networks and proved that many-body
ground states with different numbers of atoms can be generated by a single network. By employing
the formalism of tensor networks, Clark [37] show that neural network quantum states given in [26]
are a special form of correlator product states.

Despite such exciting developments, it is unknown whether a general state can be expressed by
neural networks efficiently. Recently, by generalizing the idea of [26], we introduced in [38] neural
networks quantum states (NNQSs) based on general input observables and explored some related
properties about NNQSs. Secondly, we established some necessary and sufficient conditions for
a general graph state to be represented by an NNQS.

In this paper, based on the NNQSs introduced in [38], we focus on finding the NNQS
approximation of the unknown ground state of a given Hamiltonian H. The remaining part of this
paper is organized as follows. In Section 2, we recall the concept and the related properties of NNQSs
introduced in [38]. In Section 3, we explore the NNQS approximation of the unknown ground state of
a given Hamiltonian H in terms of the best relative error and consider the influence of sum, tensor
product, local unitary of Hamiltonian on the best relative error. Besides, we illustrate our method with
some examples.

2. Neural Network Quantum States

To start with, let us recall the concept and the related properties of NNQSs introduced
in [38]. Let Q1, Q2, . . . , QN be N quantum systems with state spaces H1,H2, . . . ,HN of dimensions
d1, d2, . . . , dN , respectively. We consider the composite system Q of Q1, Q2, . . . , QN with state space
H := H1 ⊗H2 ⊗ . . .⊗HN .
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Let S1, S2, . . . , SN be non-degenerate observables of systems Q1, Q2, . . . , QN , respectively.

Then S = S1 ⊗ S2 ⊗ . . .⊗ SN is an observable of the composite system Q. Use {|ψkj
〉}dj−1

kj=0 to denote

the eigenbasis of Sj corresponding to eigenvalues {λkj
}dj−1

kj=0 . Thus,

Sj|ψkj
〉 = λkj

|ψkj
〉(k j = 0, 1, . . . , dj − 1). (1)

It is easy to check that the eigenvalues and corresponding eigenbasis of S = S1 ⊗ S2 ⊗ . . .⊗ SN are

λk1 λk2 . . . λkN and |ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉(k j = 0, 1, . . . , dj − 1), (2)

respectively. Put

V(S) =
{

Λk1k2 ...kN ≡
(
λk1 , λk2 , . . . , λkN

)T : k j = 0, 1, . . . , dj − 1
}

,

called an input space. For parameters

a = (a1, a2, . . . , aN)
T ∈ CN , b = (b1, b2, . . . , bM)T ∈ CM, W = [Wij] ∈ CM×N ,

write Ω = (a, b, W) and put

ΨS,Ω(λk1 , λk2 , . . . , λkN ) = ∑
hi=±1

exp

(
N

∑
j=1

ajλkj
+

M

∑
i=1

bihi +
M

∑
i=1

N

∑
j=1

Wijhiλkj

)
. (3)

Then we obtain a complex-valued function ΨS,Ω(λk1 , λk2 , . . . , λkN ) of the input variable Λk1k2 ...kN .
We call it a neural network quantum wave function (NNQWF). Then we define

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈V(S)
ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉, (4)

which is a nonzero vector (not necessarily normalized) of the Hilbert space H. We call it a neural
network quantum state (NNQS) induced by the parameter Ω = (a, b, W) and the input observable
S = S1 ⊗ S2 ⊗ . . .⊗ SN (Figure 1). 
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Figure 1. Artificial neural network encoding an NNQS. It is a restricted Boltzmann machine architecture
that features a set of N visible artificial neurons (blue disks) and a set of M hidden neurons
(yellow disks). For each value Λk1k2 ...kN of the input observable S, the neural network computes
the value of the ΨS,Ω(λk1

, λk2 , . . . , λkN ).
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Note that we do not assume that an NNQWF satisfies the normalization condition:

∑
Λk1k2...kN

|ΨS,Ω(λk1 , λk2 , . . . , λkN )|
2 = 1.

Indeed, when a state can be written as NNQS, this normalization condition is automatically satisfied.
By definition, an NNQWF can be reduced to

ΨS,Ω(λk1 , λk2 , . . . , λkN ) =
N

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

N

∑
j=1

Wijλkj

)
. (5)

It is can be described by the following “quantum artificial neural network” (Figure 2) where
a = 0, 2 cosh(z) = ez + e−z, ∑bi

and Π are functions such that

∑bi
(x1, x2, . . . , xN) = bi + ∑N

j=1 xj, Π(y1, y2, . . . , yM) = ΠM
i=1yi.
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Figure 2. Quantum artificial neural network with parameter Ω = (0, b, W).

We call this network a quantum artificial neural network because its input eigenvalues of quantum
observables and the outcomes are values of an NNQWF, while it has a network structure similar to
a usual artificial neural network.

Next, let us consider the tensor product of the two NNQSs. We have proved the following.

Proposition 1. [38] Suppose that |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs with parameters

S′ = S′1 ⊗ . . .⊗ S′N′ , S′′ = S′′1 ⊗ . . .⊗ S′′N′′ , Ω′ = (a′, b′, W ′), Ω′′ = (a′′, b′′, W ′′),

respectively. Then |Ψ′S′ ,Ω′〉 ⊗ |Ψ
′′
S′′ ,Ω′′〉 is also an NNQS |ΦS,Ω〉 with parameters

S = S′ ⊗ S′′, Ω = (a, b, W), N = N′ + N′′, M = M′ + M′′,

a =

(
a′

a′′

)
, b =

(
b′

b′′

)
, W = [Wij] =

(
W ′M′×N′ 0

0 W ′′M′′×N′′

)
.
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Now, we discuss the influence of local unitary operation (LUO) on an NNQS. We conclude this
as follows.

Proposition 2. [38] Suppose that |ΨS,Ω〉 is an NNQS and U = U1 ⊗ U2 ⊗ . . . ⊗ UN is a local unitary
operator onH. Then U|ΨS,Ω〉 = |ΨUSU† ,Ω〉, which is also an NNQS with the input observable USU† and the
parameter Ω, and has the same NNQWF as |ΨS,Ω〉.

Remark 1. It can be seen from Proposition 2 that if two pure states are LU-equivalent and an NNQS
representation of one of the two states is easily given, then that of another state can be obtained from that
of the former.

To conclude this section, we discuss a special class of NNQSs.
When S = σz

1 ⊗ σz
2 ⊗ . . .⊗ σz

N , we have

λkj
=

{
1, k j = 0
−1, k j = 1

, |ψkj
〉 =

{
|0〉, k j = 0
|1〉, k j = 1

(1 ≤ j ≤ N),

and V(S) = {1,−1}N .
In this case, the NNQS (4) becomes

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈{1,−1}N

ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉. (6)

This leads to the NNQS induced in [26] and discussed in [32]. We call such an NNQS a spin-z NNQS.

3. Approximating Ground States by Neural Network Quantum States

In this section, we try to find approximate solution to the static Schrödinger equation H|ψ〉 = E|ψ〉
for a given Hamiltonian H. For example, to find approximation of ground states by neural network
quantum states.

Let |ΨS,Ω〉 be an NNQS given by Equation (4) and let H be a Hamiltonian whose smallest
eigenvalue Eexact is not zero. Put

EH(S, Ω) =
〈ΨS,Ω|H|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

.

We seek the minimum relative error between EH(S, Ω) and Eexact over Ω,

ε = min
Ω

|EH(S, Ω)− Eexact|
|Eexact|

. (7)

We call ε the best relative error between EH(S, Ω) and Eexact.
Obviously, when the minimum in Equation (7) is attained at the parameter Ω, we can use the

normalized NNQS 〈ΨS,Ω|ΨS,Ω〉−
1
2 |ΨS,Ω〉 as an approximation of the ground state of H with the best

relative error ε.
Generally, EH(S, Ω) ≥ Eexact. Hence, ε can also be expressed as

ε = min
Ω

EH(S, Ω)− Eexact

|Eexact|
.

Next, we discuss the influence of the sum of Hamiltonians on the best relative error. We obtain
the following conclusion.
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Proposition 3. Suppose that H1 and H2 are two Hamiltonians, E′exact, E′′exact and Eexact are the smallest
eigenvalue of H1, H2 and H1 + H2, respectively, |ΨS,Ω〉 is an NNQS. Then

EH1+H2(S, Ω) = EH1(S, Ω) + EH2(S, Ω).

Furthermore, if minΩ(EH1(S, Ω) + EH2(S, Ω)) = minΩ EH1(S, Ω) + minΩ EH2(S, Ω), then

0 ≤ ε ≤ ε1 + ε2,

where

ε1 = min
Ω

|EH1(S, Ω)− E′exact|
|E′exact|

, ε2 = min
Ω

|EH2(S, Ω)− E′′exact|
|E′′exact|

, ε = min
Ω

|EH1+H2(S, Ω)− Eexact|
|Eexact|

.

Proof. We can easily compute that

EH1+H2(S, Ω) =
〈ΨS,Ω|H1 + H2|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

=
〈ΨS,Ω|H1|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

+
〈ΨS,Ω|H2|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

= EH1(S, Ω) + EH2(S, Ω).

It is easily see that ε ≥ 0. Generally,

min
Ω

EH1(S, Ω) ≥ E′exact, min
Ω

EH2(S, Ω) ≥ E′′exact, min
Ω

EH1+H2(S, Ω) ≥ Eexact.

Besides, when minΩ(EH1(S, Ω) + EH2(S, Ω)) = minΩ EH1(S, Ω) + minΩ EH2(S, Ω), we see from
Eexact ≥ E′exact + E′′exact that

ε =
|minΩ EH1+H2(S, Ω)− Eexact|

|Eexact|

=
|minΩ(EH1(S, Ω) + EH2(S, Ω))− Eexact|

|Eexact|

≤
|minΩ EH1(S, Ω) + minΩ EH2(S, Ω)− E′exact − E′′exact|

|E′exact + E′′exact|

≤
|minΩ EH1(S, Ω)− E′exact|

|E′exact|
+
|minΩ EH2(S, Ω)− E′′exact|

|E′′exact|
= ε1 + ε2.

Now, we discuss the influence of tensor product of Hamiltonians on the best relative error. We get
the following conclusion.

Proposition 4. Suppose that H1 and H2 are two Hamiltonians, E′exact, E′′exact and Eexact are the smallest
eigenvalue of H1, H2 and H1 ⊗ H2, respectively. |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs with parameters

S′ = S′1 ⊗ . . .⊗ S′N′ , S′′ = S′′1 ⊗ . . .⊗ S′′N′′ , Ω′ = (a′, b′, W ′), Ω′′ = (a′′, b′′, W ′′),

respectively. Let

S0 = S′ ⊗ S′′, Ω0 = (a0, b0, W0), N = N′ + N′′, M0 = M′ + M′′,
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a0 =

(
a′

a′′

)
, b0 =

(
b′

b′′

)
, W0 = [Wij] =

(
W ′M′×N′ 0

0 W ′′M′′×N′′

)
.

Then
EH1⊗H2(S0, Ω0) = EH1(S

′, Ω′) · EH2(S
′′, Ω′′).

Furthermore, if H1 and H2 are positive definite, then ε′ε′′ ≤ ε0 where

ε′ = min
Ω′

|EH1(S
′, Ω′)− E′exact|
|E′exact|

, ε′′ = min
Ω′′

|EH2(S
′′, Ω′′)− E′′exact|
|E′′exact|

,

ε0 = min
Ω0

|EH1⊗H2(S0, Ω0)− Eexact|
|Eexact|

.

Proof. Since |Ψ′S′ ,Ω′〉 and |Ψ′′S′′ ,Ω′′〉 are two NNQSs, we know from Proposition 1 that |Ψ′S′ ,Ω′〉 ⊗
|Ψ′′S′′ ,Ω′′〉 = |ΦS0,Ω0〉 is also an NNQS. Furthermore, we can compute

EH1⊗H2(S0, Ω0) =
〈ΨS0,Ω0 |H1 ⊗ H2|ΨS0,Ω0〉
〈ΨS0,Ω0 |ΨS0,Ω0〉

=
〈ΨS′ ,Ω′ |H1|ΨS′ ,Ω′〉
〈ΨS′ ,Ω′ |ΨS′ ,Ω′〉

·
〈ΨS′′ ,Ω′′ |H2|ΨS′′ ,Ω′′〉
〈ΨS′′ ,Ω′′ |ΨS′′ ,Ω′′〉

= EH1(S
′, Ω′) · EH2(S

′′, Ω′′).

Since H1 and H2 are positive, Eexact = E′exactE
′′
exact. Observe that

min
Ω′

EH1(S
′, Ω′) ≥ E′exact > 0, min

Ω′′
EH2(S

′′, Ω′′) ≥ E′′exact > 0, min
Ω0

EH1⊗H2(S0, Ω0) ≥ Eexact > 0.

Thus, we have

ε0 =
|minΩ0 EH1⊗H2(S0, Ω0)− Eexact|

|Eexact|

=
|minΩ′ EH1(S

′, Ω′) ·minΩ′′ EH2(S
′′, Ω′′)− E′exactE

′′
exact|

|E′exact| · |E′′exact|

≥
|minΩ′ EH1(S

′, Ω′)− E′exact|
|E′exact|

·
|minΩ′′ EH2(S

′′, Ω′′)− E′′exact|
|E′′exact|

= ε′ε′′.

Now, we discuss the influence of local unitary operation on the best relative error. We conclude
this conclusion as follows.

Proposition 5. Suppose that H is a Hamiltonian, |ΨS,Ω〉 is an NNQS and U = U1 ⊗U2 ⊗ . . . ⊗UN is
a local unitary operator onH. Eexact, E′exact are the smallest eigenvalue of H and UHU†, respectively. Then

EUHU†(S, Ω) = EH(U†SU, Ω),

and ε = ε′ where

ε = min
Ω

|EH(U†SU, Ω)− Eexact|
|Eexact|

, ε′ = min
Ω

|EUHU†(S, Ω)− E′exact|
|E′exact|

.
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Proof. We can obtain from Proposition 2 that U†|ΨS,Ω〉 = |ΨU†SU,Ω〉, which is also an NNQS. Therefore

EUHU†(S, Ω) =
〈ΨS,Ω|UHU†|ΨS,Ω〉
〈ΨS,Ω|ΨS,Ω〉

=
〈ΨU†SU,Ω|H|ΨU†SU,Ω〉
〈ΨU†SU,Ω|ΨU†SU,Ω〉

= EH(U†SU, Ω).

Since U is a local unitary operator, Eexact = E′exact. We can easily obtain that ε = ε′.

Lastly, we give two examples in order to illustrate our method.

Example 1. Suppose that H = |00〉〈00|+ 2|01〉〈01|+ 3|10〉〈10|+ 4|11〉〈11|. Then H can be represented
under the basis {|00〉, |01〉, |10〉, |11〉} by H = diag(1, 2, 3, 4). It is easy to see that the minimum eigenvalue of
H is 1, the ground state is |00〉.

Next we use spin-z NNQSs

|ΨS,Ω〉 = ∑
Λk1k2

∈{1,−1}2

ΨS,Ω(λk1 , λk2)|ψk1〉 ⊗ |ψk2〉.

to approximate the ground state |00〉 of H, where

ΨS,Ω(λk1 , λk2) =
2

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

2

∑
j=1

Wijλkj

)
.

When N = M = 2, we have

|ΨS,Ω〉 = 4ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22) |00〉
+ 4ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22) |01〉
+ 4e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22) |10〉
+ 4e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22) |11〉.

We can easily calculate that

EH(S, Ω) =
(
|ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22)|2

+ 2
∣∣ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22)

∣∣2
+ 3

∣∣e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22)
∣∣2

+ 4
∣∣e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22)

∣∣2)
/
(
|ea1ea2 cosh (b1 + W11 + W12) cosh (b2 + W21 + W22)|2

+
∣∣ea1e−a2 cosh (b1 + W11 −W12) cosh (b2 + W21 −W22)

∣∣2
+

∣∣e−a1ea2 cosh (b1 −W11 + W12) cosh (b2 −W21 + W22)
∣∣2

+
∣∣e−a1e−a2 cosh (b1 −W11 −W12) cosh (b2 −W21 −W22)

∣∣2) .

Next we seek the minimum value of EH(S, Ω) over Ω. By letting

b1 = x1, b2 = x2, W11 = x3, W12 = x4, W21 = x5, W22 = x6, a1 = x7, a2 = x8,

we define a function g by
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g(x1, x2, . . . , x8)

= (
∣∣ex7+x8 · cosh(x1 + x3 + x4) · cosh(x2 + x5 + x6)

∣∣2
+2
∣∣ex7−x8 · cosh(x1 + x3 − x4) · cosh(x2 + x5 − x6)

∣∣2
+3
∣∣e−x7+x8 · cosh(x1 − x3 + x4) · cosh(x2 − x5 + x6)

∣∣2
+4
∣∣e−x7−x8 · cosh(x1 − x3 − x4) · cosh(x2 − x5 − x6)

∣∣2)
/(
∣∣ex7+x8 · cosh(x1 + x3 + x4) · cosh(x2 + x5 + x6)

∣∣2
+
∣∣ex7−x8 · cosh(x1 + x3 − x4) · cosh(x2 + x5 − x6)

∣∣2
+
∣∣e−x7+x8 · cosh(x1 − x3 + x4) · cosh(x2 − x5 + x6)

∣∣2
+
∣∣e−x7−x8 · cosh(x1 − x3 − x4) · cosh(x2 − x5 − x6)

∣∣2)
and then numerically minimize g over x1, x2, . . . , x8 (see Figure 3).

Figure 3. Numerically minimize g over x1, x2, . . . , x8 by optimization.

By using Matlab, we find

min
xi

g(x1, x2, . . . , x8) = g(0.743, 5.788, 2.843, 4.274, 5.501, 5.148, 3.312, 1.916) = 1.

We obtain

ε = min
Ω

|EH(S, Ω)− Eexact|
|Eexact|

= 0

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = 6.6458× 1012|00〉+ 4.6761× 103|01〉+ 505.6622|10〉+ 406.2882|11〉,
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then the normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

≈ |00〉.

Besides, we can also calculate the distance between the actual ground state |00〉 and the approximate state |Ψ′S,Ω〉
to be

dist(|00〉, |Ψ′S,Ω〉) = ‖|00〉 − |Ψ′S,Ω〉‖ ≈ 0.

Example 2. Suppose that

Hcluster
N = −

N

∑
i=1

σz
i−1σx

i σz
i+1,

where σz
0 = I, σz

N+1 = I. It is easy to see that the minimum eigenvalue of Hcluster
N is −N, the ground state is

cluster state |CN〉. Hence, Eexact = −N.
Next we use spin-z NNQSs

|ΨS,Ω〉 = ∑
Λk1k2...kN

∈{1,−1}N

ΨS,Ω(λk1 , λk2 , . . . , λkN )|ψk1〉 ⊗ |ψk2〉 ⊗ . . .⊗ |ψkN 〉,

to approximate the ground state |CN〉 of Hcluster
N , where

ΨS,Ω(λk1 , λk2 , . . . , λkN ) =
N

∏
j=1

e
ajλkj ·

M

∏
i=1

2 cosh

(
bi +

N

∑
j=1

Wijλkj

)
.

(i) When N = M = 2. By letting

a1 = x1 + x2i, a2 = x3 + x4i, b1 = x5 + x6i, b2 = x7 + x8i,

W11 = x9 + x10i, W12 = x11 + x12i, W21 = x13 + x14i, W22 = x15 + x16i,

using Matlab(see Figure 4), we find
ε = 1.438× 10−6,

where

a =

(
0.065 + 0.194i
0.008 + 0.37i

)
, b =

(
0.022 + 0.693i
−0.431− 0.056i

)
, W =

(
0.437 + 0.909i 0.018 + 0.733i
−0.272 + 0.952i 0.2 + 0.771i

)
.

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = (3.5877+ 0.4407i)|00〉+(3.5755+ 0.5083i)|01〉+(3.5805+ 0.4372i)|10〉+(−3.5698− 0.5169i)|11〉,

then normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

= (0.4969 + 0.0610i)|00〉+ (0.4952 + 0.0704i)|01〉

+(0.4959 + 0.0606i)|10〉+ (−0.4944− 0.0716i)|11〉.

Besides, we can also calculate the fidelity between the actual ground state

|C2〉 =
1
2
|00〉+ 1

2
|01〉+ 1

2
|10〉 − 1

2
|11〉
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and the approximate state |Ψ′S,Ω〉 to be

F(|C2〉, |Ψ′S,Ω〉) = |〈C2|Ψ′S,Ω〉| = 0.9999 ≈ 1.

Hence, |C2〉 ≈ |Ψ′S,Ω〉.

Figure 4. Numerically minimize ε by optimization.

In addition, we find that when N = 2, ε gets smaller and smaller as M changes, see Table 1.

Table 1. The numerical simulation results of N, M.

N M ε

2 2 1.438× 10−6

2 4 1.0716× 10−6

2 6 6.7887× 10−7

2 8 4.987× 10−7

(ii) When N = 3, M = 3. By using Matlab (see Figure 5), we find

ε = 2.981× 10−4.

where

a =

 0.956 + 1.669i
1.309− 0.255i
−0.148− 0.152i

 , b =

 0.653 + 0.863i
0.569 + 0.706i
−0.613 + 0.894i

 ,

W =

 −0.066 + 0.969i −1.213 + 2.029i −0.354− 0.647i
−0.233 + 3.12i 0.986 + 0.198i 0.438 + 0.16i
0.74 + 1.206i 0.749− 0.985i −0.445 + 0.8i

 .
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Figure 5. Numerically minimize ε by optimization.

Meanwhile, the corresponding NNQS is

|ΨS,Ω〉 = (−4.5329− 9.8797i)|000〉+ (−4.4661− 9.6734i)|001〉+ (−4.5709− 9.9717i)|010〉
+(4.3557 + 9.7498i)|011〉+ (−4.4258− 9.8957i)|100〉+ (−4.4603− 9.6152i)|101〉
+(4.6706 + 9.8781i)|110〉+ (−4.1489− 9.7979i)|111〉,

then normalized NNQS is

|Ψ′S,Ω〉 =
|ΨS,Ω〉√
〈ΨS,Ω|ΨS,Ω〉

= (−0.1488− 0.3242i)|000〉+ (−0.1466− 0.3175i)|001〉

+(−0.1500− 0.3272i)|010〉+ (0.1429 + 0.32i)|011〉+ (−0.1452− 0.3248i)|100〉
+(−0.1464− 0.3156i)|101〉+ (0.1533 + 0.3242i)|110〉+ (−0.1362− 0.3215i)|111〉.

Besides, we can also calculate the fidelity between the actual ground state

|C3〉 =
1

2
√

2
(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉)

and the approximate state |Ψ′S,Ω〉 to be

F(|C3〉, |Ψ′S,Ω〉) = |〈C3|Ψ′S,Ω〉| = 0.9999 ≈ 1.

Hence, |C3〉 ≈ |Ψ′S,Ω〉.

4. Conclusions

In this paper, the question of approximating ground states by neural network quantum states
has been discussed in terms of the best relative error (BRE). Some properties of the BREs have
been obtained, including the BREs of sums, tensor products, and local unitary transformations of
Hamiltonians. Besides, our method has been illustrated with two examples.
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