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Abstract

Severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease

2019 (COVID-19), has expanded rapidly throughout the world. Thus, it is important to under-

stand how global factors linked with the functioning of the Anthropocene are responsible for

the COVID-19 outbreak. We tested hypotheses that the number of COVID-19 cases, num-

ber of deaths and growth rate of recorded infections: (1) are positively associated with popu-

lation density as well as (2) proportion of the human population living in urban areas as a

proxies of interpersonal contact rate, (3) age of the population in a given country as an indi-

cation of that population’s susceptibility to COVID-19; (4) net migration rate and (5) number

of tourists as proxies of infection pressure, and negatively associated with (5) gross domes-

tic product which is a proxy of health care quality. Data at the country level were compiled

from publicly available databases and analysed with gradient boosting regression trees

after controlling for confounding factors (e.g. geographic location). We found a positive

association between the number of COVID-19 cases in a given country and gross domestic

product, number of tourists, and geographic longitude. The number of deaths was positively

associated with gross domestic product, number of tourists in a country, and geographic lon-

gitude. The effects of gross domestic product and number of tourists were non-linear, with

clear thresholds above which the number of COVID-19 cases and deaths increased rapidly.

The growth rate of COVID-19 cases was positively linked to the number of tourists and

gross domestic product. The growth rate of COVID-19 cases was negatively associated

with the mean age of the population and geographic longitude. Growth was slower in less

urbanised countries. This study demonstrates that the characteristics of the human popula-

tion and high mobility, but not population density, may help explain the global spread of the

virus. In addition, geography, possibly via climate, may play a role in the pandemic. The

unexpected positive and strong association between gross domestic product and number of

cases, deaths, and growth rate suggests that COVID-19 may be a new civilisation disease

affecting rich economies.
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Citation: Skórka P, Grzywacz B, Moroń D, Lenda M

(2020) The macroecology of the COVID-19

pandemic in the Anthropocene. PLoS ONE 15(7):

e0236856. https://doi.org/10.1371/journal.

pone.0236856

Editor: Abdallah M. Samy, Faculty of Science, Ain

Shams University (ASU), EGYPT

Received: March 28, 2020

Accepted: July 15, 2020

Published: July 30, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0236856
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1. Introduction

Macroecology is the study of broad-scale ecological patterns and processes [1]. Few ecologists,

however, study the influence of the environment on humans, including the effects of biotic,

abiotic, and social conditions on the population growth, economy, and health of our own spe-

cies [2,3]. The emerging discipline of human macroecology [3] has an interesting duality [2].

The Homo sapiens is one of the most powerful species to inhabit the Earth [2] and is now a

major geological and environmental force, as important as, or more important than, natural

forces [4]. Thus, it has been suggested that the Earth is in the epoch called Anthropocene [4,5].

However, humans are subject to the same biological laws as any other organism. One of the

most important areas of macroecology in the human context is disease ecology [6,7]. Humans,

as hosts, exhibit three specific macroecological patterns: (1) humans spreading geographically

disperse pathogens and parasites, (2) humans visiting or settling in new areas encounter new

organisms, including new pathogens, and new alternative hosts for existing pathogens and

parasites; (3) increased human population density and frequency of contact substantially influ-

ence the ecology of disease [2]. Thus, understanding how the spread of diseases is related to

environmental and socioeconomic factors requires a global perspective [8].

New infectious diseases determine changes in mortality in populations of all organisms,

including humans [9,10]. Among many viral diseases in humans, those caused by coronavi-

ruses are especially troublesome [11]. Coronaviruses are a large family of viruses that usually

cause disease in wild animals, but several of them, probably including severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), have made the jump to humans [11]. New viruses

may be a threat to health systems and economies, and may even cause pandemics [12].

Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, has been present since

mid-December 2019. The first case of coronavirus was probably earlier (on 17 November,

according to government data reported in the South China Morning Post), but until December,

Chinese officials did not know that they had a new type of virus [13]. The World Health Orga-

nization officially recognised this disease on 11 March 2020 as a global pandemic [14]. In

December and January, the incidence was limited primarily to the city of Wuhan in central

China, but as early as mid-January, the virus quickly spread throughout China. On 13 January

2020, the first case outside China was confirmed. On 24 January, the first case was reported in

Europe. In the second half of February, outbreaks with hundreds of patients erupted in South

Korea, Italy, and Iran. On 20 June, the number of infected people worldwide reached over

8,385,440, of which 450,686 died [15]. Coronavirus-infected patients were registered on all

continents, except Antarctica.

The COVID-19 pandemic will probably have numerous effects on the functioning of the

human population, and, consequently, vast ecological consequences for human-affected eco-

systems (e.g. bans to wildlife trade and increased poaching) [16]. It is thus urgent to recognise

the factors responsible for the spread of this pathogen among human societies. This novel

virus is unaffected by any immunity that people may have to older strains and can, therefore,

spread extremely rapidly and infect very large numbers of humans in a short period of time.

Typically, the SARS-CoV-2 virus is transmitted from infected individuals through the air by

coughs or sneezes, creating aerosols containing the virus or by contact with contaminated sur-

faces, where the virus can survive for hours to days at a time [17]. Therefore, population den-

sity should positively correlate with the number of infections, deaths, and growth rate of

infection cases. Higher population density increases the number of contacts among individuals

and thus may mediate the transmission of pathogens [18,19]. The highest human population

density occurs in urban areas. Towns and cities are also the usual areas of numerous social

contact [20]. The high density of cars, buildings, and factories increases environmental
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pollution in urban areas compared with rural ones. This imposes additional stress on the

immune system [21]. Thus, it may be expected that pandemics are most common in urbanised

countries.

Disease spread increases with the exchange of people between human populations. In the

globalisation era, people increasingly change their location [21,22]. International travel has

connected the world in the past century, and this mobility facilitates coronavirus transmission,

allowing regional epidemics to become worldwide pandemics within a matter of weeks or

even days. The mass movement of large numbers of people creates new opportunities for the

spread and establishment of common or novel infectious diseases [23,24]. Thus, one may pre-

dict that a higher number of tourists and the net immigration rate should be positively associ-

ated with COVID-19 cases.

Models predict that children can transmit different types of viruses [25,26]. The higher fre-

quency of disease incidence among children and young adults than that in the older popula-

tion is mainly attributable to a low level of immunity in these age groups due to lower past

exposure to infectious diseases [27]. However, studies on H1N1 swine flu cases during the late

spring and summer of 2009 in various countries showed a substantial age shift in local trans-

mission cases, with adults mainly responsible for seeding unaffected regions and children

most frequently driving community outbreaks [28]. A low number of acute courses of

COVID-19 cases in young people indicates that young people may be vectors of COVID-19

for additional transmission. Thus, it may be expected that the number of cases may be higher

in countries with lower average life spans. On the other hand, older people have a weaker

immune response and poorer general health, and are affected the most by COVID-19 and

other viruses [29]. Thus, one may expect that the number of deaths will be the highest in coun-

tries with a high average life span.

In addition, other socioeconomic factors may be associated with the prevalence of patho-

gens. Marginal and disadvantaged people with low socioeconomic status are generally more

vulnerable during a pandemic outbreak of disease [30]. Limited access to the media, lack of

adequate resources for precautionary activities, lower literacy rates, inadequate access to health

services, and crowded accommodations make people more prone to be affected by the pan-

demic [31]. Gross domestic product (GDP) is a commonly used indicator of socioeconomic

variables [32]. For example, GDP correlates positively with the healthcare system and the prob-

ability of survival of people with dangerous diseases such as cancer [33]. Hence, it is expected

that the number of cases, deaths, and rates of infection growth should be negatively associated

with GDP.

In this paper, we aim to determine which global factors are associated with the early pan-

demic of COVID-19. We tested the hypotheses that the number of infections, deaths, and the

rate of growth in the number of COVID-19 infections are:

1. Positively associated with human population density.

2. Positively associated with the proportion of the population living in urban areas.

3. Negatively associated with the median age of the human population. However, the number

of deaths should be positively associated with the median age of the population.

4. Positively associated with the number of tourists visiting a given country

5. Positively associated with the net migration rate (proportion of immigrants) in a given

country.

6. Negatively associated with gross domestic product.
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We tested these hypotheses by including variables that are inevitably related to pandemic

spread, such as number of days since the start of the pandemic in a given country, global local-

ity (geographic coordinates of the centroid of each country).

2. Methods

2.1. Data

We used publicly available databases. Data on COVID-19 were downloaded from the Euro-

pean Centre for Disease Prevention and Control (https://www.ecdc.europa.eu/en/

publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide)

on 12 April 2020.

Data of socioeconomic variables in each country where COVID-19 infections were

reported were derived from the United Nations Population Division available via Worldmeters

(https://www.worldometers.info/world-population/population-by-country/), downloaded on

18 March 2020.

Data on the number of tourists were obtained from IndexMundi (https://www.

indexmundi.com/facts/indicators/ST.INT.ARVL/rankings).

Moreover, data on geographic coordinates of country centroids was downloaded on 18

March and 25 May 2020 from WorldMap (https://worldmap.harvard.edu/data/geonode:

country_centroids_az8).

Data were compiled and analysed in R Environment [34] with the set of packages in ‘tidy-

verse’ [35]. All data and codes are available in the Supplementary material.

2.2. Data analysis

We analysed three response variables: 1) the number of COVID-19 cases, 2) the number of

deaths due to the infection, and 3) growth rate of the infection cases. The growth rate of infec-

tion was determined by fitting the exponential growth curve for data in each country. The

explanatory variables were: human population density (Dens), the proportion of the popula-

tion living in urban areas (Urban), median age of the population (Age), number of tourists vis-

iting a country (Tour), net migrations rate (Mig; negative value if emigration prevails, positive

if immigration prevails), gross domestic product in millions of US dollars (GDP), time in days

since the first case recorded in a given country (Time), geographic longitude (Lon), and lati-

tude (Lat) of a country centroid.

Gradient boosting regression trees (GBRTs) [36] implemented in ‘h2o’ package version

3.30.0.1 [37] were used to analyse the relationships between the explanatory variables and

dependent variables. Gradient boosting regression trees are efficient machine learning algo-

rithms that have been proven successful across many domains and are among the leading

machine learning algorithms [38–40]. Boosting improves model accuracy by searching for

many rough prediction rules rather than the single most accurate prediction rule [39,40]. Gra-

dient boosting regression trees generate a final model that is more robust than a single regres-

sion tree model and enables curvilinear functions to be modelled [41]. Another advantage of

this method is that it copes with collinearity among variables [41], which was the case in our

dataset (Fig 1). Gradient boosting regression trees calculate the relative importance of explana-

tory variables [40,41] in the predictive model rather than P-values, which have been criticised

[42,43].

The GBRTs are prone to overfitting, but this can be solved by tuning the parameters [40].

The settings of the GBRTs model were tuned by searching for the optimal set of parameters

minimising the mean squared error [40]. The tuning parameters were found via function ‘h2o.

grid’ by running the model with different values for the parameters [40]. They were: maximum
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tree depth (values: 1, 3, 5), fewest allowed (weighted) observations in a leaf (values: 1, 5, 10),

learning rate (values: 0.001, 0.01, 0.1), scale the learning rate by this factor after each tree (val-

ues: 0.99, 1), row sample rate per tree (values: 0.5, 0.75, 1), and column sample rate (values: 0.8,

0.9, 1).

The model was fitted to the training data (70% of data, randomly selected) with 10-fold

cross validation [40]. For the number of cases and deaths, we used the Poisson distribution

and for the growth rate, we used the Gaussian distribution. We used natural logarithm trans-

formation (variables: Dens, GDP, Time, Tour) because gradient boosting regression may pro-

duce biased results in the presence of outliers [44]. The fitted model was then used to make

Fig 1. Correlations among explanatory variables used in the analyses. Only statistically significant associations are shown. The width

of the lines indicates the strength of the correlation. Explanation of variable codes: Age = the median age of the population in a given

country; Dens = human population density; GDP = gross domestic product; Lat = geographic latitude of the country centroid;

Lon = geographic longitude of the country centroid; Mig = net migration rate; Time = number of days since the start of the pandemic in

a given country; Tour = number of tourists in a given country; Urban = the proportion of the human population living in urban areas.

https://doi.org/10.1371/journal.pone.0236856.g001
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predictions on the test data. Finally, the performance of each model was assessed on the test

dataset. The R2 between the predicted and actual data was used as a measure of performance.

To visualise the results, we used individual conditional expectation (ICE) plots in ‘pdp’ R

package [45], a tool for visualising the model estimated by any supervised learning algorithm

and Friedman’s partial dependency plots [36]. Partial dependence plot (PDP) highlights the

average partial relationship between a set of explanatory variables and the predicted response

variable [40]. Individual conditional expectation plots highlight the variation in the fitted val-

ues across the range of an explanatory variable, suggesting where and to what extent heteroge-

neities may exist. The ICE plots disaggregate this average by displaying the estimated

functional relationship for each observation [46]. We interpreted the results with an impor-

tance above 1%.

3. Results

3.1. Number of COVID-19 cases

The GBRT analysis revealed that all examined variables had a non-zero impact on the number

of cases (Fig 2). However, only three variables, GDP, Tour, and Lon, had an importance above

1% (Fig 2). The number of cases positively correlated with GDP, but in a nonlinear manner

(Fig 3A). The number of cases increased after the GDP reached 60 billion US dollars (Fig 3A).

The number of cases also increased rapidly if the number of tourists in a country exceeded 20

million (Fig 3B). The number of cases increased with the geographic longitude from Asia to

Europe (Fig 3C). Gradient-boosted regression trees built on trained data explained 81% of the

variation in the test data.

3.2. Number of deaths

The GBRT analysis revealed that all examined variables had a non-zero impact on the number

of deaths (Fig 2). However, only four variables, Tour, Cases, GDP, and Lon, had an importance

above 1% (Fig 2). The number of deaths increased rapidly if the number of tourists in a coun-

try exceeded 30 million (Fig 4A). The number of deaths was positively associated with the

number of COVID-19 cases (Fig 4B). The number of deaths increased slightly after the GDP

reached 400 billion US dollars (Fig 4C). The number of cases decreased with increasing geo-

graphic longitude (Fig 4D). Gradient-boosted regression trees built on trained data explained

92% of the variation in the test data.

3.3. Growth in the number of COVID-19 cases

The GBRT analysis revealed that all examined variables had a non-zero impact on the growth

rate of COVID-19 cases (Fig 2). The growth rate accelerated with time (Fig 5A). Gross domes-

tic product increased growth rate starting from the values of about 2 billion US dollars, then

accelerated if it exceeded 400 billion US dollars (Fig 5B). The growth rate decreased with

increasing geographic longitude (Fig 5C). The non-linear effect of population density was

found on the growth rate (Fig 5D). The population density with values ranging roughly

between 50 and 500 persons per square kilometre decreased the growth rate (Fig 5D). The

growth rate of COVID-19 cases decreased with the median age of the country population (Fig

5E). The growth rate changed non-linearly with geographic latitude (Fig 5F). It was elevated

between both tropics (Fig 5F). Also, in the northern hemisphere, the countries located above

50˚N had a slower growth rate than countries located more to the south (Fig 5F). The growth

rate also increased non-linearly with the number of tourists (Fig 5G). A non-linear effect of the

migration rate was found (Fig 5H). Generally, countries with net emigration rates close to zero
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had higher growth rates in the number of COVID-19 cases than countries with both excess

immigrants and emigrants (Fig 5G). Finally, the growth rate decreased in countries with a

lower proportion of population living in urbanised areas but increased in highly urbanised ter-

ritories. Gradient-boosted regression trees built on trained data explained 22% of the variation

in the test data.

4. Discussion

Our macro-ecological approach revealed the impact of several variables shaping the pattern of

the COVID-19 pandemic on a global scale. One of our most interesting findings was that we

Fig 2. Decomposition of the variation associated with explanatory variables into independent components using

gradient boosting regression trees. The importance of variables in gradient boosting regression trees explaining the

number of COVID-19 cases, number of deaths, and growth rate of COVID-19 cases. Explanatory variables that had

the importance of the dependent variables above 1% are given in red. Explanation of variable codes: see Fig 1.

https://doi.org/10.1371/journal.pone.0236856.g002
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Fig 3. Centred individual conditional expectation plots of the predicted number of COVID-19 cases by a) number of

tourists, b) gross domestic product, and c) geographic longitude. The lines show the difference in prediction compared

with the prediction with the respective value of the explanatory variables at their observed minimum. The red line is

the averaged marginal functional estimate from the gradient boosting regression trees. Rug plots inside the bottom of

the plots show the distribution of data, in deciles, of the variable on the X-axis.

https://doi.org/10.1371/journal.pone.0236856.g003
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did not find evidence of a positive association between population density and infection num-

bers and deaths. This contradicts our expectations, which were based on theory and earlier

findings in other diseases [19,47]. It may be that population density plays a role at lower spatial

scales [48]. In addition, human population density in investigated countries is likely to be so

high that diseases can easily disperse among people. However, we observed a weak non-linear

effect of human population density on growth rate. This effect is also in contradiction to our

expectations because the growth rate was low at moderate human densities. This is difficult to

explain and possibly other factors not investigated in this study, but linked with population

density may obscure this effect.

We found that there is a positive association between the number of tourists visiting a given

country and the number of infections, deaths, and growth rate of COVID-19 cases, which is in

agreement with our expectations. This indicates that breaking geographical barriers may be a

crucial step in colonising new areas and hosts. In ecological terms, the spread of SARS-CoV-2

Fig 4. Individual conditional expectation plots of the predicted number of deaths by a) number of toursits, b) number of COVID-19 cases, c) gross domestic

product, and d) geographic longitude. For explanations, see Fig 3.

https://doi.org/10.1371/journal.pone.0236856.g004
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resembles an invasion of an alien species after new geographical areas have been colonised,

because of its impact on native ecosystems [49,50]. Overall, the effect was non-linear and the

number of tourists had an impact if the number of tourists visiting a given country was high,

usually above 20 million. This is also analogous to the invasion process where so-called ‘propa-

gule pressure’ and continuous colonisations are key triggers of the invasion [50–52]. Global

travel has increased in overall number, but there has also been a shift in areas visited by travel-

lers, especially in Asia [53]. The role of tourism in the spread of diseases was reported in previ-

ous studies [54]. Early on, the spatial distribution of COVID-19 cases in China was well

explained by human mobility data [55]. Thus, it may be that some regulations regarding tour-

ism, such as limited visits to countries with a high prevalence of diseases or quarantine for peo-

ple returning from them, may indeed be a solution worth considering in this pandemic and

Fig 5. Individual conditional expectation plots of the predicted number of deaths by a) number of days since the start of the pandemic in a given country, b)

gross domestic product, c) geographic longitude, d) human population density, e) median population age, f) geographic latitude, g) number of tourists, h)

migration rate, and i) proportion of human population living in urbanised areas. For further explanations, see Fig 3.

https://doi.org/10.1371/journal.pone.0236856.g005
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possibly also in future ones. Nevertheless, the role of tourism in the spread of the virus should

be investigated thoroughly in future studies because it was one of the most important predic-

tors in our models.

We did not find any impact of the net migration rate on the number of COVID-19 cases

and deaths, except for a weak, non-linear association with growth rate of COVID-19 cases. In

the latter case, the growth rate was the highest in countries with migration rates close to zero.

It is possible that the latter effect involves some biological factors. For example, increased

genetic diversity in societies with migrants may be a barrier for pathogens [56], decreasing the

chances of virus transmission. However, the net migration rate close to zero may also indicate

that immigration and emigration are balanced and this effect may be inseparable from the

total isolation. It is important to note that migration substantially differs from touristic trips

and is associated with many formal requirements, including health, in some host countries

[57,58]. Furthermore, migration is usually a singular event in the life of an individual. Tour-

ism, on the other hand, is linked with much higher mobility, visiting crowded places, and fre-

quent changes of location [57].

Unexpectedly, the gross domestic product was positively related to the number of infections,

deaths, and growth rate of the number of virus infections. Worldwide analysis indicated that

there is a direct positive relationship between GDP and total health expenditure [59]. There is a

positive significant relationship between total health expenditure and increased life expectancy

[60]. Moreover, a cohort-based study showed that levels of GDP at the time of death were

strongly inversely associated with all-cause mortality, especially among women [61]. However,

there is also evidence that higher GDP is linked with morbid behaviours responsible for the

occurrence of diseases. Rising income has been strongly associated with higher consumption of

unhealthy commodities within countries and over time [62]. In consequence, wealthy, market-

liberal countries have more overweight citizens [63] and there is increasing evidence that obesity

is an independent risk factor for severe illness and death from COVID-19 [64]. Of course, this

relationship may be mutual. Past pandemics, such as the 1918 influenza pandemic, have had a

strong negative impact on socioeconomy and gross domestic product [65]. The strong positive

association between COVID-19 and gross domestic product indicates that pandemics may

strongly affect developed economies, which is in line with the opinions of some experts [66,67].

It is believed that pandemics can be characterized as having low mortality of infected peo-

ple, high infectivity, a long period of contagiousness, and a lack of natural immunity of the

population, and the disease does not destroy its host. Harmless symptoms contribute to neglect

of the disease. Coronavirus disease seems to have these characteristics, except for the relatively

high mortality among older people [68], mostly due to the prevalence of chronic diseases in

older people [69]. However, we did not find an association between median age and number

of cases and deaths. We found a relatively weak negative association between growth rate of

COVID-19 cases and median age of the population. One possible but risky explanation is that

younger people are vectors of the virus, which would be in line with findings for other diseases

[35,36]. On the other hand, it was quickly identified that older people are the most endangered

group and special care was devoted to older people in the health systems [68]. Thus, actions

undertaken by countries could limit the spread of the virus via older people. In addition, older

people are usually less mobile with a limited number of social contacts [70], which may explain

why viruses may spread slowly in older societies.

We noted the potential impact of urban areas on the growth rate of infection cases. Urban

areas are associated with high population density and high levels of social interaction, but also

with stress and pollution [20]. This may promote the spread of viruses. Studies on influenza in

the United Kingdom in 1918 indicated that death rates varied markedly with urbanisation,

with 30% –40% higher rates in cities and towns than in rural areas [71]. However, Wood et al.
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[72] found that urbanisation was generally associated with lower burdens for many diseases, a

pattern that could arise from increased access to sanitation and healthcare in cities and

increased investment in healthcare. Thus, it seems that urban areas may have contradictory

effects on transmission according to disease type.

We also found an effect of geographic location on infection rate, mortality, and infection

rate. The number of COVID-19 cases and deaths but not growth rate were positively related to

geographic longitude. This may be explained by some theoretical studies [73] that found that

crossing geographical barriers is a major factor in spreading diseases. However, the decreasing

growth rate of the number of cases may reflect the known phenomenon that pandemic spread

is the highest in the place of origin and decreases with distance [74].

The growth rate of COVID-19 cases was non-linearly associated with geographic latitude.

Geographic position is usually linked to the local climate. Our finding is similar to recent

reports [75], with emerging evidence suggesting that weather conditions may influence the

transmission of SARS-CoV-2, dry conditions appearing to boost the spread [76]. This phe-

nomenon may manifest itself through two mechanisms: the stability of the virus and the effect

of the weather on the host. However, reports indicate that the weather effect is minimal, and

all estimates are subject to significant biases, reinforcing the need for robust public health mea-

sures [76]. On the other hand, the number of contacts among people may also be affected by

climate. People born in a warmer climate are much more social than those coming from cold

regions [77]. This may create opposing forces on the spread of the virus. We believe that fur-

ther models that include more precise geolocation of infection data and local climatic and

local human population density are highly warranted.

Not surprisingly, the growth rate of COVID-19 cases was positively associated with time.

This variable is usually the most important factor in predicting the number of infections and

diseases [78,79]. However, this variable is especially important if there is a time lag between

incidence and healthcare system response with possible consequences for virus spread dynam-

ics in space [80,81].

4.1. Study limitations

Our study has certain limitations that must be taken into consideration. Our analysis is based

on data from the early stages of the pandemic. Repeated analyses after several weeks may yield

different results. For example, different variables may play a role in different pandemic stages

[82]. Moreover, our study is, of course, correlative. Thus, associations between explanatory

variables and dependent variables should be treated with caution. Moreover, our analyses are

based on ‘big data’, which is known to have caveats [83]. For example, the positive association

between GDP and the number of COVID-19 cases may result from better diagnostics and a

large number of performed tests in rich countries. Moreover, GDP is associated with many

other variables and real-world phenomena [3]. Thus, this association should be interpreted

with caution. Finally, our explanatory variables were correlated with each other. However, the

values of correlation were moderate and the GBRTs were more robust in multicollinearity situ-

ations than ordinary least squares regression and produce reliable estimates that were straight-

forward to interpret in partial dependency plots. Nevertheless, only experimental tests of our

hypotheses on non-human organisms would result in cause-effect relationships. However,

studies on a global scale rarely, if at all, are experiments.

4.2. Conclusions

The COVID-19 pandemic prompted the need to identify the important components in the

disease spread for better projections of global-scale pandemics. Several factors, such as
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anthropogenic environmental changes, human demography, international travel, and micro-

bial adaptation, probably have contributed to the disease with which the global community is

currently challenged. Unfortunately, epidemics seem to be idiosyncratic, which makes predic-

tion much harder. However, if pathogen spread is a result of understood intrinsic processes,

the relationships can be incorporated into pandemic predictions and healthcare response and

delivery. This would require political agreement and cooperation in the exchange of informa-

tion and open access to all data on diseases. Moreover, a multidisciplinary and macroscale

approach [2] is needed, both in research and policymaking to better control and monitor the

spread of diseases. Last but not least, the Anthropocene was proposed to delineate the epoch of

significant human impact on Earth’s ecosystems (e.g. climate change) [4,5,84]. The COVID-19

pandemic shows that the impact may be altered by a virus and raises the question of whether

human impact is longstanding. Nevertheless, the positive correlation between infection num-

ber, deaths, and gross domestic product suggests that COVID-19 may be a new civilisation

disease.
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