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Here we evaluate the possibility of improving the encoding properties of an impaired

neuronal system by superimposing an exogenous noise to an external electric stimulation

signal. The approach is based on the use of mathematical neuron models consisting of

stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs

is described as a subthreshold injected current and the exogenous stimulation signal

is a sinusoidal voltage perturbation across the membrane. Our results indicate that a

correlated Gaussian noise, added to the sinusoidal signal can significantly increase the

encoding properties of the impaired system, through the Stochastic Resonance (SR)

phenomenon. These results suggest that an exogenous noise, suitably tailored, could

improve the efficacy of those stimulation techniques used in neuronal systems, where

the presynaptic sensory neurons are impaired and have to be artificially bypassed.

Keywords: single neuron, HHmodel, electric stimulation, exogenous noise, stochastic resonance, signal detection

Introduction

Different techniques for the stimulation of neuronal systems have been developed. Some are based
onmagnetic coupling, such as the Transcranial Magnetic Stimulation (TMS) (Corthout et al., 2001)
and low-intensity magnetic stimulation (Di Lazzaro et al., 2013), while others use electric fields,
such as Deep Brain Stimulation (DBS) (Okun et al., 2012; Paffi et al., 2013a), Functional Electric
Stimulation (FES) of peripheral nerves (Peckham and Knutson, 2005), cochlear prostheses (Wilson
et al., 1991; Clark, 2003), and Intracortical Microstimulation (ICMS) (Brock et al., 2013; Overstreet
et al., 2013).

Despite great interest in such applications and the experimental activities to evaluate the effect
of electromagnetic fields on single neurons and networks (Marchionni et al., 2006; Platano et al.,
2007; Ahmed and Wieraszko, 2009; Moretti et al., 2013), the mechanisms of action are not clearly
understood (Apollonio et al., 2013; Di Lazzaro et al., 2013) and the techniques are not yet optimized.

Theoretical studies to understand neuronal system functioning are based on biophysical mod-
els. At the single neuron level, a lot of work has been done using simple (Mainen et al., 1995; Rapp
et al., 1996; Rinzel and Ermentrout, 1998) or augmented (Tateno et al., 1998; Pospischil et al.,
2008) Hodgkin and Huxley (HH) descriptions (Hodgkin and Huxley, 1952), both under physio-
logic conditions and the action of exogenous stimulations (Mino et al., 2004; Giannì et al., 2005,
2006; Camera et al., 2012, 2013).

The HH model is a nonlinear active circuit, which behaves as an oscillator if the injected con-
stant current (stimulation current) overcomes a threshold (Rinzel and Ermentrout, 1998). Such a
current represents a physiologic stimulation from all the presynaptic neurons. Depending on this
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parameter, the HHmodel can display a stable resting state or/and
a stable limit cycle (Hassard, 1978), corresponding to a periodic
oscillation of the membrane voltage in the form of a spike train.

However, theHHmodel does not adequately take into account
the stochastic behavior of neurons. Electrophysiology record-
ings have shown that actual neurons have an intrinsic stochastic
behavior (Sigworth, 1980; Mainen and Sejnowski, 1995; Dorval
and White, 2005), shown by the unreliable responses and non-
deterministic current thresholds for firing. This is due to the
noisy environment of the neuron, in particular to the intrin-
sic stochasticity of channel gating (channel noise) (White et al.,
2000). The level of this noise decreases with the number of ionic
channels and so depends on the channel density and the size of
the neuron considered (Schneidman et al., 1998; White et al.,
2000).

Several authors have provided stochastic neuron models
(Schneidman et al., 1998; White et al., 2000) to study how chan-
nel noise may improve the encoding of a physiologic or artificial
input stimulation (Schneidman et al., 1998; Jung and Shuai, 2001;
Manwani et al., 2002; Mino et al., 2004; Giannì et al., 2005, 2006,
2007; Woo et al., 2010) with different frequency content (Bul-
sara et al., 1993; Longtin, 1993; Liu et al., 1999; Rudolph and
Destexhe, 2001; Yu et al., 2001a; Giannì et al., 2005, 2006, 2007;
Liberti et al., 2009a; Sengupta et al., 2013). This positive role of
the endogenous noise in signal encoding and processing observed
in neuronal models was often attributed to the Stochastic Reso-
nance (SR) phenomenon (Gammaitoni, 1998; Moss et al., 2004;
McDonnell and Abbott, 2009).

However the endogenous noise is essentially related to the
type of neuron and is difficult to manipulate and control. From
a biomedical perspective it is more interesting to use theoreti-
cal models to elucidate the role of an artificial noise externally
applied.

In previous studies, we showed that a suitably tailored exoge-
nous noise could increase firing activity and improve signal
detection through the SR mechanism in compartmental mod-
els of neuronal systems with reduced levels of endogenous noise
(Paffi et al., 2006, 2007, 2013b). Here we extend our idea to
systems where the presynaptic stimulation was lowered due
to impairment of sensory neurons that have to be artificially
bypassed at different levels of the neuronal pathway toward the
cortical region of sensorial processing. Examples are the cochlear
prostheses, where an electrode inserted in the cochlea directly
stimulates the fibers of the auditory nerve (Wilson et al., 1991;
Clark, 2003), and ICMS to deliver sensory perceptions to the
auditory or visual cortex (Brock et al., 2013; Overstreet et al.,
2013).

To test our idea for the optimization of stimulation
techniques, a simple and well-characterized HH neuron model
is considered. The normal functioning is modeled with a
suprathreshold input current, and pathologic conditions with
a subthreshold presynaptic stimulation. Different kinds of neu-
rons of the sensory pathway, characterized by different sizes and,
hence, by different levels of endogenous noise, are accounted for
by changing the number of ionic channels.

The first step is to demonstrate that the detectability of the
exogenous stimulation signal is degraded in impaired sensory

neurons as a function of the endogenous noise level. Then we
want to show that a suitably tailored exogenous noise can par-
tially restore the signal encoding in the impaired neurons, in
agreement with the SR phenomenon.

The main aim of this paper is to show that the reduced encod-
ing capability of pathologically understimulated neuronal sys-
tems can be improved using an exogenous noise, opening the way
for prosthetic applicators delivering the exogenous stimulation
signal and noise.

The paper is organized as follows. In Section Materials and
Methods the stochastic neuron model is described (Section
Stochastic Neuron Model), together with the methods for intro-
ducing the exogenous electric signal (Section Introduction of
the Exogenous Signal) and noise (Section Introduction of the
Exogenous Noise) and for evaluating neuron excitability and
signal encoding (Section Observables). Results are presented
and discussed in Section Results, without (Section Encoding
Features of the Model) and with the exogenous noise (Sec-
tion Role of the Exogenous Noise). Finally, in Section Discus-
sion and Conclusions, results are discussed and conclusions are
given.

Materials and Methods

Stochastic Neuron Model
We use a stochastic neuron model (Fitzhugh, 1965; Sigworth,
1980; Clay and DeFelice, 1983; Schneidman et al., 1998), derived
from the HH model (Hodgkin and Huxley, 1952).

The equivalent scheme is shown by the parallel combination
of five current branches, as in Figure 1.

Sodium and Potassium currents were calculated using a
channel-state-tracking algorithm (Mino et al., 2002) where the
ionic channels are modeled as the combination of independent
gating particles whose dynamics is well-described by Markov
chains (Rubinstein, 1995; Mino et al., 2002).

The number of voltage-gated channels belonging to a given
population determines the level of endogenous noise in the sys-
tem (Schneidman et al., 1998; White et al., 2000). This decreases
with the square root of the channel number and, for a given chan-
nel density, with the size of the neuron considered (Schneidman
et al., 1998; White et al., 2000).

Therefore, the endogenous level of noise is typical of each kind
of neuron and strongly varies with neuron size.

For example, the auditory fibers have a small diameter esti-
mated between 1 and 9µm in (Engstrom and Wersall, 1958), or
between 1 and 5µm in Gleich and Wilson (1993). The cell body
is larger, with a cross-sectional area of 300µm2 (Liberman and
Oliver, 1984; Woo et al., 2010). At the brainstem in the cochlear
nucleus, the bushy cells that receive inputs from the auditory
fibers range between 300 and 1200µm2 in area (Sento and Ryugo,
1989). Cortical neurons of Layer I have the soma size ranging
from 7 to 17µm in diameter (Hestrin and Armstrong, 1996),
corresponding to an area from 154 to 900µm2, if one assumes
a spherical morphology.

In this work, membrane patches of 200, 300, and 600µm2

have been considered, corresponding to NNa = 12,000, NNa =
18,000, and NNa = 36,000, respectively, for constant channel
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FIGURE 1 | Circuital representation of the neuron model. Cm is

the specific membrane capacitance; gL is the leakage specific

conductance; gNa and gk are Sodium and Potassium

specific conductances, voltage (Vm) dependent; I0 is the specific

stimulation current; VNa, VK , VL are the reversal potentials for Sodium,

Potassium, and leakage currents, respectively; VES and Vnoise are the

voltage perturbations, due to the exogenous electric signal and the

exogenous Gaussian noise, superimposed to the physiological

membrane voltage V; Vm is the total voltage between the intracellular

and the extracellular space.

densities of 18 NK/µm
2 and 60 NNa/µm

2 (Hodgkin and Huxley,
1952).

A neuron of 200µm2 could represent the largest axon in the
auditory fiber (Engstrom andWersall, 1958) or a small-sized neu-
ron of Layer I in the cortex (Hestrin and Armstrong, 1996); one at
300µm2 could be the smallest bushy cells in the cochlear nucleus
(Sento and Ryugo, 1989) or a medium-sized cortical neuron of
Layer I, and neurons of 600µm2 represent a typical area of bushy
cells and cortical neurons.

The current generator I0 in Figure 1 was set to different val-
ues: I0 = 2µA/cm2, I0 = 4µA/cm2, I0 = 7µA/cm2, below or
above the firing threshold (I0th = 6.3µA/cm2) of the associated
deterministic oscillator (Rinzel and Ermentrout, 1998).

Considering I0 as the total stimulation from the presynap-
tic neurons (presynaptic current), particularly from the sensory
receptors, these conditions can be representative of a neuron nor-
mally stimulated by the sensory inputs (I0 = 7µA/cm2) or a neu-
ron where the receptors stimuli are slightly (I0 = 4µA/cm2) or
significantly (I0 = 2µA/cm2) reduced. This is a typical impair-
ment induced by aging, direct damage, or degenerative diseases
of the sensory receptors such as the cells of the organ of Corti in
the Cochlea (Ritter et al., 1981).

The neuron stochastic model used HH parameters (Hodgkin
and Huxley, 1952) in the C++ environment using the Forward
Euler integration method with time steps of 10µs.

The output of the model is the time course of the voltage
across the membrane V(t).

Introduction of the Exogenous Signal
There is consensus in literature that the effect of an exoge-
nous magnetic or electric stimulation delivered by a coil or an
implanted electrode is the creation of an electric field in the tis-
sue that in turn induces a perturbation on the neuron membrane

voltage (Foster and Schwan, 1986; Mino et al., 2004; Giannì
et al., 2006; Merla et al., 2012). Therefore, unless a current is
directly injected across the membrane, the interaction between
the exogenous signal and the neuron membrane must be inserted
as a voltage generator in series with the neuron circuital model
(Figure 1), as already done in number of studies (Tsong and
Astumian, 1987; Mino et al., 2004; Giannì et al., 2006; Woo
et al., 2010; Paffi et al., 2013b). As previously discussed (Giannì
et al., 2006), this additive voltage can describe the non-linear
interaction between the exogenous signal and the neuron activ-
ity (Stodilka et al., 2011), since it induces a perturbation in
the dynamics of the voltage-dependent Sodium and Potassium
channels. The effects on the ionic currents are temporally inte-
grated and reflected back on the membrane potential, showing a
feedback interaction mechanism (Apollonio et al., 2000).

A weak deterministic sinusoidal signal, of amplitude VES =
500µV was considered for frequencies between 10 and 500Hz.
The term “weak” means that it does not induce firing activ-
ity in the subthreshold neuron, provided no sources of
stochasticity, endogenous (channel noise), or exogenous, are
present.

Introduction of the Exogenous Noise
The endogenous noise, due to the neuron size, i.e., the num-
ber of ionic channels, is an intrinsic feature of each neuron type
and cannot be artificially tuned or modulated. Conversely, a well-
defined exogenous noise can be added to the sinusoidal signal and
suitably tuned in terms of power and frequency content.

In the circuit scheme of Figure 1 the exogenous noise was
modeled as a random voltage source whose level is given by,
Vnoise =

√
2D × ζ (t) where ζ(t) is a Gaussian process with zero

mean and unitary variance. Accordingly, the noise power D is
measured inmV2 and was varied in the range [0.7-25] (mV2).
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The well-known equation describing the current balance of
the HH circuit in the presence of an exogenous signal and noise
shown in Figure 1, becomes:

Cm

(

dVm

dt
+

dVES

dt
+

dVnoise

dt

)

= −gNa (Vm + VES

+Vnoise − VNa) − gK (Vm + VES + Vnoise − VK) − gL (Vm

+VES + Vnoise − VL) + I0

As shown by Paffi et al. (2013b) the voltage noise was filtered to
obtain a Lorentzian Power Spectral Density (PSD):

PSD
(

f
)

=
A

(ωc)
2 +

(

2πf
)2

The use of a Lorentzian behavior is a straightforward choice since,
under the passive linear approximation (Steinmetz et al., 2000),
the neuronal membrane behaves like a single pole filter with a
time constant equal to the membrane capacitance divided by the
total conductivity of the ionic channels in the patch (Rinzel and
Ermentrout, 1998).

The cutoff angular frequency ωc = 2.5 ×103 rad/s of the
Lorentzian filter was chosen on the basis of theoretical calcula-
tions (Paffi et al., 2013b) and numerical simulations (Paffi et al.,
2007).

Figure 2 shows the features of the exogenous voltage noise in
terms of the Gaussian distribution (Figure 2A) and correlation
properties by the PSD (Figure 2B). The PSD was estimated as the
Periodogram averaged over 10 runs of the Gaussian process 1 s
long.

Such noise can increase the firing activity of the subthreshold
neurons as already demonstrated by Paffi et al. (2013b).

Observables
Due to the stochasticity of the model, the neuron properties, such
as the number of spike per second or the frequency content of the
spike sequence, can be calculated only as statistical values over a
population of R runs of the model.

To quantify the excitability of the neuron, the average number
of spikes per second was calculated over 100V(t) traces 1 s long,
together with the standard error.

To determine the “time encoding” of the neuron model, that
is, the capability of encoding different input signals in the spike
timing within the firing sequence, the Periodogram has been used
as a spectral estimator. As a preliminary step to retain informa-
tion only on the sequence of spikes (Giannì et al., 2005, 2006),
disregarding their shape, the time course of the membrane volt-
age V(t) over 1 s, has been converted into a time series of Dirac
pulses U(t), each corresponding to a spike, having height 100mV
as suggested in Gluckman et al. (1996); Levin and Miller (1996)
and Yu et al. (2001a,b).

The PSD, averaged over R runs (R = 100 in the presence of
the channel noise alone; R = 300 with the presence of channel
and exogenous noise) of the signal U(t), has been calculated
using the Fast Fourier Transform (FFT) algorithm. It is worth
noting that in the presence of both noises the spectral estimator
with R = 100 was not satisfactory due to high variance; so
to calculate results of Section Role of the Exogenous Noise it
was necessary to increase the number of runs from 100 to 300.
For each frequency point, the standard error of the PSD was
associated with the average value.

The signal to noise ratio (SNR), calculated as the ratio between
the strength of the peak of the average spectrum at the forc-
ing frequency (fs) and the background average spectrum around
the same frequency (Figure 3) (Gluckman et al., 1996; Levin
and Miller, 1996; Gammaitoni, 1998; Yu et al., 2001a,b; Giannì
et al., 2006; Paffi et al., 2013b), was used to evaluate the signal
detectability as a function of the signal frequency or the exoge-
nous noise level. The background spectrum at the signal fre-
quency was estimated as the average between the values assumed
by the PSD 1Hz before and 1Hz after the signal frequency
(Gammaitoni, 1998; Giannì et al., 2006; Paffi et al., 2013b). The
standard error of the SNR was calculated using the standard
errors propagation of the correlated variables PSD(fs), PSD(fs–1),
PSD(fs+ 1). The correlation coefficient of these adjacent samples
was calculated to be around 0.9.

Matlab functions have been used to extract the
aforementioned observables from the model output.

FIGURE 2 | (A) Histogram showing the zero-mean Gaussian distribution of

the exogenous voltage noise with power D = 2 mV2; the standard deviation

(σ) of the distribution is equal to the square root of D. (B) Normalized Power

Spectral Density of the exogenous voltage noise (blue line) compared with

the theoretical Lorentzian spectrum with cutoff angular frequency

ωc = 2.5× 103 rad/s (red line).
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FIGURE 3 | Average PSD with the associated standard error (R = 100) of the output sequence U(t) for the neuron model with patch area 300µm2 and

I0 = 4µA/cm2 (A) or I0 = 7µA/cm2 (B). The applied exogenous signal is a sinusoid at 150Hz, 500µV of amplitude.

Results

Encoding Features of the Model
It is known from literature that HH models exhibit a frequency
sensitivity that depends on the model parameters, particularly on
the constant input current I0 (Liu et al., 1999; Yu et al., 2001a;
Giannì et al., 2006).

Here we examine and compare the encoding capability of the
neuron model when I0 assumes values of 2, 4, and 7µA/cm2 and
the patch area, determining the endogenous noise, is equal to 200,
300, or 600µm2.

As described in Section Stochastic Neuron Model, the exoge-
nous signal was a deterministic sinusoid of amplitude 500µV
and frequency spanning from 10 to 500Hz, applied as a voltage
perturbation over the neuron membrane.

As already shown (Paffi et al., 2013b), the weak exogenous sig-
nal does not affect the neuron excitability, i.e., the number of
spikes per second, independently of the frequency considered.
However, this value significantly changes with the constant input
current I0 and the endogenous noise level, as shown in Figure 4,
where the number of spikes per second, averaged over the results
obtained for all frequency values, are displayed together with the
standard errors.

From Figure 4 it is evident that the standard errors on the
number of spikes are very small with respect to variations due
to I0 or to the patch areas, confirming that, when the applied sig-
nal is as low as 500µV, the frequency encoding mechanism is not
likely to occur.

As expected, the “impaired” neurons (I0 = 2µA/cm2, I0 =
4µA/cm2) are much less stimulated than the “healthy” one (I0 =
7µA/cm2). This reduction in firing activity is likely to nega-
tively affect the neuron encoding capability. In particular, the
“severely impaired” neuron for the biggest patch area (600µm2)
is almost silent, losing any possibility of signal detection. For
the “healthy” neuron the endogenous noise does not change the
excitability that is completely determined by the input current;
conversely, in subthreshold conditions, i.e., for the “impaired”
neurons, the higher the endogenous noise level the higher the
firing rate.

This shows that different neurons may be more or less
sensitive to impairment depending on their channel noise. That

FIGURE 4 | Mean number of spikes per second and standard error

calculated over the frequency of the input sinusoidal signal vs. the

input constant current I0 for patch areas: 200 (blue line), 300 (purple

line), and 600 (orange line) µm2.

noise has a beneficial effect on the firing activity of “impaired”
neurons, suggesting a positive role of an exogenous noise.

If one considers the total power of the sequence U(t) 1 s long
(Table 1), the same behavior is observed. The output power does
not depend on the patch area for I0 = 7µA/cm2 but increases up
to 17 times for I0 = 2µA/cm2 if the patch area decreases from
600 to 200µm2.

Time encoding performances of the neuron model were mea-
sured using the SNR, as described in SectionObservables. Indeed,
if time encoding occurs, the PSD of U(t) will present a compo-
nent at the signal frequency higher than the background level
around the signal frequency, as in Figure 3 for a 150Hz signal,
a patch of 300µm2, input currents I0 = 4µA/cm2 (Figure 3A)
and I0 = 7µA/cm2 (Figure 3B).

Figure 3 shows that the exogenous signal can synchronize
some spike events with its own frequency, leading to a frequency
peak at 150Hz emerging from the background PSD with a
consequent SNR value greater than one.
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TABLE 1 | Total power (mV2) of the output sequence U(t) 1 s long

calculated for the different values of patch areas and input currents.

Patch area (µm2) I0 = 2µA/cm2 I0 = 4µA/cm2 I0 = 7µA/cm2

200 0.68 1.42 2.85

300 0.32 1.06 2.83

600 0.04 0.42 2.83

The frequency sensitivity of the “healthy” neuron, from 10 to
500Hz, is plotted in Figure 5 for the three patch areas. At first
one can observe a bell-shaped behavior of the SNR, with a peak
centered around 150Hz. As the patch area decreases, i.e., the
endogenous noise increases, the curves become smoothed and
the maximum SNR decreases. This indicates that endogenous
noise has a detrimental effect on the encoding capability in the
healthy neuron.

Looking at the “impaired” neurons (Figure 6), the maximum
of the curve shifts toward lower frequencies and the SNR at
150Hz, where the “healthy” neuron exhibits the maximum sen-
sitivity, significantly decreases (always below 3). For the “severely
impaired” neuron and the largest size, the signal becomes unde-
tectable (SNR almost equal to one with higher error bars), since
the firing activity is almost completely suppressed. From a bio-
physical point of view, this can be interpreted as a severe wors-
ening in neuron performances if the afferent inputs are lacking.
Only the smallest neuron, for I0 = 4µA/cm2 shows an encod-
ing capability at 150Hz similar to that of the “healthy” neuron
with the same size, suggesting again a positive role of the noise in
understimulated neurons.

With an exogenous sinusoidal signal of 150Hz and amplitude
500µV, in Section Role of the Exogenous Noise we investigated
the possibility of restoring degraded performances by adding a
correlated noise to the system from the outside.

Role of the Exogenous Noise
As shown in Section Encoding Features of theModel, the effect of
the impairment of the afferent stimulation is a drastic reduction
of the neuron firing and signal encoding, especially for neurons
with a lower endogenous noise, i.e., the larger ones.

From a biomedical perspective the question arises as to
whether the exogenous noise can improve the firing activity and
the encoding capability of the “impaired” neurons in terms of
number of spikes per second and SNR. Therefore, we have added
the correlated voltage noise described in Section Introduction
of the Exogenous Noise to the neuron models in subthreshold
conditions (I0 = 2 and 4µA/cm2).

Among the six different conditions shown in Figure 6, we
have not considered the patch of 600µm2 with I0 = 2µA/cm2,
since the neuron has no residual activity, and the patch of
200µm2 with I0 = 4µA/cm2, since the encoding performances
at 150Hz are already comparable to those of “healthy” neurons
with the same size.

The SNRs as a function of D are shown in Figure 7 for the
“severely impaired” neuron (I0 = 2µA/cm2) with area 200
(Figure 7A) and 300µm2 (Figure 7B) and for the “impaired”

FIGURE 5 | Mean SNR and standard error (R = 100) vs. the signal

frequency for I0 = 7µA/cm2 and membrane patches of 200, 300, and

600µm2; the signal is a sinusoid with amplitude VES = 500µV and

frequency ranging from 10 to 500Hz.

neuron (I0 = 4µA/cm2) with area 300µm2 (Figure 7C) and
600µm2 (Figure 7D).

Figure 7 shows that, for all the conditions considered, there
exist noise levels that improve the SNR, showing the typical
behavior of SR (Gammaitoni, 1998; Moss et al., 2004; McDon-
nell and Abbott, 2009). For each condition it is possible to
identify an optimum noise level (Dopt), where the SNR is max-
imum, that depends on the membrane patch and the input
current I0. In particular, for the same I0, Dopt is lower for
the smaller patch area, showing that the higher the channel
noise, the lower the exogenous noise to be supplied, in agree-
ment with previous results (Schmid et al., 2001; Paffi et al.,
2013b).

Table 2 summarizes, for each condition studied, the SNR val-
ues exhibited by the model at 150Hz without the endogenous
noise and with the optimum noise power (Dopt) reported in
the last column. The table shows that the SNR increases in the
presence of the optimum exogenous noise. This improvement
is not significant for the neuron with I0 = 4µA/cm2 and
membrane patch 300µm2, where the encoding performances
without the exogenous noise (SNR = 2.51 ± 0.10) are still
acceptable due to high levels of endogenous activity. In all the
other cases, one may observe a significant increase in SNR by
up to 57%.

Although the performances of the “impaired” neuron are not
been completely restored, they are significantly improved, con-
firming the potentially beneficial effect of an exogenous noise
according to the SR paradigm.

Another effect of the exogenous noise is a considerable
increase of the number of spikes per second and, consequently,
of the power associated with the spike sequence (U(t)). Unlike
the SNR, these quantities exhibit a monotonic increase with D,
approaching asymptotic values, as shown in Figure 8 for the
number of spikes per second.
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FIGURE 6 | Mean SNR and standard error (R = 100) vs. the signal frequency for I0 = 2 and 4 µA/cm2 and membrane patches of 200µm2 (A), 300µm2

(B), and 600µm2 (C); the signal is a sinusoid with amplitude VES = 500 µV and frequency ranging from 10 to 500Hz.

FIGURE 7 | Mean SNR and standard error (R = 300) as a

function of the variance of the exogenous noise (D) for

I0 = 2µA/cm2 and membrane patches of 200 (A) and 300µm2

(B), and for I0 = 4µA/cm2 and membrane patches of 300µm2

(C) and 600µm2 (D); the signal is a sinusoid with amplitude

VES = 500µV and frequency f = 150Hz; the exogenous noise

is a zero mean Gaussian process with a Lorentzian spectrum

(ωc = 2.5×103 rad/s).
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TABLE 2 | SNR values exhibited by the neuron model at 150Hz without and with the exogenous noise at the optimum level Dopt.

Patch area (µm2) Input current (µA/cm2) SNR Dopt (mV2)

Without exogenous With optimum

noise exogenous noise

200 2 1.74± 0.09 2.18±0.05 (25%) 7

300 2 1.32± 0.06 2.07±0.05 (57%) 12

300 4 2.51± 0.10 2.59±0.06 (3%) 2

600 4 2.02± 0.12 2.66±0.07 (32%) 7

FIGURE 8 | Mean number of spikes per second and standard error

(R = 300) as a function of the variance of the exogenous noise (D) for

I0 = 2µA/cm2 and membrane patches of 200µm2 (solid blue line) and

300µm2 (solid purple line), and for I0 = 4µA/cm2 and membrane

patches of 300µm2 (dashed purple line) and 600µm2 (dashed orange

line); the signal is a sinusoid with amplitude VES = 500µV and

frequency f = 150Hz; the exogenous noise is a zero mean Gaussian

process with a Lorentzian spectrum (ωc = 2.5×103 rad/s).

This means that the increase in firing activity does not nec-
essary imply an improved encoding capability. Indeed, although
a minimum number of spikes per second is required to effi-
ciently encode a 150Hz sinusoidal signal, if noise exceeds the
optimum level, neuron activity is dominated by noise and less
correlated with the signal, in agreement with the SR phenomenon
(Gammaitoni, 1998; Moss et al., 2004; McDonnell and Abbott,
2009).

Table 3 shows the number of spikes per second and the power
assumed by U(t) corresponding to Dopt, compared to their values
in the absence of the exogenous noise. In all cases the number
of spikes at the optimum noise level is between 28 and 38, with
a power from 1.4 to 1.8mV2, suggesting that these numbers of
spikes per second can efficiently encode a sinusoid at 150Hz in
a subthreshold neuron. Thus, it is not surprising that the model
with a 600µm2 area and I0 = 4µA/cm2 shows good encoding
properties at 150Hz (SNR = 3) (see Figure 6C) with 30 spikes
per second (see Figure 4).

Discussion and Conclusions

In this work, moving from the original HHdescription, a stochas-
tic neuron model has been developed and the presence of an
exogenous signal and noise, representative of a possible electric
ormagnetic stimulation, has been added. The firing activity of the
model has been studied for three different levels of channel noise,
corresponding to different patch areas (200, 300, and 600µm2)
and for three input currents, representative of a “healthy” neu-
ron (I0 = 7µA/cm2), an “impaired” (I0 = 4µA/cm2), neu-
ron and a “severely impaired” neuron (I0 = 2µA/cm2), where
the afferent stimulation is reduced due to aging or degenerative
diseases.

Results indicate that the “impaired” neurons are much less
excited (less than 10 spikes/s for a patch of 600µm2, I0 equal to
2 and 4µA/cm2, and a patch of 300µm2, I0 = 2µA/cm2), sug-
gesting reduced performances in signal encoding and processing.

The presence of the exogenous sinusoidal signal (VES =
500µV; f= [10–500] Hz) does not significantly change the firing
frequency (Figure 4), confirming that the neuron does not use
the frequency encoding paradigm to sense such low-level alter-
nate signals. On the contrary, the PSD of the spiking sequence
U(t) reveals the presence of a peak corresponding to the signal
frequency, suggesting a time encoding mechanism (Figure 3).

Results of the SNR, chosen as a measure of signal encod-
ing, show a strong sensitivity to the signal frequency, as sug-
gested by the bell-shaped curves of Figures 5, 6. For example, the
“healthy” neuron does not sense signals at 10 or 500Hz (SNR =
1), whereas, for a frequency of 150Hz, the SNR can be as high
as 6.8 (Figure 5). Such frequency sensitivity significantly depends
on the stimulation current I0. This result confirms that the encod-
ing capability of the neuron can be strongly altered by a decrease
in the presynaptic input current.

The neuron size, and thus the endogenous noise, mainly
affects the maximum SNR, indicating that the encoding capa-
bility is a function of the type of neuron (e.g., auditory fiber,
bushy cell, cortical neuron). Interestingly, the endogenous noise
reduces the encoding capability of the “healthy” neuron but facil-
itates the signal detection in “impaired neurons,” suggesting a
similar behavior if the noise is delivered externally together with
the stimulating sinusoidal signal.

An exogenous voltage noise, modeled as a zero-mean Gaus-
sian process with a Lorentzian spectrum and variable power (D),
has been added to the models of the “impaired” neurons. The
SNR obtained as a function of the noise power exhibits a typical
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TABLE 3 | Number of spikes per second and power of U(t) for the neuron model without and with the exogenous noise at the optimum level Dopt.

Patch area (µm2) Input current (µA/cm2) Spikes/s Power (mV2)

Without exogenous With optimum Without exogenous With optimum

noise exogenous noise noise exogenous noise

200 2 14.6± 0.3 31.9±0.2 0.68 1.73

300 2 7.1± 0.9 37.8±0.2 0.32 1.54

300 4 22.3± 0.4 28.6±0.2 1.06 1.38

600 4 9.4± 0.9 35.7±0.2 0.47 1.84

bell shaped behavior with a maximum value corresponding to
a well-defined value of D (Dopt), which depends on the values
considered for the I0 and patch area.

The exogenous noise at the optimum levels can significantly
increase the SNR of the “impaired” neurons at 150Hz (up to
58%, depending on the neuron size and the impairment level).
Since the neuron model takes advantage of the noise to improve
the detection of a weak sinusoidal input signal, the observed
behavior can be attributed to the well-known SR phenomenon
(Gammaitoni, 1998; Moss et al., 2004; McDonnell and Abbott,
2009) (Figure 7).

Beside the improvement in the SNR the exogenous noise
induces an increased firing activity that for Dopt is characterized
by 28–38 spikes/s.

These results are significant if considered as a proof of concept
on how to use artificial exogenous noise to restore the function-
alities of signal detection and processing in impaired neuronal
systems.

This is a first step toward the optimization of specific biomed-
ical applications such as cochlear prosthesis (Morse and Roper,
2000; Rattay, 2000; Stocks et al., 2002; Rubinstein and Hong,
2003) and ICMS (Overstreet et al., 2013).

Further developments of this work could be the optimization
of the exogenous noise, in terms of the spectrum shape and/or

the kind of stochastic process and a more accurate description of
different neurons in terms of type and number of channels.

Finally, depending on the particular biomedical application,
the typical waveform and amplitude of the exogenous voltage sig-
nal superimposed on the physiological transmembrane potential
can be calculated using dosimetric (Liberti et al., 2007; Maggio
et al., 2009, 2010; Paffi et al., 2013a,c, 2015) and microdosimet-
ric techniques (Liberti et al., 2009b; Merla et al., 2010, 2011,
2012; Denzi et al., 2013, 2015), as described in the integrated
methodology proposed by Apollonio et al. (2000, 2013).
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