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Flexible categorization in perceptual decision
making
Genís Prat-Ortega 1,2✉, Klaus Wimmer 2,3,4, Alex Roxin2,3,4,5 & Jaime de la Rocha 1,4,5✉

Perceptual decisions rely on accumulating sensory evidence. This computation has been

studied using either drift diffusion models or neurobiological network models exhibiting

winner-take-all attractor dynamics. Although both models can account for a large amount of

data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show

that in the attractor model, but not in the drift diffusion model, an increase in the stimulus

fluctuations or the stimulus duration promotes transitions between decision states. The

increase in the number of transitions leads to a crossover between weighting mostly early

evidence (primacy) to weighting late evidence (recency), a prediction we validate with

psychophysical data. Between these two limiting cases, we found a novel flexible categor-

ization regime, in which fluctuations can reverse initially-incorrect categorizations. This

reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of

the attractor model. Our findings point to correcting decision reversals as an important

feature of perceptual decision making.
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Integrating information over time is a fundamental computa-
tion that neural systems can adaptively perform in a variety of
contexts. The integration of perceptual evidence is an example

of such computation, and its most common paradigm is the
binary categorization of ambiguous stimuli characterized by a
stream of sensory evidence. This process is typically modeled with
the drift diffusion model with absorbing bounds (DDMA) which
integrates the stimulus evidence linearly until one of the bounds is
reached1. The DDMA and its different variations have been
successfully used to fit psychometric and chronometric curves1,2,
to capture the speed-accuracy trade-off1–3, to account for history
dependent choice biases4, changes of mind5, confidence reports6,
or the Weber’s law7. Although the absorbing bounds were ori-
ginally thought of as a mechanism to terminate the integration
process, the DDMA has also been applied to fixed duration
tasks8–10. In motion discrimination tasks, for instance, it can
reproduce the subjects’ tendency to give more weight to early
rather than late stimulus information, which is called a primacy
effect8,10–14. However, depending on the details of the task and
the stimulus, subjects can also give more weight to late rather
than to early evidence (i.e., a recency effect)15,16 or weigh the
whole stimulus uniformly17. In order to account for these dif-
ferences, the DDMA needs to be modified by using reflecting
instead of absorbing bounds or by removing the bounds alto-
gether18. Despite their considerable success in fitting experi-
mental data, the DDMA and its many variants remain purely
phenomenological descriptions of sensory integration. This
makes it difficult to link the DDMA to the actual neural circuit
mechanisms underlying perceptual decision making.

These neural circuit mechanisms have been studied with bio-
physical attractor network models that can integrate stimulus
evidence over relatively long time scales19,20. Attractor network
models have been used, among other examples, to study the
adjustment of speed-accuracy trade-off in a cortico-basal ganglia
circuit21, learning dynamics of sensorimotor associations22, the
generation of choice correlated sensory activity in hierarchical
networks23–25, the role of the pulvino-cortical pathway in con-
trolling the effective connectivity within and across cortical
regions26 or how trial history biases can emerge from the circuit
dynamics27. In the typical regime in which the attractor network
was originally used for perceptual categorization19,28, the impact
of the stimulus on the decision decreases as the network evolves
towards an attractor. In this regime, the integration dynamics of
the attractor model are qualitatively similar to those of the
DDMA as it also shows a primacy effect. Moreover, the attractor
network can also provide an excellent fit to psychometric and
chronometric curves19,28. Thus, a common implicit assumption is
that the attractor network is simply a neurobiological imple-
mentation of the DDMA29,30 and hence there has been more
interest in studying the similarities between these two models
rather than their differences31 (but see refs. 32,33).

Here, we show that the attractor model has richer dynamics
beyond the well known primacy regime. In particular, the model
exhibits a crossover from primacy to recency as the stimulus
fluctuations or stimulus duration are increased. Intermediate to
these two limiting regimes, the stimulus can impact the upcoming
decision nearly uniformly across the entire stimulus duration.
Specifically, if the first attractor state reached corresponds to the
incorrect choice, stimulus fluctuations later in the trial can lead to
a correcting transition, while if the initial attractor is correct,
fluctuations are not strong enough to drive an error transition. As
a consequence, the model shows a non-monotonic psychometric
curve as a function of the strength of stimulus fluctuations, and
the maximum occurs precisely in this intermediate “flexible
categorization” regime. To illustrate the relevance of our theo-
retical results, we re-analyze data from two psychophysical

experiments34,35 and show that the attractor model can quanti-
tatively fit the crossover from primacy to recency with the sti-
mulus duration, and the integration and storage of evidence when
stimuli are separated by a memory delay. Our characterization of
the flexible categorization regime in the attractor model reveals
that correcting transitions may be a key property of evidence
integration in perceptual decision making.

Results
Canonical models of perceptual decision making result in
stereotypical psychophysical kernels. We start by characterizing
the dynamics of evidence integration in standard drift diffusion
models during a binary classification task. These models are
described as the evolution of a decision variable x(t) that inte-
grates the moment-by-moment evidence S(t) provided by the
stimulus, plus a noise term reflecting the internal stochasticity in
the process1,30,31.

τ
dx
dt

¼ S tð Þ þ σIξI tð Þ; ð1Þ

where τ is the time constant of the integration process. The evi-
dence S(t) fluctuates in time and can be written as a constant
mean drift μ, plus a time-varying term, caused by the fluctuations
of the input stimulus: S(t)= μ+ σSξS(t). We call σS the magnitude
of stimulus fluctuations. Assuming that both fluctuating terms, ξI
and ξS are Gaussian stochastic processes, Eq. 1 can be recast as the
motion of a particle in a potential:

τ
dx
dt

¼ � dφ xð Þ
dx

þ σSξS tð Þ þ σIξI tð Þ; ð2Þ

where the potential φ(x)=−μx (Fig. 1d–f, inset). The conceptual
advantage of using a potential relies on the fact that the dynamics
of the decision variable always “roll downward” towards the
minima of the potential with only the fluctuation terms ξS(t) or
ξI(t) causing possible motion upward. Notice that, although the
term ξS(t) is modeled as a noise term, it represents the temporal
variations of the stimulus which are under the control of the
experimenter. The existence of decision bounds can be readily
introduced in the shape of the potential, which strongly influ-
ences how stimulus fluctuations impact the upcoming decision.
To quantify this impact, we used the Psychophysical Kernel (PK)
which measures the influence of the stimulus fluctuations on the
decision during the course of the stimulus (see Methods): (1) In
the DDMA (Fig. 1a), absorbing bounds are implemented as two
vertical “cliffs” such that when the decision variable arrives at one
of them, it remains there for the rest of the trial. When this
happens, the fluctuations late in the stimulus are unlikely to affect
the decision, yielding a decaying PK characteristic of a “primacy”
effect8,18,31,33,36. (2) In the Drift Diffusion Model with Reflecting
bounds (DDMR) (Fig. 1b), the bounds are two vertical walls that
set limits to the accumulated evidence; early stimulus fluctuations
are largely forgotten once the decision variable bounces against
one bound and hence the PK shows a “recency” effect18. (3) In
the Perfect Integrator (PI) (Fig. 1c), there are no bounds, the
stimulus is integrated uniformly across time yielding a flat PK17.
Thus, each of these three canonical models performs a qualita-
tively distinct integration process by virtue of how the bounds are
imposed. Moreover, the characteristic integration dynamics of
each model is invariant to changes in the stimulus parameters. To
illustrate this, we show how the PKs depended on the magnitude
of the stimulus fluctuations, σS (Fig. 1). For very weak stimulus
fluctuations, all three models are trivially equivalent because the
bounds are never reached and hence the PKs are flat (Fig. 1d–f).
As σS increases, in both the DDMA and the DDMR, the bounds
are reached faster yielding an increase and a decrease of the PK
slope, respectively (Fig. 1h). In these two models, the integration
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of evidence becomes more and more transient as σS increases,
ultimately causing a decrease of the PK area (Fig. 1g). Including
collapsing bounds in the DDMA did not modify the picture
qualitatively, with the integration becoming more transient as the
velocity of the collapsing bounds increased (Supplementary
Fig. 1). The PK for the PI remains flat for all σS (zero PK slope,
Fig. 1h) and its area increases monotonically (Fig. 1g). Thus, the
dynamics of evidence accumulation are an invariant and distinct
property of each model.

Neurobiological models show a variety of integration regimes.
We next characterized the dynamics of evidence accumulation in
the double well model (DWM), which can accurately describe the
dynamics of a biophysical attractor network model19,28. The
DWM exhibits winner-take-all attractor dynamics defined by the
nonlinear potential φ(x):

φ xð Þ ¼ �μx � αx2 þ x4: ð3Þ

The resulting energy landscape can exhibit two minima (i.e.,
attractor states) corresponding to the two possible choices

(Fig. 2a, inset). The three terms of the potential, from left to
right, capture (1) the impact of the net stimulus evidence μ which,
as in the canonical models, tilts the potential towards the attractor
associated with the correct choice; (2) the model’s internal
categorization dynamics parameterized by the height of the
barrier separating the two attractors (which scales with α2), and
(3) bounds, also arising from the internal dynamics, that limit the
range over which evidence is accumulated. We found that the
DWM had a much richer dynamical repertoire as a function of
stimulus fluctuations magnitude than the canonical models.
Specifically, the attractors imposed the categorization dynamics,
but these could be overcome by sufficiently strong stimulus
fluctuations. Thus, for weak σS, the categorization dynamics
dominated: when the system reached an attractor, it remained in
this initial categorization until the end of the stimulus. In this
regime, only early stimulus fluctuations occurring before reaching
an attractor could influence the final choice, yielding a primacy
PK19,23 (Fig. 2c, second line from the left). For strong σS, the
initial categorization had no impact on the final choice because
transitions between the attractors occurred readily. It was the
fluctuations coming late in the trial which determined the final

Fig. 1 Dynamics of evidence accumulation in the canonical drift diffusion models. a–c Single-trial example traces of the decision variable x(t) for weak
(σS= 0.03) and intermediate (σS= 0.28) stimulus fluctuations in the three canonical models. a The DDM with absorbing bounds integrates the stimulus
until it reaches one of the absorbing bounds represented in the potential landscape as infinitely deep attractors (see inset in d). The slope of the potential
landscape is the mean stimulus strength, in this case μ < 0. b The DDM with reflecting bounds integrates the stimulus linearly until a bound is reached
when no more evidence can be accumulated in favor of the corresponding choice option (see inset in e). c The perfect integrator integrates the entire
stimulus uniformly, corresponding to a diffusion process with a flat potential (see inset in f). In the three models, the choice is given by the sign of x(t)
at stimulus offset. d–f Psychophysical Kernels (PK) for the three canonical models for increasing magnitude of the stimulus fluctuations (from left to right):
σS= 0.03, 0.28, and 0.69. The PK measures the time-resolved impact of the stimulus fluctuations on choice (see Methods). g–h Normalized PK area and
normalized PK slope as a function of σS for the three canonical models (see inset in g for color code). The area is normalized by the PK area of the perfect
integrator with no internal noise (σi= 0) and hence measures the ability of each model to integrate the stimulus fluctuations. In all panels, internal noise
was fixed at σI= 0.1 (see arrows in g and h) which was sufficiently small to prevent x(t) from reaching the bounds in the absence of a stimulus. Mean
stimulus evidence was μ= 0 in all cases.
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state of the system and hence the PK showed recency (Fig. 2c,
orange). For moderate values of σS, there was an intermediate
regime in which the PK was a mixture between primacy and
recency, but not necessarily flat (Fig. 2c, third line from the left).
We called this regime flexible categorization because it repre-
sented a balance between the internal categorization dynamics
and the ability of the stimulus fluctuations to overcome their
attraction (Fig. 2b). As a result of this balance, the stimulus
fluctuations impacted the choice over the whole trial (PK slope=
0; Fig. 2e) because both initial fluctuations and later fluctuations
causing transitions had a substantial impact on choice. Moreover,
these fluctuations causing transitions were more temporally
extended than those in the recency regime (Supplementary
Fig. 2a). Thus, the area of the PK reached its maximum
(maximum area= 0.82; Fig. 2f) implying that the integration of
the stimulus fluctuations carried out by DWM was comparable to
a PI (which has PK area equal 1). The same crossover from
primacy to recency regimes, passing through the flexible
categorization regime, could be achieved, at fixed σS, by varying
the stimulus duration (Fig. 2d, g). This occurs because for a fixed
magnitude of stimulus fluctuations, the rate of transitions was
constant but the probability to observe a transition increased with
the stimulus duration changing the shape of the PK accordingly
(Fig. 2d). In sum, depending on the capacity of the stimulus to
generate transitions between attractors, the DWM model could
operate in the primacy, the recency, or the flexible categorization
integration regime.

Decision accuracy in models of evidence integration. Given that
the DWM changes its integration regime when σS is varied, we
next investigated the impact of this manipulation on the decision
accuracy. We set the internal noise to σI= 0 and computed the
psychometric function P(μ,σS) showing the proportion of correct
choices as a function of the mean stimulus evidence μ and the
strength of stimulus fluctuations σS. For small fixed σS the section
of this surface yielded a classic sigmoid-like psychometric curve

P(μ) (Fig. 3a, dark brown curve). As σS increased, this curve
became shallower simply because larger fluctuations implied a
drop in the signal-to-noise ratio of the stimulus (Fig. 3a, red and
orange curves). Unexpectedly, however, the decline in sensitivity
of the curve P(μ) was non-monotonic (Fig. 3a), an effect which
was best illustrated by plotting the less conventional psychometric
curve P(σS) at fixed μ (Fig. 3a, b, black curve). To understand this
non-monotonic dependence, we first defined two transition
probabilities: the correcting transition probability pC was the
probability to be in the correct attractor at the end of a trial, given
that the first visited attractor was the error. The error-generating
transition probability pE was the opposite, i.e., the probability to
finish in the wrong attractor given that the correct one was visited
first (see Methods). Using Kramers’ reaction-rate theory37 the
transition probabilities could be analytically computed, and the
accuracy P could be expressed as the probability to initially
make a correct categorization and maintain it, plus the prob-
ability to make an initial error and reverse it:

P ¼ P0 1� pE
� �þ 1� P0

� �
pC; ð4Þ

where P0 was the probability of first visiting the correct attractor
(Methods). When the fluctuations were negligible σS ≈ 0, the
decision variable always rolled down towards the correct choice
because the double well potential was tilted to the correct
attractor (e.g., μ > 0), and hence P= 1 (Fig. 3b i). As σS started to
increase, fluctuations early in the stimulus could cause the system
to fall into the incorrect attractor but, because fluctuations were
not sufficiently strong to generate transitions (pE ≈ pC ≈ 0),
accuracy was P= P0 (Eq. 4) and decreased with σS towards
chance (gray line in Fig. 3b). As the stimulus fluctuations grew
stronger, the transitions between attractors became more likely
but, because the barrier to escape from the incorrect attractor was
smaller than the barrier to escape from the correct attractor, the
two transition probabilities were very different. Specifically,
Kramers’ theory shows that the ratio between pC and pE depends
exponentially on the barrier height difference (see Methods).
Thus, pC increased steeply with σS, even before pE reached non-

Fig. 2 Dynamics of evidence accumulation in the double well model. a, b Single-trial example traces of the decision variable for the DWM with weak
(a, σS= 0.1) and intermediate (b, σS= 0.58) stimulus fluctuations σS. Transitions between attractors were only possible for sufficiently strong σS (insets).
c PKs for increasing values of σS (from left to right, σS= 0.02, 0.1, 0.58, and 1). d PKs for increasing values of stimulus duration T (from left to right, T= 0.5,
1, and 2.5 with σS= 0.58). e, f Normalized PK slope and PK area as a function of σS. Colored dots indicate the examples shown in panel c. The area peaks at
the flexible categorization and it vanishes for small σS because choice is then driven by internal noise. g, h Normalized PK slope and area as a function of T
with σS= 0.58. As T increases, the DWM integrates a smaller fraction of the stimulus making the area decrease monotonically. Internal noise was σI= 0.1
in all panels (see arrows in panels e and f).
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negligible values (Fig. 3c) opening a window in which transitions
were only correcting: accuracy became P ’ P0 þ 1� P0

� �
pC and

it increased with σS (Fig. 3b iii). The maximum difference
between pC and pE coincided with the flexible categorization
regime in which the PK slope was zero and the accuracy showed a

local maximum (Fig. 3b–d). Finally, for strong σS, error transi-
tions also became likely and the net effect of stimulus fluctuations
was again deleterious, causing a decrease of P. In sum, it was the
large difference in transition probabilities caused by the double
well landscape which led to the non-monotonic dependence of

Fig. 3 Impact of stimulus fluctuations on choice accuracy in the double well model. a Probability of a righward choice as a function of the mean stimulus
evidence (μ) and the stimulus fluctuations (σS). The colored lines show classic psychometric curves, accuracy versus μ (for fixed σS= 0.07, 0.26, 0.46, and
0.90) whereas the black line shows the accuracy versus σS (for fixed μ= 0.15). b Accuracy (P) as a function of the stimulus fluctuations σS obtained from
numerical simulations (dots) and theory (line, same as black line in a). Insets show the PK for three values of σS (marked with colored dots). The gray line
shows the accuracy of the first visit attractor (P0). c Probability to make a correcting pC (green) or an error transition pE (black) and their difference pC− pE
(gray). The local maximum in P coincides with the maximum difference between the two probabilities. Insets: sequence of regimes as transitions become
more likely: (i) For negligible σS, the decision variable always evolves towards the correct attractor; (ii) as σs increases, the decision variable can visit the
incorrect attractor but neither kind of transition is activated; (iii) for stronger σS, only the correcting transitions (green arrow) are activated; (iv) for strong
σS, both types of transition are activated. d Normalized PK slope as a function of σS. The flexible categorization regime, reached when the index is close to
zero, coincides with the local maximum in accuracy (a). e Accuracy versus σS for different stimulus durations T (see inset). The accuracy for any finite T
shifts as σS increases between the probability to first visit the correct attractor P0 and the stationary accuracy P∞. f Accuracy versus σS for different
magnitudes of the internal noise (see inset). g Accuracy versus σS for the three canonical models (see inset). The internal noise was σi= 0 in all panels
except in f.
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the psychometric curve. Because the canonical models lacked
attractor dynamics, the accuracy in all of them decayed mono-
tonically with the stimulus fluctuations (Fig. 3g).

We next asked whether the non-monotonicity of the psycho-
metric curve was robust to variation of other parameters such as
the mean stimulus evidence μ, the stimulus duration T, and the
internal noise σI. We found that the non-monotonicity was
robustly obtained over a broad range of μ, ranging from small
values just above zero to a critical value beyond which the curve
became monotonically decreasing (Supplementary Fig. 3).
Because the transition probabilities scale with the stimulus
duration T, the psychometric curve P(σS) was strongly affected
by changes in T (Fig. 3e). To understand this dependence, we
rewrote the transitions probabilities pC and pE from Eq. 4 as a

function of the transition rates and the stimulus duration (see
Methods, Eqs. 17 and 18):

P ¼ P0exp �kTð Þ þ P1 1� exp �kTð Þ½ �; ð5Þ

where k is the sum of the transition rates from both attractors and
P∞ is the stationary accuracy (i.e., the limit of P when T→∞). As
expected, the two psychometric curves P0 and P∞, which
decreased monotonically with σS, delimited the region in which
P existed: for weak σS, P followed the decay of the psychometric
curve P0, whereas for strong σS it tracked the decay of the
stationary accuracy P∞. The switching point occurred when the
probability to observe a transition was substantial, i.e., when kT ~
1. For longer stimulus durations, the activation of the transitions
occurred for weaker σS and consequently the bump in accuracy
was shifted towards the left also becoming more prominent
(Fig. 3e, Methods). For very short T, the activation of the
transitions occurred for such a large value of σS that the two
curves P0 and P∞ have come too close and the psychometric P(σS)
was then monotonically decreasing (Fig. 3e). Finally, when we set
the internal noise to a nonzero value, it sets a minimal level of
fluctuations below which no stimulus magnitude σS could go,
effectively cropping the psychometric curve P(σS) from the left
(Fig. 3f). Only when the internal noise was larger than a critical
value the psychometric curve became monotonically decreasing
(Supplementary Fig. 3, see Methods for the computation of the
critical noise value). In sum, the non-monotonicity of the
psychometric curve was a robust effect, being most prominent
for values of the mean stimulus evidence μ yielding an
intermediate accuracy (i.e., P ~ 0.75), long stimulus durations
and weak internal noise.

Consistency in models of evidence integration. In order to
identify further signatures of the nonlinear attractor dynamics
that could be tested experimentally, we studied the choice con-
sistency of the DWM. Choice consistency is defined as the
probability that two presentations of the same exact stimulus, i.e.,
the same realization of the stimulus fluctuations, yield the same
choice. In the absence of internal noise, the decision process in
the model is deterministic and consistency is 1. In contrast, when
the stimulus has no impact on the choice, the consistency is 0.5.
We used the double-pass method, which presents each stimulus
twice12,38,39, to explore how consistency in the DWM depended
on σS and σI (Fig. 4). We only used μ= 0 stimuli with exactly zero
integrated evidence in order to avoid the parsimonious increase
of consistency due to larger deviations of the accumulated evi-
dence from the mean (see Methods). As expected, consistency
was close to 0.5 when σS was small compared to σI, and it
increased with increasing σS (Fig. 4a). However, despite this
general increase, we found a striking drop in consistency for a
range of intermediate σS values. Thus, consistency could depend
non-monotonically on the strength of stimulus fluctuations, a
similar effect as observed for choice accuracy. To understand this
effect, we studied the time-course of the decision variable x over
many repetitions of a single stimulus, at different values of σS
(Fig. 4d–h). For very small σS, consistency was 0.5 because the
internal noise was the dominant factor making both choices
equally likely (Fig. 4d). As σS grew, stimulus fluctuations could
determine the first visited attractor but decision reversals were
still not activated, yielding a high consistency (Fig. 4e). For larger
σS, transitions occurred but only when internal noise and the
stimulus fluctuations worked together to produce a large fluc-
tuation (Fig. 4f). The necessary contribution of the internal noise,
that varied from trial-to-trial, led to the decrease in consistency.
Once σS was large enough to cause reversals on its own, con-
sistency increased again (Fig. 4g). Thus, as with the non-

Fig. 4 Dependence of choice consistency on stimulus fluctuations.
a Average consistency versus stimulus fluctuations σS for different values of
the internal noise σI (see inset in b). b Difference between the transition
probabilities with (pR,L(σS,σI)) and without (pR,L(σS,σI= 0)) internal noise.
The drop in consistency coincides with an increase of this difference
revealing the σS-range in which transitions occurred because of the
cooperation of internal and stimulus fluctuations. c Consistency versus σS
for the canonical models. The consistency of the perfect integration is at
chance level because we used stimuli with exactly zero integrated evidence
(see Methods). d–g Temporal evolution of the decision variable probability
distribution f(x,t) for an example stimulus in the different regimes of σS: for
negligible σS the choice is driven by the internal noise and the consistency is
very low (53.2%, d). For small σS, when the stimulus determines the first
visited attractor but fluctuations are not strong enough to produce
transitions, the consistency is very high (97.8%, e). For intermediate σS, the
transitions can only occur when σI and σS work together to cause a large
fluctuation. Because the internal noise has again impact on the choice, the
consistency decreases (51.7%, f). For large σS, the stimulus fluctuations are
strong enough to produce transitions by itself and the consistency is again
very high (100%, g). h Consistency versus σS obtained just using the
example stimulus shown in d–g (points mark the σS values shown in d–g).
Mean stimulus evidence was μ= 0 in all panels.
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monotonicity in the psychometric curve, it was the difference
between two transition probabilities, the transition probability
with internal noise versus the probability without internal noise,
that was maximal when consistency decreased (Fig. 4b). Also as
before, to observe the non-monotonicity in the consistency, σI
had to be sufficiently small not to cause transitions on its own
(Fig. 4a, b). Notice however that the non-monotonicity here was
not caused by the asymmetry between correcting versus error
transitions, as consistency was computed using μ= 0 stimuli (i.e.,
there was no correct choice). The effect was a result of the
nonlinear attractor dynamics of the DWM and thus it could not
occur in any of the canonical models (Fig. 4c).

Flexible categorization in a spiking network with attractor
dynamics. Having shown that the DWM generates signatures of
attractor dynamics which are qualitatively different from any
canonical model, we then assessed whether these could be

reproduced in a more biophysically realistic network model
composed of leaky integrate-and-fire neurons (Methods). The
network consisted of two populations of excitatory (E) neurons
(NE= 1000 for each population), each of them selective to the
evidence supporting one of the two possible choices, and a
nonselective inhibitory population (NI= 500) (Fig. 5a). The
network had sparse, random connectivity within each population
(probability of connection between neurons was 0.1) and neurons
were coupled through current-based synapses with exponential
decay. The stimulus was modeled as two fluctuating currents,
reflecting evidence for each of the two choice options and injected
into the corresponding E population. The two currents were
parametrized by their mean difference μ and their standard
deviation σS (see Methods). In addition, all neurons in the net-
work received independent stochastic synaptic inputs from an
external population. As in previous attractor network models
used for stimulus categorization, the two E populations competed
through the inhibitory population19. Thus, upon presentation of

Fig. 5 Signatures of flexible categorization dynamics in a spiking network. a Schematic of the spiking network consisting of two stimulus-selective
populations (green and purple) made of excitatory neurons that compete through an untuned inhibitory population (white population). b Accuracy PC
versus stimulus fluctuations σS obtained from simulations of the spiking network for three values of the stimulus duration T= 2, 4, and 6 s (see inset).
c–e Single-trial examples showing spike rastergram from the two excitatory populations (1000+ 1000 neurons) (c), traces of the instantaneous population
rates (count window 30ms) (d) and of the input stimuli (e), for different values of stimulus fluctuations σS= 2 (left), 4.5 (middle), and 9 pA (right).
Colored points in (b) indicate the σS used. f Psychophysical kernels obtained for each σS value. The mean stimulus input was μ= 0.015 and the stimulus
duration T= 4 s. g Psychophysical kernels for σS= 5 pA and different stimulus duration T= 1, 3, and 5 s, from left to right.
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an external stimulus, there were two stable solutions: one solu-
tion in which one E population fired at a high rate while the other
fired at a low rate and vice versa (Fig. 5). Notice that in contrast
with the DWM in which the noise was white (i.e., temporally
uncorrelated), in this network the external noise was colored
(stimulus was an Ornstein–Uhlenbeck process with τstim= 20
ms) and the internal fluctuations reflected the stochasticity of the
spiking network dynamics which are strongly affected by the
synaptic time scales. Similar to the DWM, we found a non-
monotonic relation between the accuracy and the magnitude of
the stimulus fluctuations σS provided the stimulus duration T was
sufficiently long (Fig. 5b). Moreover, as σS increased the inte-
gration regimes of the network changed from primacy to recency,
passing through the flexible categorization regime (Fig. 5c–f). In
this regime, transitions between attractor states occurred when
there were input fluctuations that extended over hundreds of
milliseconds, indicating that the temporal integration of evidence
continued even after one of the attractors was reached (Supple-
mentary Fig. 2b). The crossover between primacy and recency
regimes was also observed at constant σS when we varied the
stimulus duration T (Fig. 5g). We went one step further in
including biophysical detail and confirmed that a conductance-
based spiking neural network model with explicit AMPA, GABA,
and NMDA receptor dynamics19 showed qualitatively the same
behavior (Supplementary Fig. 4). Thus, the signatures of attractor
dynamics that we had identified did not depend on the simpli-
fying assumptions of the DWM and could be replicated in an
attractor network with more biophysically plausible parameters.

Changes in PK with stimulus duration in human subjects
unveiled the flexible categorization regime. We tested whether
the DWM could parsimoniously account for the variations of the
integration dynamics previously found in a perceptual categor-
ization task as the stimulus duration was varied34. In the
experiment, human subjects had to discriminate the brightness of
visual stimuli of variable duration T= 1, 2, 3, or 5 s. Confirming
previous analyzes34, the average PKs across subjects changed
from primacy to recency with increasing stimulus durations
(Fig. 6a). To assess whether these changes in the shape of the PKs
could be captured by the DWM, we used the DWM to categorize
the same stimuli (the exact same temporal stimulus fluctuations
and number of trials; see Methods) that were presented to the
human subjects (Fig. 6c–f). We found that the PKs for different
stimulus durations obtained in the DWM were very similar to the
experimental data (Fig. 6b). Importantly, these results were
obtained with fixed model parameters for all stimulus durations
suggesting that the variation in PK did not necessarily indicate a
change of the integration mechanism of the model, as previously
suggested34. Rather, fixed, but nonlinear attractor dynamics in the
DWM parsimoniously accounted for the observed PK changes.

Stimulus integration across a memory period is consistent with
flexible categorization dynamics. Finally, we tested the DWM in
a task that requires evidence accumulation and working memory.
We used published data from two studies carrying out a psy-
chophysical experiment in which subjects had to categorize the

Fig. 6 The double well model accounts for experimentally observed changes in psychophysical kernels. a Psychophysical kernels for different stimulus
durations, obtained from human subjects performing a brightness discrimination task (N= 21)34. From left to right, stimulus duration was T= 1, 2, 3, and 5
s. b Psychophysical kernels obtained by fitting the DWM to categorize the very same stimuli presented to the human subjects (i.e., same temporal
fluctuations of net evidence; see Methods). Lines represent the kernels obtained from pooling all data across subjects and the error bands represent s.e.m.
c–f Example traces of the decision variable of the fitted DWM (c, e) and the stimulus (d, f) for 1 and 3 s trials. Notice that the stimulus fluctuations
mimicked the visual stimulus which was made of time frames of 100ms.
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motion direction of a random dot kinematogram35,40. Interleaved
with the trials showing a single kinematogram (single pulse trials,
duration 120 ms) there were also trials having two kinemato-
grams separated by a temporal delay (two pulse trials). In these
two pulse trials, subjects had to combine information from both
pulses in order to categorize the average motion direction. The
two pulses could have different motion coherence but they always
had the same motion direction (Fig. 7a). Subjects were able to
combine the evidence from the two pulses and their accuracy did
not depend on the duration of the delay period for durations up
to 1 s, meaning that they were able to maintain the evidence from
the first pulse without memory loss. Overall, subjects gave slightly
more weight to the second than the first pulse (Primacy-Recency
Index= 0.22; see Methods). Qualitatively, the DWM could in
principle capture this behavior because its underlying dynamics
can solve the two parts of the task, the maintenance of infor-
mation during the working memory period and the combination
of the two pulses of evidence (Fig. 7b). The model would cate-
gorize the first pulse in one of the attractors, which would be
stably maintained during the delay because the internal noise is
insufficient to cause transitions. Finally, given the asymmetry in
the DWM transition rates (Fig. 3c), the second pulse could
reverse incorrect initial categorizations while minimizing the risk
of erroneously reversing correct ones (Fig. 7b). To assess whether
the DWM could indeed fit the data quantitatively, we computed
the accuracy for each stimulus condition using Kramers’ transi-
tion rate theory and fitted the parameters using maximum like-
lihood estimation (solid lines, Fig. 7c; Methods). We found that

the DWM could fit the accuracy across conditions quite accu-
rately (Fig. 7c). Interestingly, the fitted DWM worked close to the
flexible categorization regime, matching the slight recency effect
coming out from the combination of the two pulses (Fig. 7d).

Because subjects’ accuracy did not depend on delay
duration35,40, the model fitting could only determine the value
of the sum of the stimulus and internal noises σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2I þ σ2S
p

and
set an upper bound σmax

I for the internal noise: for any value
σI ≤ σ

max
I the transitions during the delay were negligible (<1%)

and the DWM yielded the same behavior (see Methods).
Choosing the σI to be at the upper bound σmax

I ; yielded a
constant accuracy for delays up to ~1 s. For longer delays,
however, transitions during the delay became active causing
forgetting and accuracy decrease (Fig. 7e) as has been shown in
experiments using a broader range of delays41. In contrast, the
perfector integrator did not show a range of delays over which the
accuracy remained constant (Fig. 7e): the internal noise had a
much larger impact on the maintenance of stimulus evidence so
that, for any significant level of internal noise, the accuracy
decreased continuously with delay duration. In total, our analysis
shows that the DWM can quantitatively fit psychophysical data
from a working memory task, and that longer delays could
provide a qualitative test for the model.

Discussion
We have investigated the attractor model with winner-take-all
nonlinear dynamics and we have found new, experimentally

Fig. 7 The flexible categorization regime accounts for the combination of two pulses of evidence during a working memory task. a Visual motion
categorization experiment consisting of interleaved double pulse (top) and single pulse trials (bottom)35,40. On double pulse trials, the two motion pulses
were separated by a variable delay (duration 0, 120, 360, or 1080ms). Coherences were randomly selected from trial-to-trial. In two pulse trials, they could
be different but the motion direction was always congruent (N= 9). b Traces of the decision variable of the DWM (black), the internal fluctuations
(yellow), and the stimulus (orange) for an example double pulse trial. c Accuracy for single (squares) and two pulse trials (dots) versus the coherence of
the second pulse observed in the data from35,40 (dots) and the values obtained from the fitted DWM (lines). Because accuracy in the experiment did not
depend on delay length, dots show the average accuracy across all delays. Different colors represent different first pulse coherences (see inset). Symbols
show mean across subjects and error bars show 95% confidence intervals. d Primacy-recency index (PRI) for the DWM as a function of the barrier height
(c2). The black dot marks the PRI for the fitted parameter α*= 0.7. The horizontal line is the PRI computed from the psychophysical data (gray area 95%
confidence interval). Inset: accuracy for two pulse stimuli in which coherence is larger in pulse 2 than in pulse 1 (i.e., coh2 > coh1) versus accuracy for
the same pulses presented in the reverse order (i.e., coh1 > coh2). Consistent with the recency effect, accuracy is slightly better for coh2 > coh1 stimuli.
e Accuracy as a function of the delay duration for DWM and for the Perfect Integrator. In the DWM, which used the fitted parameter α* and σI= 0.32 and
σS= 0.40, the accuracy is independent of the delay up to 1 s. In contrast, for the same internal noise σI, the accuracy of the perfect integrator decreases
continuously for all delays.
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testable signatures that can distinguish it from the other models.
First, the attractor model exhibits a continuous crossover from
the primacy regime19,23 to the recency regime. Between these two
regimes we found the new flexible categorization regime in which
the integration of stimulus fluctuations was maximally extended
over time (Fig. 2 and Supplementary Fig. 2). Second, in this
regime a qualitative asymmetry between correcting and error
transitions gave rise to a non-monotonic psychometric curve
(Fig. 3). Third, the rapid activation of transitions between deci-
sion states with the stimulus fluctuations also caused an unex-
pected non-monotonic dependence of the stimulus consistency
(Fig. 4a). Finally, we used two previous psychophysical experi-
ments to show that the attractor model can quantitatively fit
variations in PK profile with stimulus duration (Fig. 6) and fit
categorization accuracy in a task with integration of evidence
across memory periods (Fig. 7).

Recently, two studies have proposed alternative models that
can explain the differences of PK time-courses found across
subjects and experiments. In the first model, based on approx-
imate Bayesian inference, the primacy effect produced by bottom-
up versus top-down hierarchical dynamics, was modulated by the
stimulus properties which could yield different PK time-courses, a
prediction that was tested in a visual discrimination task42. The
second study proposed a model that can produce different PK
time-courses by adjusting the time scales of a divisive normal-
ization mechanism, which yields primacy, and a leak mechanism,
which promotes recency43. In addition, this model can also
account for bump shaped PKs, a class of PK that was found
together with primacy, recency, and flat PKs, in a study carried
out using a large cohort of subjects (>100)44. In the attractor
model, the differences in the PK found across subjects or fixed
stimulus properties could be explained by individual differences
in the shape of the potential. Specifically, differences in the height
of the barrier between the two attractor states would generate a
variety of PK time-courses (Fig. 7c) as the integration regime
ultimately depends on the ratio between the total noise σ2S þ σ2I

� �
and the height of the barrier. A natural extension of our approach
would be to assume that a time-varying process during the trial,
e.g., an urgency signal45, can progressively modify the shape of
the potential. In that case, the DWM with an urgency signal that
changed the shape of the potential from a single well at stimulus
onset into a double well at stimulus offset could readily reproduce
the bump shaped PKs (not shown) recently reported44. In sum,
the attractor model shows a large versatility generating the
diversity of PK shapes reported in the literature8,10,12,15–17,44.
Although several distinct models can account for the variety of
PK shapes, they rely on a variety of neural mechanisms. Future
electrophysiological or psychophysical experiments where the
different models predict qualitatively different results will help
distinguish between these possible mechanisms.

It has been previously shown that noise, from the stimulus or
internal sources, can increase the accuracy of an attractor model
with three stable attractors (i.e., with multistability): an undecided
state and two decision states46,47. In this model, the decision
variable starts in the undecided state and, if it does not escape
from this state during the stimulus presentation, the decision is
made randomly. Thus, the noise can allow the decision variable to
escape from the undecided state and increase the accuracy. Here,
we have studied the attractor model in the winner-take-all regime,
i.e., without an undecided state, and we have found that it is the
large difference between the rate of correcting and error-
generating transitions that produces the increase in accuracy in
the flexible categorization regime. This is conceptually very dif-
ferent from transitions between the undecided state to the deci-
sion states. The same mechanism presented here drives the classic
stochastic resonance48 where a particle moving in a double well

potential driven by a periodic signal necessitates of a suitable
magnitude of noise for the system to follow the signal (i.e., escape
from the well when it is no longer the global minimum). Similar
to the effect described with the multistable attractor model46, the
accuracy decreases to chance in the deterministic noiseless case
(σ= 0). In contrast, the accuracy for the DWM is greatest for σ=
0 because the initial position of the decision variable (x0= 0)
belongs to the basin of attraction of the correct attractor and thus
it always rolls down to the correct attractor. However, whether
this bump in accuracy produced by the attractor model as a
function of the stimulus fluctuations (σS) is a local or a global
maximum, or if it exists at all, depends on internal parameters
such as the internal noise (σI) or the height of the barrier. These
internal parameters can be different for different subjects and
thus, one should expect to find this non-monotonic psychometric
curve only in a fraction of subjects. Indeed, we carried out a
visuospatial binary categorization task in which the fluctuations
of the evidence σS were varied systematically from trial-to-trial.
Preliminary analysis shows that the majority of subjects display a
psychometric curve P(σS) with a plateau followed by a decay as σS
increased. A fraction of subjects exhibited however a non-
monotonic dependence but the dependence of PK and other
aspects of their behavior (e.g., idiosyncratic biases) on σS were not
fully captured by the DWM dynamics. A future study will extend
the DWM so that it can capture these data.

The key mechanism underlying the flexible categorization
regime are the transitions between attractor states which, func-
tionally, can be viewed as changes of mind5,49. Changes of mind
have been previously inferred from sudden switches in the direc-
tion of the motor response5,49 but also from decision bound
crossings of the decision variable read out from neuronal popu-
lation recordings50–53. In reaction time tasks, an extension of the
drift diffusion model can fit the modulation of the probability of
observing a change of mind as a function of the mean stimulus
strength5. In this model, a first crossing of the decision bound
initializes the response that is reversed if the decision variable
crosses the opposite bound before the motor response is com-
pleted. As in the DWM, this model predicts that correcting
changes of mind are more likely than error changes of mind.
However, this asymmetry does not imply a non-monotonic
accuracy with the stimulus fluctuations in a fixed duration task.
This is because in the linear DDM with changes of mind5, the
correcting transition probability pC is not exponentially more likely
than error transitions as in the DWM (Eq. 20). Thus, the benefit of
having more correcting transitions as σS increases does not offset
the cost of decreasing the signal-to-noise ratio (not shown). An
attractor network has also been used previously to explain changes
of mind during the motor response54. Our work extends this study
in several ways, by characterizing the full spectrum of integration
regimes in the attractor model and by showing qualitative
experimentally testable signatures of decision state transitions (e.g.,
non-monotonicity in the accuracy and coherence versus σS). One
interesting question is whether correcting changes of mind could
generate similar nonlinear effects as those reported here (Fig. 3a, b)
in tasks with n > 2 choices. A preliminary analysis using rate-based
networks suggests that this is in fact the case (Supplementary
Fig. 5). We simulated rate networks composed of n excitatory
populations competing with each other via mutual inhibition and
found that in the winner-take-all regime, strong stimulus fluc-
tuations causing attractor transitions could have a beneficial effect
and yield a non-monotonic psychometric curve P(σS) (Supple-
mentary Fig. 5c). Thus, although a more detailed analysis of these
multiple-choice networks is needed, these examples suggest that
the asymmetry between correcting and error transitions under-
lying the raise in accuracy with σS, was a general mechanism that
may be in play in tasks with more than two choices.
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An important question in perceptual decision making is the
extent to which subjects can integrate evidence during the sti-
mulus presentation. It has been recently pointed out that differ-
entiating between integrating and non integrating strategies may
be more difficult than naively thought55. Here we evaluate the
degree of evidence integration using the PK area. In the flexible
categorization regime this area is maximum, and the DWM can
integrate a large fraction of stimulus fluctuations (Fig. 2f). Indeed,
we have shown that in this regime, the spiking network model,
built of neural units with time-constants of 20 ms, could generate
transitions by integrating fluctuations over hundreds of milli-
seconds (Supplementary Fig. 2b). Further work would be required
to quantitatively characterize the emergence of this slow inte-
gration time-scale. The PK area however, is not a measure of
accuracy, when accuracy is defined as the ability to discriminate
the sign of the mean stimulus evidence, μ. Thus, the accuracy in
the DWM is maximal for σS ≈ 0 (Fig. 3b) but the area is close to
zero (Fig. 2f). This mismatch simply reflects that, in the absence
of internal noise, the task does not require integration of the
stimulus fluctuations. However, if we only considered stimuli
with μ= 0 and we defined the stimulus category based on the sign
of stimulus integral, the accuracy would be strongly correlated
with the PK area and it would be maximal in the flexible cate-
gorization regime.

Finally, equipped with the theoretical results on the attractor
model, we have revisited two psychophysical studies seeking for
signatures of attractor dynamics. With the data from the first
study34, we have tested a key prediction of the attractor models
and have shown that the DWM can readily fit the crossover from
primacy, to flexible categorization, to recency observed in the data
as stimulus duration increases. This fit shows that the behavioral
data in this task is consistent with the presence of transitions
between attractor states during the perceptual categorization
process (Fig. 6). We used psychophysical data from two other
studies35,40, to show that in a regime close to the flexible cate-
gorization the DWM could fit the categorization accuracy as a
function of stimulus strength for all memory periods (Fig. 7).
Thus, the described asymmetry between correcting and error
transitions allowed the DWM to combine evidence from the two
pulses and yield a higher accuracy than a single pulse, just like
subjects did (Fig. 7b, compare single vs two pulse trials using the
same coherence, e.g., 6.4% versus 6.4+ 6.4%). Models that
assume perfect integration of evidence can generally store a
parametric value in short-term memory but they are susceptible
to undergoing diffusion over time, causing a drop in memory
precision as the delay increases56,57. In contrast, the fact that the
accuracy did not decrease with delay duration suggests that the
information stored in memory could be categorical instead of
parametric58,59, a feature naturally captured by the DWM
(Fig. 7d). Alternatively, it could reflect a parametric memory with
negligible internal noise60. Interpreting neural recordings can also
be non-conclusive as different areas can simultaneously represent
stimulus information with different levels of categorization61. To
overcome these shortcomings in understanding whether the
stored information is categorical or parametric, we propose an
experiment that combining electrophysiology with psychophysics
can qualitatively distinguish between these two alternatives (see
Supplementary Fig. 6). An alternative version of the DDMA
model where the sensitivity to the second pulse was larger than to
the first one could also account for the combination of the two
pulses40. This feature captured the slight recency effect found in
the data, but it left unanswered the key question of why the
subjects did not use their maximum sensitivity during the first
pulse. In total, our findings provide evidence that an attractor
model, working in the flexible categorization regime, can capture
aspects of the data that were previously viewed as incompatible

with its dynamics, and propose a series of testable predictions that
may further shed light onto the brain dynamics during sensory
evidence integration.

Methods
Model simulations. For all simulations, we solve the diffusion Eq. 2 using the
Euler method:

x t þ 1ð Þ ¼ x tð Þ � Δt
τ
dφ x tð Þð Þ=dx þ

ffiffiffiffiffi
Δt
τ

r
σIξI tð Þ þ σSξS tð Þ� �

; ð6Þ

with Δt= τ/40. The time constant τ of the DWM was chosen to be 200 ms to
represent the effective integration time constant that emerges from the dynamics of
a network19.

We summarized the parameters used in each figure in Table 1 (Supplementary
Information).

In Fig. 4, we use stimuli with exactly zero integrated evidence,
R
S tð Þdt ¼ 0. For

each stimulus i, we first created a stream of normal random variables yi(t). Then we
z-score y and we multiplied by σS:

SiðtÞ ¼ σS
yiðtÞ � by

σy
: ð7Þ

After this transformation, the mean and standard deviation of Si are exactly 0
and σS respectively.

Psychophysical kernel. We measure the impact of stimulus fluctuations during
the course of the trial on the eventual decision by means of the so-called PK. Put
simply, given a fixed mean signal, some stimulus realizations may favor a rightward
choice (say a positive decision variable) and others a leftward one. If this is the case,
and we sort the stimuli over many trials by decision, we will see a clear separation
which can be quantified via a ROC analysis. Mathematically, for each trial i, we
subtract the mean evidence (μi) of each trial si(t)= μi+ σSξi to avoid that the
distributions of stimuli that produce left and right choices are trivially separated by
their mean evidence:

bsiðtÞ ¼ siðtÞ � μi: ð8Þ
Thusbsi tð Þ ¼ σsξi are simply the stimulus fluctuations. Then, for each time t, we

compute the probability distribution function of the stimuli that produce a right
(f bsR tð Þð Þ) or left (f bsL tð Þð Þ) choice. The PK is the temporal evolution of the area
under the ROC curve between these two distributions

PK tð Þ ¼ auc f bsR tð Þð Þ; f bsL tð Þð Þð Þ: ð9Þ

Normalized PK area and slope. In order to quantify the magnitude and the shape
of a PK, we defined two measures, the PK area and the PK slope:

1) The normalized PK area is a measure of the overall impact of stimulus
fluctuations on the upcoming decision, it ranges from 0 (no impact) to 1 (the
stimulus fluctuations are perfectly integrated to make a choice). It is defined as

NPKA ¼
R T
0 PK tð Þ � 0:5 dtR T

0 PKPI t; σ i ¼ 0ð Þ � 0:5 dt
; ð10Þ

where T is the stimulus duration. NPKA is the PK area normalized by the PK area
of a PI in the absence of internal noise (σi= 0), i.e., an ideal observer.

2) The normalized PK slope is the slope of a linear regression of the PK,
normalized between −1 (decaying PK, primacy) to +1 (increasing PK, recency).
Because we wanted the PK slope to quantify the shape of the PK rather than its
magnitude (which is captured by the PK area), we first normalized the PK to have
unit area,

NPK tð Þ ¼ PK tð Þ � 0:5R T
0 PK tð Þ � 0:5 dt

; ð11Þ

where T is the stimulus duration. We then fit the NPK with a linear function of
time,

LPK tð Þ ¼ β0 þ kβ1 ´ t; ð12Þ
where β1 is the PK slope and k ¼ 1

2�var tð Þ is a factor that normalizes the PK slope to

the interval (−1, +1).

Accuracy for the DWM. To compute the accuracy for the DWM, we assume that
the time spent in the unstable region is much shorter than the time spent in one of
the attractors. This assumption allows us to treat the system as a Continuous
Markov Chain (CMC) with only two possible states correct and error. The first step
is to compute the probability of first visiting the correct attractor which will be used
as the initial state of the CMC62

P0 ¼
R x0
xE

exp 2φ xð Þ
σ2Iþσ2S

� �
dxR xC

xE
exp 2φ xð Þ

σ2Iþσ2S

� �
dx

; ð13Þ
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where φ is the potential in Eq. 3, xC and xE are the x values of the correct and error
attractors whereas x0= 0 is the initial position of x. The integrals of P0 can be
computed assuming that the term x4 is very small for values of x0 ’ 0:

P0 ¼
erf

ffiffiffiffi
2α

p
σ x0 þ μ

2α

� �� �
� erf

ffiffiffiffi
2α

p
σ xE þ μ

2α

� �� �
erf

ffiffiffiffi
2α

p
σ xE þ μ

2α

� �� �
� erf

ffiffiffiffi
2α

p
σ xC þ μ

2α

� �� � : ð14Þ

The second step is to compute the correcting and error transition rates37,62

kC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ00 xEð Þφ00 xUð Þj jp

2π
exp � 2 φ xUð Þ � φ xEð Þð Þ

σ2I þ σ2S

� �
and ð15Þ

kE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ00 xCð Þφ00 xUð Þj jp

2π
exp � 2 φ xUð Þ � φ xCð Þð Þ

σ2I þ σ2S

� �
; ð16Þ

where xU is the x position at the unstable state. These are the transition rates of a
Continuous Markov Chain with only two states: correct and incorrect. The
probability of making a correcting and error-generating transition during a trial
are63:

pC Tð Þ ¼ P1 1� exp �kTð Þð Þ; ð17Þ

pE Tð Þ ¼ 1� P1ð Þ 1� exp �kTð Þð Þ; ð18Þ
where k= kC+ kE, T is the stimulus duration and P1 ¼ kC

kCþkE
is the probability of

the stationary state being the correct one (T→∞). Finally, the probability of being
in the correct attractor given the model and stimulus parameters is

P ¼ P0 1� pEð Þ þ 1� P0ð ÞpC: ð19Þ
The probability of correct is the probability to first visit the correct attractor and

remain in it (P0(1−pE)) plus the probability to first visit the error attractor and
correct the initial decision ((1−P0)pC). To be more quantitative, we can compute
the ratio between the probability of a correcting (Eq. 17) and an error-generating
transition (Eq. 18):

pC=pE / exp 2 φ xEð Þ � φ xCð Þð Þ=σ2� � ð20Þ
For small values of the mean signal μ<<1, we can rewrite the ratio between the

correcting and error-generating transitions as a function of the potential
parameters. To this aim we compute the fixed points of order ϑ ε2ð Þ using μ ¼ εμ
where μ is a parameter of order 1 and x= x0+ εx1:

xC ¼
ffiffiffi
α

2

r
þ μ

4α
þ ϑ ε2

� �
; ð21Þ

xE ¼ �
ffiffiffi
α

2

r
þ μ

4α
þ ϑ ε2

� �
and ð22Þ

xU ¼ � μ

4α
þ θ ε2

� �
; ð23Þ

where xU is the x position of the unstable state (note that xU= 0 when μ= 0) and
xC(xE) is the position of the correct (error) attractor. Using these fixed points, the
ratio between the correcting and error-generating transitions is

pC=pE ¼ exp
4μ
σ2

ffiffiffi
α

2

r� �
: ð24Þ

Which shows that the ratio between correcting transitions and error-generating
ones increases exponentially with the mean stimulus (μ) as long as stimulus
fluctuations are not too large. These probabilities are illustrated in Fig. 3c, pC
increases steeply as a function of stimulus fluctuations even before pE reaches non-
negligible values and for large stimulus fluctuations both probabilities tend to 0.5.

To find the maximum of the accuracy, we derive Eq. 19 respect to σ:

dP
dσ

¼ � 2
σ3

d
dβ

P0exp �kTð Þ þ pC½ �; ð25Þ

where we rewrite Eq. 19 as a function of pC and P0. From this equation, it can be
shown (see Supplementary Information) that the local maximum in accuracy is

σ2IC ¼ α2

2
1

log 2Tα
πz0

� � ; ð26Þ

and the critical value of μ above which the accuracy decreases monotonically with
the stimulus fluctuations is

μC ¼ α

2

ffiffiffi
α

2

r
: ð27Þ

Spiking network
Network model. In Fig. 5 we consider a network of randomly connected current-
based integrate-and-fire neurons, similar to28. The conductance-based all-to-all

connected network shown in Supplementary Fig. 4 was exactly the original network
model presented in ref. 19. The current-based network consists of two populations
of excitatory neurons (A and B), both of which are recurrently coupled between
them and to a population of inhibitory interneurons (I). We study the case in
which the system is near a steady bifurcation to a winner-take-all state. It is in the
vicinity of the bifurcation that the dynamics of the network can be captured in a
one-dimensional amplitude equation which describes the slow evolution along the
critical manifold28. The evolution of the membrane potential VX

i tð Þ from the i-th
neuron in population X is given by:

τEm
dVA

i

dt
¼ � VA

i � El
� �þ IAAi � IAIi þ IAexti =gL; ð28Þ

τEm
dVB

i

dt
¼ � VB

i � El
� �þ IBBi � IBIi þ IBexti =gL; ð29Þ

τIm
dVI

i

dt
¼ � VI

i � El
� �þ IIAi þ IIBi þ IIexti =gL; ð30Þ

where the synaptic input voltages of the form IXY indicate interactions from neurons
in population Y to neurons in population X, while external synaptic inputs are given
by IXext. The synaptic inputs are sums over all postsynaptic potentials (PSPs), mod-
eled as exponential functions with a delay. The synaptic inputs take the form

IXYi ¼
X
j

JXYij gXYij : ð31Þ
The dynamics of excitatory and inhibitory synapses are described by

τYs
dgXYij
dt

¼ �gXYij ; ð31Þ
After the presynaptic neuron j fires a spike at time tXYk , the corresponding

dynamic variable is incremented by one at tXYk þ δYk , that is after a delay δYk .
External synapses have instantaneous dynamics

IIexti ¼
X
j

Jextij

X
k

δ t � tXextk;j

� �
; ð33Þ

i.e., a presynaptic action potential from neuron j of the external population at time
tXextk;j results in an instantaneous jump of the external synaptic input variable. A
spike is emitted whenever the voltage of a cell from an excitatory (inhibitory)
population crosses a value Θ, after which it is reset to a reset potential Er.

We consider the case of sparse random connectivity for which, on average, each
neuron from population X receives a total of CXY synapses from population Y. The
pairwise probability of connection is thus ϵXY ¼ CXY=NY , where NA=NB=NE and
NI are the number of neurons in the respective populations. For nonzero synapses
we choose JAAij ¼ JBBij ¼ JEE , J

IA
ij ¼ JIBij ¼ JIE and JAIij ¼ JBIij ¼ JEI .

The stimulus input current is modeled similar to23, with the exact same
stimulus input being injected to each neuron in each of the two excitatory
populations. The stimulus input onto each of the excitatory populations A and B is
given by

IAstim tð Þ ¼ I0 1þ μð Þ þ σSz
A tð Þ; and ð34Þ

IBstim tð Þ ¼ I0 1� μð Þ þ σSz
B tð Þ; ð35Þ

where the first term describes the mean stimulus input onto each population and
the second term the temporal modulations of the stimulus with standard deviation
σstim. The term μ parametrizes the mean difference of the two stimulus inputs and
it captures the amount of net stimulus evidence favoring one choice over the other
(i.e., μ= 0 represents an ambiguous stimulus with zero mean sensory evidence).
Finally, zA(t) and zB(t) are independent realizations of an Ornstein–Uhlenbeck
process, defined by τstim

dz
dt ¼ �z þ ffiffiffiffiffiffiffiffiffiffiffi

2τstim
p

ξ tð Þ, where ξ(t) is Gaussian white noise
(mean 0, variance dt).

Simulation details. The network model was implemented in Python 3 using the
Brian 2 simulator version 2.364. We used the Euler integration method with a time
step of 0.1 ms. We simulated fixed duration trials of varying stimulus duration.
Stimulus presentation was preceded by a 500 ms interval to prevent transient
effects due to initial conditions. The choice outcome of the network was deter-
mined by the neural population with a higher population firing rate over the last
100 ms of the stimulus period. Results for a given stimulus condition (σS and T) are
based on 5000 trials using different realizations of the network connectivity, ran-
dom initial conditions as well as different realizations of the external background
inputs into each circuit. The value of all the parameters can be found in Table 2
(Supplementary Information)

Psychophysical data and model fitting. In Fig. 6, we used data from experiments
1 and 4 from34 with a total of N= 21 humans subjects (N= 13 in experiment 1 and
N= 8 in experiment 4). The data can be accessed here: https://doi.org/10.1371/
journal.pcbi.1004667. The stimuli consisted of two brightness-fluctuating round
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disks. In each stimulus frame (duration 100 ms), the brightness level of each disk
was updated from one of two generative Gaussian distributions that had the same
variance but different mean: either one distribution had a high mean value and the
second a low value or vice versa. At the end of the stimulus, the subjects had to
report the disk with a higher overall brightness (i.e., which disc corresponded to the
generative distribution with higher mean). Incorrect responses were followed by an
auditory feedback. Trials were separated into five equal length segments, in 80% of
the trials, a congruent or incongruent pulse of evidence was presented at a random
segment. This increase or decrease of evidence was corrected in the rest of the
segments and as a consequence the stimuli were anticorrelated. In experiment
1 stimuli with 1, 2, or 3 s duration were presented in blocks of 60 trials whereas
in experiment 4, the stimulus duration was 5 s. We computed the PK using
the procedure described above (see section Psychophysical kernel) but first com-
puting the difference in brightness of the two disks. We also subtracted the mean
difference in order to have a one-dimensional stimulus trace with zero mean.
Namely

Si tð Þ ¼ SiR tð Þ � SiL tð Þ � μiR � μiL
� �

; ð36Þ
where SiL tð Þ is the brightness of the t-th frame of the left disk during the i-th trial
and μiLis the mean of the generative Gaussian distribution for the left disc in the i-
th trial. We computed the PKs standard error of the mean using bootstrap with
1000 repetitions.

To compute the PK of the DWM we simulated Eq. 6 using stimuli with the
exact same temporal fluctuations in evidence than the stimuli presented to the
subjects. We modeled it by updating μi(t) from Eq. 3 with the difference in
brightness at each time between the right and left disk:

μi tð Þ ¼ SiR tð Þ � SiL tð Þ: ð37Þ
Note that in this framework the stimulus fluctuations were set to zero σS= 0

because σS was captured inside μi(t). The DWM parameters (α=−0.8, σI= 0.3,
and τ= 200 ms) were tuned to account for the change from primacy to recency
with the stimulus duration.

Primacy-recency index for the two pulses trials. In Fig. 7, we define the
primacy-recency index

PRI ¼ β2 � β1
β1 þ β2

ð38Þ

where β1 and β2 are the coefficients of a logistic regression with the coherence of
the first and second pulse as predictors:

logit PC
� � ¼ β0 þ β1coh1 þ β2coh2 ð39Þ

Similar to the Normalized PK slope, the primacy-recency index ranges from −1
(primacy) to 1 (recency).

DWM fitting. In Fig. 7, we use data from two studies performing the same
experiments35,40. We extract the accuracy of the subjects directly from the paper
figures (with GraphClick, a software to extract data from graphs) and the number
of trials from the methods of the papers. We pool the data from the two experiment
and we compute the mean accuracy in each condition i as

Pi ¼
PK
i N

K
i þ PT

i N
T
i

NT
i þ NK

i
; ð40Þ

where Ni is the number of trials in condition i, the data with superindex K and T
were extracted from35 and40 respectively. The 95% confidence interval of Pi is:

Pi ± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC;i 1� PC;i

� �
NT
i þ NK

i

;

vuut ð41Þ

In these experiments, the human subjects had to discriminate between left and
right motion direction of a random dots stimulus. The experimenters interleaved
trials with one and two pulses of 120 ms. For single pulse trials the possible
coherence levels were 0, 3.2, 6.4, 12.8, 25.6, and 51.2%. For double pulse trials, the
pulses were separated by a delay of 0, 120, 360, or 1080 ms and the coherences were
randomly chosen from 3.2, 6.4, and 12.8% (nine different coherence sequences). In
both papers, they reported that the subjects’ accuracy in double pulses trials was
independent of the delay. Thus we assume that, in the DWM, the internal noise
was too small to drive transitions during the delay and we pool the data across
delays to compute the accuracy for each coherence sequence. We fit the model by
maximizing the log-likelihood (Nelder–Mead algorithm):

LL ¼
XNi

i

NC;iPi þ NE;i 1� Pið Þ; ð42Þ

where NC,i and NE,i are the number of correct and error trials for each coherence
sequence i whereas Pi is the accuracy for sequence i predicted by the DWM.

For single pulse trials, we computed Pi as

P1
i ¼ P0 1� pEð Þ þ 1� P0ð ÞpC; ð43Þ

where P0, pC, and pE were computed using Eqs. 14, 17, and 18 whereas the super

index indicates the pulse number. Note that we are assuming that the time
spent for the decision variable in the unstable state is short compared with the
pulse duration. With this assumption, the decision variable starts in the correct
attractor with probability P0. Similarly for double pulse trials the probability of
correct is:

P2
i ¼ P1

C 1� pEð Þ þ 1� P1
C

� �
pC: ð44Þ

The potential and the diffusion equation can be written as

φ Xð Þ ¼ μx � αx2 þ x4 and ð45Þ

τ
dx
dt

¼ � dφ
dx

þ σξ tð Þ; ð46Þ

where μ is a linear scaling of the coherence to x units (μ= kcoh) and σ represents
the two sources of noise, the internal noise and the stimulus fluctuations
σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σI þ σS
p

. The two sources of noise cannot be fitted separately because the
only difference between them is that the internal noise is also activated during the
delay (Fig. 7a). But internal noise does not have any impact during the delay. Thus
it is impossible to distinguish σI in the range 0; σmax

I

� �
where σmax

I is the maximum
σI without transitions during the delay. For this reason, we assume that there are no
transitions during the delay and we only fit the total noise σ. The parameters that
maximize Eq. 42 and their 95% confidence interval are k*= 0.012 ± 0.0011, α*=
0.70 ± 0.05, σ*= 0.52 ± 0.05, and τ*= 3.3 ± 0.5. To compute the confidence
intervals, we assume that the likelihood function around the best-fit parameters is a
multi-dimensional Gaussian. Then the confidence intervals are two times the
diagonal of the inverse of the Hessian matrix17,65. The Hessian matrix is the matrix
of second derivatives and we compute it numerically using the finite difference
method.

Although we cannot fit the internal and the stimulus sources of noise separately,
we can study the range of internal noise 0; σmax

I

� �
that produces a negligible

number of transitions (<1%) during the delay (up to 1 s) and thus is compatible
with the psychophysical data. For the parameters that maximize the likelihood this
range is (0, 0.32), indicating that the DWM is robust to perturbations during the
delay even when the magnitude of the internal noise represents a substantial part of
the total noise σmax

I =σS ¼ 0:8
� �

(Fig. 7d). We also compute the accuracy of the PI as
a function of the delay (Fig. 7d). To be able to compare both models, we adjust the
scaling factor of the evidence to match subjects’ accuracy for the shortest delay (μPI
= 0.44k×coh where k is the scaling of the DWM), and we use the parameters τ, σS,
and σi that maximize the DWM.

Model for n-choice decision making. To model a categorization task with n= 3
choices (Supplementary Fig. 5) we simulated a system of standard nonlinear
coupled rate equations (see e.g., Equation (38) in66):

τ
dr1
dt

¼ � r1 þ ϕ sr1 � crI þ I1
� �þ ξ1 tð Þ;

τ
dr2
dt

¼ � r2 þ ϕ sr2 � crI þ I2
� �þ ξ2 tð Þ;

τ
dr3
dt

¼ � r3 þ ϕ sr3 � crI þ I3
� �þ ξ3 tð Þ;

τ
drI
dt

¼ � rI þ ϕ
g
3

r1 þ r2 þ r3
� �þ II

� �
þ ξI tð Þ;

ð47Þ

where ξi is a Gaussian white noise process with amplitude σ for i= 1,2,3 and
amplitude σI for i= I, and with transfer function ϕ(x)= 0 for x < 0, ϕ(x)= x2 for
0 ≤ x ≤ 1 and ϕ xð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � 3=4

p
for x > 1. The n= 4 case is a simple extension of

these equations (the general system of rate equations for n > 2 can be found in66).
The parameters used for the simulations were s= 0.694, c= g=

ffiffiffi
5

p
, τ= 20 ms, τI

= 10 ms, II= 0, and σI= 0. For n= 3 the inputs were taken as I1= I+ 2ΔI/3, I2=
I− ΔI/3, I3= I− ΔI/3, while for n= 4 they were I1= I+ 3ΔI/4, I2= I− ΔI/4, I3=
I− ΔI/4, I4= I− ΔI/4, with I= 2.25 and ΔI= 0.03*s. For the top panels in Sup-
plementary Fig. 5 the values of the noise strength where σ= 0.18 and σ= 0.13 for
n= 3 and 4, respectively. The accuracy was calculated as the fraction of trials (N=
10,000) in which the highest firing rate at the end of the trial was r1.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data shown in Fig. 6 can be accessed here: https://doi.org/10.1371/journal.pcbi.1004667.

The data shown in Fig. 7 was extracted directly from the manuscripts35,40 using
GraphClick.

Code availability
The codes to simulate the DWM and canonical models and generate the figures of the
paper are available at https://bitbucket.org/delaRochaLab/flexible-categorization.

The code and analysis scripts for the spiking neural network simulations are available
at https://github.com/wimmerlab/flexcat-spiking.
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