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Abstract

Experimental and hereditary defects in the ubiquitous scaffolding proteins of the spectrin 

gene family cause an array of neuropathologies. Most recognized are ataxias caused by 

missense, deletions, or truncations in the SPTBN2 gene that encodes beta III spectrin. Such 

mutations disrupt the organization of post-synaptic receptors, their active transport through the 

secretory pathway, and the organization and dynamics of the actin-based neuronal skeleton. 

Similar mutations in SPTAN1 that encodes alpha II spectrin cause severe and usually lethal 

neurodevelopmental defects including one form of early infantile epileptic encephalopathy type 

5 (West syndrome). Defects in these and other spectrins are implicated in degenerative and 

psychiatric conditions. In recent published work, we describe in mice a novel variant of alpha II 

spectrin that results in a progressive ataxia with widespread neurodegenerative change. The action 

of this variant is distinct, in that rather than disrupting a constitutive ligand-binding function of 

spectrin, the mutation alters its response to calcium and calmodulin-regulated signaling pathways 

including its response to calpain activation. As such, it represents a novel spectrinopathy that 

targets a key regulatory pathway where calcium and tyrosine kinase signals converge. Here 

we briefly discuss the various roles of spectrin in neuronal processes and calcium activated 

regulatory inputs that control its participation in neuronal growth, organization, and remodeling. 

We hypothesize that damage to the neuronal spectrin scaffold may be a common final pathway in 

many neurodegenerative disorders. Targeting the pathways that regulate spectrin function may thus 

offer novel avenues for therapeutic intervention.
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Introduction

Since its recognition five decades ago as a major component of the erythrocyte’s cortical 

membrane skeleton, our understanding of spectrin has evolved to include recognition of 

its ubiquitous presence in probably all animal cells and its role in surprisingly diverse 

biological functions. This is perhaps most apparent in the nervous system. Seven genes 

encode the mammalian spectrins (Figure 1). All but one (αI spectrin) are expressed in 

various neuronal and neurosensory cells. Classically, spectrin is recognized as an actin 

filament cross-linking protein that also binds directly and through adapter proteins (e.g. 

ankyrin) to biologic membranes and membrane lipids. In neurons and glia, spectrin forms 

a caricature of the erythrocyte skeleton, termed the membrane-associated periodic skeleton 

(MPS) [1]. Beyond its canonical role as an actin binding and membrane-linking protein, 

the spectrins also serve other roles: i) linkage to motors of intracellular transport, myosin, 

dynactin and kinesin [2–5]; ii) linkage to the axonal transport of lipid and protein laden 

vesicles [3,4] iii) stabilization of the Golgi and endoplasmic reticulum [6–9]; iv) trafficking 

of selected proteins in the secretory and endocytic pathways [8,10–12]; v) upstream 

regulation of the HIPPO/YAP signaling pathway that guides many aspects of neuronal 

development and remodeling [13–16]; vi) a multivalent protein-protein interaction scaffold 

that organizes membrane-associated signaling ensembles [17]; and vii) a target of multiple 

post-translational modifications that regulate its various functions. The richness of spectrin’s 

direct and indirect interactions with many biologic pathways can be appreciated in genome 

wide interaction diagrams of any spectrin; two examples for human βIII spectrin and αII 

spectrin are shown in Figure 2.

Spectrinopathies

Reflecting their diverse roles, spectrin deficiencies or defects lead to diverse neuropathology. 

Most studied have been the beta spectrins. Disorders in βI spectrin (SPTB) have been 

linked genetically to autism, learning difficulties, and spinal cord disease [18–20]. Genetic 

deletion of βII spectrin is embryonic lethal with loss of neural stem cells in the 

subventricular zone [21,22]; heterozygotes appear neurologically normal, but are prone to 

develop liver and gastrointestinal cancers putatively due to alterations in TGF-β/SMAD 

signaling [23]. Spectrin is also linked genetically to late-onset Parkinson’s disease and 

Lewy-body pathology [24,25] as well as other neurodevelopmental syndromes [26]. 

βIII spectrinopathies include spinocerebellar ataxia type 5 (SCA5) as found in afflicted 

decedents of Abraham Lincoln [27] and now recognized in several other pedigrees [28]. 

Other variants in SPTBN2 show cognitive impairment as well as ataxia (spectrin-associated 

autosomal recessive cerebellar ataxia type 1, SPARCA1) [29,30]. CpG hypomethylation of 

SPTBN2 links to attention deficits in children [31]. Animal models with genetic deletion 

of βIII spectrin recapitulate these conditions, with demonstrative disruption of the ER and 

Golgi architecture and selective mis-localization of postsynaptic proteins and excitatory 

amino acid transporters [11,32]. Defects in βIV spectrin disrupt axonal organization at the 

nodes of Ranvier and subsequently neurotransmission, and are associated with congenital 

myopathies and deafness [25,33]. Finally, spectrin βV is required to link myosin VIIA to 

trafficking vesicles; failure of this linkage leads to progressive hearing loss and blindness in 

Usher syndrome Type I [34] along with impairment of innervation of the organ of Corti [35].
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Defects in αII spectrin also lead to neurologic pathology. Mice lacking αII spectrin are 

embryonic lethal due to cardiac and nervous system malformations [36]. Mice without αII 

spectrin in the peripheral nervous system suffer impaired neuronal excitability and axonal 

defects [37,38]. Human mutations in αII spectrin (SPTAN1) link to early infantile epileptic 

encephalopathy (EIEE) type 5 (West Syndrome), characterized by refractory seizures, 

intellectual disability, agenesis of the corpus callosum and hypomyelination [38–41]. Other 

SPTAN1 neurological disorders include juvenile onset hereditary motor neuropathy and 

hereditary spastic paraplegia [28,42–46].

In recent published work, we describe a novel variant of the murine Sptan1 gene (αII 

spectrin) with a substitution of Gln for Arg at codon 1098. In heterozygotes this substitution 

causes a progressive age-dependent ataxia with widespread neurodegeneration [47]. The 

action of this variant is distinct from other αII spectrin neuropathologic mutations, in that 

rather than directly disrupting a constitutive ligand-binding or protein-protein interaction 

(e.g. heterodimer formation, tetramer formation, or actin binding), the mutation alters 

spectrin’s susceptibility to calcium and calmodulin activated calpain proteolysis, with 

secondary consequences for its overall function. Beyond the pathways that modulate calpain 

activity [48], two factors control spectrin’s susceptibility at the substrate level to activated 

calpain: the calcium-calmodulin dependent exposure of its Y-G residues at position 1176–

1177 [49,50], and whether Y1176 is phosphorylated [51,52]. The R1098Q variant spectrin 

thus represents a novel spectrinopathy that targets a key regulatory site where calcium 

and tyrosine kinase signal pathways converge to alter spectrin’s function. Beyond the 

novelty of the R1098Q mutation, the implications of this pathway for understanding other 

neurodegenerative disorders are significant.

Impaired Spectrin Homeostasis: A Unifying Concept of Neuronal Injury

Inappropriate calcium signaling and activation of calcium activated neutral proteases 

(calpain) is implicated in a variety of neurologic or degenerative disorders. These include 

Alzheimer’s and Parkinson’s disease [48,53–55], aging [56,57], and traumatic brain injury 

[58,59]. The literature is replete with putative calpain targets, and a case can be made that 

many of these contribute to any given pathology. However, αII spectrin is a major target of 

calpain attack in all of these conditions, and its cleavage has been widely used as a sensitive 

measure of neuronal remodeling or neurodegeneration or neurotoxicity. It is an early event 

in the generation of dark Purkinje cells [60], and calpain-generated breakdown products of 

spectrin appear in association with amyloid-beta (Aβ deposits and neurofibrillary tangles 

in Alzheimer’s disease patients [61,62]. Spectrin is also a component of the Lewy bodies 

found in Parkinson’s disease patients, although its state of proteolytic cleavage in the Lewy 

bodies is undetermined [63]. While the association of spectrin breakdown with disease could 

simply reflect the end-stage consequences of neuronal injury, we believe this is unlikely 

based on the global involvement of spectrin in so many cellular processes, and particularly 

based on our findings with the αII spectrin R1098Q variant [47]. This variant informs us 

that up-regulation alone of spectrin’s sensitivity to calpain cleavage is sufficient to induce 

widespread neurodegenerative change and lethal cell injury. It is important to emphasize, 

this effect is mediated by an enhancement of spectrin’s intrinsic sensitivity to cleavage, not 

by a global activation of calpain or enhanced Ca++ signaling. While mutations in spectrin 
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remain a rare cause of neurologic disease, processes that perturb intracellular calcium 

homeostasis and calpain activity are not rare, and accompany many neurodegenerative and 

other disorders as noted above. It is thus likely that enhanced cellular calpain activity alone, 

acting on wild-type αII spectrin, will phenocopy the consequences of the R1098Q variant. 

It will be important in the future to confirm this by determining that a reduction in calpain 

activity can rescue the R1098Q phenotype. Regardless, the totality of this data suggests that 

disruption of the spectrin scaffold in neuronal or neurosensory cells may be a common final 

pathway of neurodegeneration or malfunction.

A Path to Therapy

To the extent that disruption of the neuronal spectrin scaffold is an important factor in the 

progression of neurologic disease, strategies designed to ameliorate spectrin dysfunction 

may offer new routes for therapeutic intervention. Inhibition of calpain activity has long 

been recognized as a potential therapeutic target, and pharmacological calpain inhibitors 

[64] or over-expression of the natural calpain inhibitor calpastatin [65] prevents or reduces 

neurodegeneration in murine models. However, recognition that the effects of calpain on the 

spectrin scaffold can also be regulated at the substrate level opens the door to novel and 

possibly more specific interventions. One strategy might focus on the phosphorylation of the 

tyrosine at codon 1176 (Y1176) by a Src family kinase, a post-translational modification 

that also blocks the calpain cleavage of αII spectrin [51,52]. Designing a therapeutic 

strategy that either activates such a kinase or inhibits a relevant phosphatase could offer 

benefit and greater specificity than global calpain suppression. Recently, one study found 

that Trodusquemine, an inhibitor of tyrosine phosphatase PTB1B that is currently in phase 

1–2 clinical trials for obesity, restored synaptic plasticity and improved cognitive function 

in a murine model of Alzheimer’s disease [66,67]. While spectrin was not identified as 

a target of PTP1B in this study, the enzyme is abundant in brain and any blockage of 

calpain processing of spectrin by tyrosine phosphorylation at residue 1176 would also 

impair synaptic plasticity [68,69].

Beyond the action of calpain, the spectrin scaffold as a major organizing and structural 

hub offers many other putative targets for therapeutic intervention. In Parkinson’s disease 

models, phosphorylated α-synuclein binds preferentially to spectrin, which removes 

potentially toxic α-synuclein aggregates [70]. However, the binding of monomeric or 

oligomeric α-synuclein to spectrin disrupts spectrin-actin dynamics and the membrane-

associated periodic skeleton. As seen in most pedigrees with spectrin mutations related 

to its actin-binding function, disruption of the MPS alone is significantly pathologic. It is 

interesting to speculate that the end-stage injury in Parkinson’s disease could be related as 

much to α-synuclein induced damage to the MPS as to the accumulation of α-synuclein 

aggregates. Since α-synuclein’s affinity for spectrin is enhanced in the Drosophila model by 

its phosphorylation at serine 129, therapies that limit this phosphorylation might stabilize the 

MPS and enhance neuronal survival.

There are many other regulated interactions of the spectrin scaffold with its various partners, 

and more no doubt await discovery. Some examples include complex allosteric interactions 

that link membrane binding to its self-association properties [71,72], post-translational 

Morrow and Stankewich Page 4

J Exp Neurol. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulation controlling its interaction with calmodulin-regulated kinases (CaMKII) [73–75], 

its control of calcium-regulated exocytosis [76], phosphorylation control of its stabilization 

of specific organelles [6,7], and its interaction with long non-coding RNA’s (lncRNA) 

responsible for activity-dependent synaptic plasticity in hippocampal neurons [77]. If indeed 

as we have postulated that damage to the spectrin scaffold is a crucial final pathway in a 

broad spectrum of neuronal pathologies, then strategies designed to stabilize this structure 

may offer truly new approaches to their treatment.

Conclusion

From its humble beginnings as a cytoskeletal protein originally thought to be unique to 

the red cell, the spectrin scaffold has emerged as a central component of diverse signaling 

systems and a crucial member of pathways that control cellular organization, size, and 

function. This is most apparent in the nervous system. Defects in the spectrin scaffold 

lead to diverse neurodevelopmental and acquired disorders. The recent identification of an 

unusual αII spectrin defect in a murine model that renders it uniquely hypersensitive to 

calcium-mediated calpain processing indicates that damage to the spectrin skeleton alone is 

sufficient to generate a severe ataxic phenotype with widespread neurodegenerative change 

[47]. Increasing evidence indicates that diverse neurodegenerative and acquired conditions 

including Alzheimer’s disease, Parkinson’s disease, several ataxias, and traumatic brain 

injury all involve damage to the spectrin scaffold. Thus, an attractive hypothesis is that 

disruption of the neuronal spectrin scaffold represents a common end-stage event in such 

disorders. Therapeutic strategies focused on preservation of spectrin’s function may thus 

offer novel approaches to the treatment of many neurodegenerative conditions.
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Figure 1: Disposition of the spectrin gene family in neuronal and neurosensory cells and tissues.
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Figure 2: Genome-wide Interaction map of spectrin in humans.
(A) Interaction map of βIII spectrin. (B) Interaction map of αII spectrin. The fifty 

interacting genes with the highest confidence score (>0.9) are represented in each 

diagram. The edges represent known protein-protein interactions (not necessarily directly 

bound). Nodes are the respective proteins centered on each spectrin. Edge colors are: 

purple, experimentally determined; light blue, curated databases; green, gene neighborhood 

associations. Note the significant interactions of spectrin with cytoskeletal elements, motors 

of intracellular transport; many ion channels and transporters; components of the Golgi 

apparatus and the secretory and endocytic pathways; and various receptor tyrosine kinases 

and adapter proteins. Generated by Strings V11 [78].
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