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Molecular docking investigation of calotropone as a 
potential natural therapeutic agent against pancreatic 

cancer

Abstract

A natural bioactive compound named calotropone has been reported as a drug candidate 
for several cancers, including pancreatic cancers. Herein, we used molecular docking 
approach to test the possible mechanisms of action of calotropone in inhibiting the 
growth of pancreatic cell cancer with gemcitabine as the positive control. By employing 
AutoDock Vina, we studied the molecular interaction between calotropone and 
pancreatic cancer‑associated proteins, namely Glucosaminyl  (N‑Acetyl) Transferase 
3, Glutamic‑Oxaloacetic Transaminase 1, Tyrosine‑protein kinase Met  (c‑Met), 
peroxisome proliferator‑activated receptor γ, Budding Uninhibited by Benzimidazole 1, 
A Disintegrin and Metalloproteinase 10, Sex‑determining region Y and Nuclear Factor 
kappa Beta (Nf‑Kβ). Higher affinity energies of calotropone toward the aforementioned 
proteins (ranging from ‒7.3 to ‒9.3 kcal/mol) indicate that calotropone may work in the 
same manner as anticancer drug gemcitabine. Highest docking score was found at the 
interaction of calotropone and Nf‑Kβ (‒9.3 kcal/mol).
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INTRODUCTION

According to recent global epidemiological study on pancreatic 
cancer cases, numbers of incidence and mortality will keep 
increasing.[1] In 2020, the global mortality rate for pancreatic 
cancer reached 90%,[2] where difficult early diagnosis is the 
main cause. Nevertheless, administration of chemotherapy 
has been reported to give significant success on the treatment.[3]

Gemcitabine has been assigned as a standardized 
chemotherapeutic drug against pancreatic metastases.[4] 
However, natural compounds have also become the focus 
of anticancer drug development due to their significant 
effective medicinal properties. Several plant‑derived 
compounds are potential for pancreatic cancer treatment.[5,6] 
Recently, Calotropis gigantea has been in the research spotlight 
due to its contents of multiple antiproliferative secondary 
metabolites.[7] A study in  vivo using pancreatic cancer 
cells (panc‑1) revealed the superior anticancer properties 
of calotropone  (one of secondary metabolites from C. 
gigantea), in comparison with gemcitabine.[8] In the same 
research, the IC50 of calotropone was observed to be as low 
as 18.7 µM.
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Despite its high potential in treating pancreatic cancer, the 
mechanism of action of calotropone in inhibiting the cell 
growth and inducing apoptosis is still scarcely reported. In 
silico studies by means of molecular docking may aid the 
research in mapping the potential mechanism. Molecular 
docking has been implemented as a method of analyzing 
new drugs against their target proteins by predicting the 
affinity and activity of the compound.[9] This method relies 
on the three‑dimensional  (3D) structure information of 
a protein target and the electronics of the ligand to the 
protein target.[10]

Several pancreatic cancer‑related proteins are the 
primary target of researchers in developing drugs. 
Glucosaminyl (N‑Acetyl) Transferase 3 (GCNT3), Mucin 
Type  GCNT3, Glutamate oxaloacetate transaminase 
1  (GOT1),  Tyrosine‑protein kinase Met  (c‑Met), 
peroxisome proliferator‑activated receptor  (PPAR) γ, 
and Budding Uninhibited by Benzimidazole 1  (BUB1) 
are proteins that play a role in tumor cell development 
through the multiple schemes.[11‑14] A Disintegrin and 
Metalloproteinase 10  (ADAM10) and Sex‑determining 
region Y  (SOX2) play a role in immune regulation 
in pancreatic cancer cells.[15,16] Nuclear factor kappa 
beta  (Nf‑Kβ) is an inhibitory protein in apoptosis. 
These aforementioned proteins have been proven to be 
regulated by gemcitabine. Therefore, by employing the 
molecular docking on those proteins and comparing 
the results with that of gemcitabine, we can obtain the 
information of possible main mechanism of calotropone. 
Study of calotropone interaction with the therapeutic 
molecular target of pancreatic cancer by means of 
molecular docking is the novelty of this work.

METHODS

Hardware and software
Docking simulation was performed on Intel Celeron 
N3350 Acer computer, 1.00 GB memory processor (RAM), 
32‑bit operating system, Windows 10 pro. Softwares 
used in this experiment were LigPlot  +  1.5.4,[17] PyMOL 
2.4 (Delano Scientific LLC, Italy), and AutoDock Vina 
supported by AutoDock Tools 5.6.[18]

Docking study
The docking study analyzed calotropone compounds 
which cytotoxic compounds obtained based on literature. 
Target proteins used in this present studies are similar to 
our previous research, where the preparation details had 
been presented.[19] The 2D structure of calotropone (CID: 
70680255) and gemcitabine (CID: 60750) (for comparison) 
was obtained from the website (www.pubchem.ncbi.nlm.
nih.gov). The ligand structure was converted from SDF 
format. into PDB format using Pymol 2.4 software. Ligand 
structures were also prepared using AutoDockTools 
1.5.6.rc3 software La Jolla, California, USA. The preparation 

of proteins and ligands was docking with size validation 
and grid box separation. The parameter observed from this 
simulation represents the energy of the ligand affinity for 
the protein target. Hydrogen interactions, hydrophobic 
interactions, and bond distances were visualized using 
LigPLot + 1.5.4 (2D) and PyMOL 3.1 (3D).

RESULTS AND DISCUSSION

Calotropone is a derivative of a natural steroid compound 
known to be an agent for cancer treatment.[7,20] This 
inhibitory activity led us to study the systematic mechanism 
of calotropone compounds against proteins of pancreatic 
cancer cells. The results of the molecular docking of 
gemcitabine and calotropone toward the focused proteins 
have been presented [Table 1].

From the docking results, each affinity value exceeds 
‒5 kcal/mol confirming the role of the ligand in regulating 
the protein.[21] The most efficient bonding is shown by 
calotropone with Nf‑Kβ owing to its energy affinity 
approaching ‒10 kcal/mol. Nf‑Kβ is a transcription 
protein factor that plays a role in tumorigenesis in several 
types of tumors. In pancreatic cancer cells, this protein 
has a role in the activation of oncogenic mutations of 
Kras (pancreatic cancer promoters).[22] Gemcitabine, which 
is the standard drug for pancreatic cancer patients, has 
a smaller affinity value of ‒6.3 kcal/mol. Calotropone 
equally has a stable affinity for the GCNT3 (‒9.0 kcal/mol). 
GCNT3 is a protein‑coding gene that plays a role in 
mucin biosynthesis. Upregulation of mucin biosynthesis 
has an active role against Kras mutations and increases 
cell proliferation.[23] Calotropone interactions with other 
proteins, GOT1, c‑Met, PPARG, BUB1, SOX2, and ADAM10 
possess good binding affinity with values ranging from 
‒7.3 to ‒8.9 kcal/mol, where these values are higher 
than that of gemcitabine. The displays of ligand‑protein 
interactions and their overlay in the active pocket for 
calotropone [Figure 1] and gemcitabine [Figure 2] have 
been presented.

The ligand and protein affinity occurs because of the 
hydrophobic and polar hydrogen interactions.[24] In 
the case of Nf‑Kβ, calotropone has polar hydrogen 
with amino acid Phe151  (3.5 Å) at N terminal and Å 
Met208 (2.7 Å) at C terminal [Figure 1]. Compared with 
drug ligand, amino acids that interacted with gemcitabine 
are different. They are His67  (3.16 Å), dc15  (3.26 Å), 
dc13 (3.30 Å), dc13 (3.09 Å), dc14 (3.14 Å) and Arg‑59 (3.12 
Å) [Figure 2]. The interaction of Met208 and calotropone 
established the strongest bond with a bond length of 
2.7 Å affecting the affinity energy. Previous analysis 
showed Met208 as one of the amino acids that play a 
role in the growth of B‑cell activating factor (BAFF). The 
binding of inhibitor with Met208 causes the decrease of 
Nf‑Kβ p65 activation via BAFF effect.[25] Hydrophobic 
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interaction of calotropone also inhibits Nf‑Kβ through 
Lys147, Thr205, Lys148, Val150, Glu152, and Lys206 
amino acids while gemcitabine maintains fewer 
bonds, namely Arg57 g  [Table 1]. The affinity value of 
calotropone in GCNT3 and c‑Met is higher than that 
of gemcitabine because calotropone has more polar 
hydrogen and hydrophobic interactions due to the 
hydrogen interactions, except for GOT 1. BUB1 PPARG, 
SOX2, and ADAM10 which bind to calotropone are only 

superior in hydrophobic interactions. From the results of 
the dockings, calotropone binds to 7 amino acids in BUB1, 
10 amino acids in PPARG, 10 amino acids in SOX2, and 
9 amino acids in ADAM 10, while gemcitabine binds 4 
amino acids in BUB1, 8 amino acids in PPARG, 3 amino 
acids in SOX2, and 8 amino acids in ADAM 10. SOX2 
is a regulatory protein on ADAM10 and has a function 
in pancreatic cancer cell immunity. The suppression of 
SOX2 can suppress ADAM10 expression.[26] This shows 

Table  1: Comparative affinity energy and molecular interactions of calotropone dan gemcitabine with 
proteins
Protein Ligand Affinity energy  (kcal/mol) Interaction Amino Acid
GCNT3 Gemcitabine −7.2 Hydrophobic Lys246, Asn340, Ser345, Glu245, Leu344, Asn340, 

Asn348, Asn348
Polar H Asp343, Asp343

Calotropone −9.0 Hydrophobic Arg378, Nga1, Ala287, Glu320, Tyr288, Ser317, Ala188, 
Asp319, Val128, Cys217, Tyr187, Val185, His130

Polar H Lys401, Asp155, Arg192, Lys401
GOT1 Gemcitabine −7.0 Hydrophobic Thr43, Ser66, His47, Asp64, Trp49, Asn63, Asn65

Polar H Edo1, Val50, Pro48,
Calotropone −8.9 Hydrophobic Asn65, Lys55, Lys56, Gln59, Lys55, Lys56

Polar H Asn65, Edo11, Trp49, Asn63
c‑Met Gemcitabine −6.1 Hydrophobic 88z1402, Gly1085, Ala1226, Phe1223, Arg1227, 

Arg1208, Asp1164
Polar H Arg1086

Calotropone −8.6 Hydrophobic Pro1264, Gly1224, Glu1127, Asp1204, Lys1244, 
Tyr1235, Arg1227, Leu1225

Polar H Gln1123, Gln1123, Arg1203
PPARG Gemcitabine −6.4 Hydrophobic Met169, Arg196, Asp186, Glu198, Val197, Asn200, 

Gly199, Leu201
Polar H Gln100, Ser99, Lys101, Gln100, Gln100

Calotropone −7.3 Hydrophobic Phe287, He262, Gly 284, He281, Met348, He341, 
Leu340, Leu333, Ser342, Arg288

Polar H Cys285, Glu291
BUB1 Gemcitabine −5.8 Hydrophobic Gln816, Lys817, Glu867, Asn927

Polar H Ser870, Asn927, Asn927, Leu868, Leu868
Calotropone −8.5 Hydrophobic Phe818, Lys817, Gln816, Leu868, Lys817, Asn927, 

Glu867
Polar H Leu868, Tyr853, Asn927, Ser870

Nf‑Kβ Gemcitabine −6.3 Hydrophobic Arg57
Polar H His67, dc15, Arg59, dc13, dc13, dc14

Calotropone −9.3 Hydrophobic Lys147, Thr205, Lys148, Val150, Glu152, Lys206
Polar H Met208, Phe151

SOX2 Gemcitabine −7.6 Hydrophobic Arg113, He108, da36,
Polar H Ser107, Ser107, dc35, dc35, dc16, Arg105

Calotropone −8.6 Hydrophobic Arg113, Thr110, He108, Arg195, Ser107, da36, dt17, 
dc16, dg15, da18

Polar H ‑
ADAM10 Gemcitabine −6.8 Hydrophobic Tyr415, Asp261, Leu434, Leu434, He437, He437, 

Lys431, Ser433
Polar H Asp261, Phe 432, Phe432

Calotropone −8.4 Hydrophobic Val333, Leu654, Leu654, Val333, Pro392, His393, 
Gln439, Ser395, Pro392

Polar H Asp651
GCNT3: Glucosaminyl (N‑Acetyl) Transferase 3, GOT1: Glutamic‑Oxaloacetic Transaminase 1, BUB1: Budding Uninhibited by Benzimidazole 1, Nf‑Kβ: Nuclear Factor 
kappa Beta, ADAM10: A disintegrin and metalloproteinase 10, SOX2: Sex‑determinin
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the inhibition of ADAM 10 by calotropone can be carried 
out via SOX2 or directly targeting the protein (ADAM10).

In this study, the highest docking score was obtained 
from the interaction between calotropone and Nf‑Kβ, 
suggesting the dominating mechanism of the anticancer 
activities. The increase level of Nf‑Kβ during cancer 
development and progression is not only exclusive to 
pancreatic cancer.[27] It is the significance of our findings 
that calotropone may act as a nonspecific anticancer. 
Nf‑Kβ has a role in the secretion of proinflammatory 
cytokines and chemokines such as interleukin (IL)‑1 β, 
tumor necrosis factor, and IL‑6.[28] The finding in our 

study can be substantiated by the fact that calotropone 
exhibited anti‑inflammatory properties, which is even 
higher than ibuprofen.[29]

Molecular docking studies have some limitations attributed 
to various factors involved in drug interaction in the body. 
Of which, drug delivery may play a significant part in the 
treatment efficacy. Our research group have developed 
several biopolymers which could assist the delivery, such 
as chitosan,[30,31] cellulose,[32,33] and pectin.[34] Further studies 
in‑vitro and in‑vivo could also be conducted to confirm 
the drug interaction targeting the Nf‑Kβ and other cancer 
growth‑related proteins.

Figure 1: Interaction of calotropone with pancreas cancer proteins. (a) Glucosaminyl (N‑Acetyl) Transferase 3. (b) Glutamic‑Oxaloacetic 
Transaminase 1. (c) c‑Met. (d) Peroxisome proliferator‑activated receptor G. (e) Budding uninhibited by benzimidazole 1. (f) Nuclear factor 
kappa beta.  (g) Sex‑determining region Y.  (h) A Disintegrin and Metalloproteinase 10;  (i) Pose view of interaction of calotropone with 
proteins. (ii) Overlay of calotropone in active pockets of proteins
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CONCLUSIONS

Our study proved that calotropone has higher docking scores 
based on its interaction with pancreatic cancer‑associated 
proteins (GCNT3, GOT1, c‑Met, PPARγ, BUB1, ADAM10, 
SOX2, and Nf‑Kβ), in comparison with that of gemcitabine. 
The highest score obtained from calotropone interaction 
with Nf‑Kβ suggests its dominance in the mechanism 
of action. We further recommend to investigate the role 
of calotropone in the regulation of Nf‑Kβ during the 
development and progression of cancer cells.
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