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Little is known about the metabolic state ofMycobacterium tuberculosis (Mtb) inside the

phagosome, a compartment inside phagocytes for killing pathogens and other foreign

substances. We have developed a combined model of Mtb and human metabolism,

sMtb-RECON and used this model to predict the metabolic state of Mtb during

infection of the host. Amino acids are predicted to be used for energy production

as well as biomass formation. Subsequently we assessed the effect of increasing

dosages of drugs targeting metabolism on the metabolic state of the pathogen and

predict resulting metabolic adaptations and flux rerouting through various pathways. In

particular, the TCA cycle becomes more important upon drug application, as well as

alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, while glycine,

serine, and threonine metabolism become less important. We modeled the effect of 11

metabolically active drugs. Notably, the effect of eight could be recreated and two major

profiles of the metabolic state were predicted. The profiles of the metabolic states of

Mtb affected by the drugs BTZ043, cycloserine and its derivative terizidone, ethambutol,

ethionamide, propionamide, and isoniazid were very similar, while TMC207 is predicted

to have quite a different effect on metabolism as it inhibits ATP synthase and therefore

indirectly interferes with a multitude of metabolic pathways.

Keywords: metabolic model, host-pathogen interaction, flux balance analysis, drug response, antibiotics,

Mycobacterium tuberculosis

INTRODUCTION

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is an intracellular pathogen
that thrives inside the phagosome of the host’s macrophages (Gengenbacher and Kaufmann, 2012;
Zondervan et al., 2018). This environment prevents obtaining accurate in vivo measurements
characterizing the metabolic state of the pathogen during infection. Genome-scale models (GEM)
of metabolism have been proposed as efficient tools to explore bacterial metabolism, even in
conditions difficult to access experimentally. Flux balance analysis (FBA) is a widely used approach
to study GEMs and relies on the definition of an objective function that characterizes the metabolic
objective of the organism under study (Orth et al., 2010). Predictions made using GEMs are
highly dependent on the objective that is being used and the constraints placed on the uptake and
excretion of nutrients and metabolites. To perform predictions on in vitro growth, most often a
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biomass reaction is selected as objective function for
maximization. The biomass reaction details the biomass
composition in terms of its constituents such as proteins, lipids
and nucleic acids. This composition might vary in different
growth conditions (Hanegraaf and Muller, 2001). Biomass as
an objective function has been used for the earliest genome-
scale metabolic models of Mtb (Beste et al., 2007; Jamshidi
and Palsson, 2007) as well as more recent models (Lofthouse
et al., 2013; Rienksma et al., 2014; Vashisht et al., 2014; Garay
et al., 2015; Ma et al., 2015; Puniya et al., 2016; Kavvas et al.,
2018). Recently, a condition-specific biomass reaction has
been formulated for Mtb inside the host by integrating model
sMtb (Rienksma et al., 2014) and gene expression data during
on-going infection (Rienksma et al., 2018).

In silico gene knockout analysis has been the method of choice
to predict metabolic drug targets, in the form of genes and
their associated enzyme products (Beste et al., 2007; Jamshidi
and Palsson, 2007; Kavvas et al., 2018). Such methods are based
on analyzing the effect of completely blocking the flux through
the corresponding reactions on growth predictions. This full
blockage approach would fail to predict cases wherein drugs
reach Mtb in relatively small amounts so that enzyme function
is only partly lost, allowing Mtb to counteract the negative effects
of such a drug by altering its metabolic state to overcome non-
optimal fluxes due to the drug affected enzymes. Bhat et al. (2010)
developed a method to study dose dependent effects of isoniazid
on the metabolic state that relied on simulating the effects of
partial loss of function of the affected enzymes.

To capture the interaction between Mtb and its host on a
metabolic level, a model of macrophage metabolism is required.
Nutrients for Mtb are obtained from the phagosome, a cellular
compartment specific to macrophages, and from the cytosol
after Mtb gains access (Lerner et al., 2018). The phagosome
represents a nutrient-poor, hypoxic, and nitrosative environment
wherein Mtb is able to survive (Schnappinger et al., 2003).
Nevertheless, the nutrients available in the phagosome, arguably
after cytosolic access, are predicted to be varied (Beste et al.,
2013; Zimmermann et al., 2017), and as such, allow metabolic
flexibility of Mtb, which is best captured using a combined host-
pathogen model. Although a host-pathogen metabolic model is
more elaborate, and introduces more uncertainty and variability,
several gene expression datasets have been introduced that cover
both host and pathogen (Rienksma et al., 2015; Zimmermann
et al., 2017), and are suited to constrain such a model to make
it condition-specific.

For Mtb, a host-pathogen model was first created by Bordbar
et al. (2010), based on iNJ661, a well-known Mtb model
published in 2007 (Jamshidi and Palsson, 2007) and RECON 1,
the first global human metabolic reconstruction (Duarte et al.,
2007). The combined model allowed simulation of metabolic
changes during infection and three distinct pathological states of
Mtb were described.

Improved versions of the individual models describing
the metabolism of host and pathogen are available. Model
sMtb is a comprehensive model of Mtb metabolism with
an increased scope of the underlying metabolic network and
increased predictive power regarding the metabolic state and

gene essentiality (Rienksma et al., 2014). RECON 2.2 (Thiele
et al., 2013; Swainston et al., 2016), almost doubles the size of
the metabolic network of RECON 1. Here, we integrate sMtb and
RECON 2.2 to create anMtb-Macrophage model, sMtb-RECON.
The combined model has condition-specific objective functions
for both pathogen and host, based on dual RNA-sequencing data.
By applying various knownmetabolic drugs in silico, we highlight
pathways that are important for Mtb to escape eradication by
drug and host. Drugs that specifically target these pathways could
therefore prove to be a valuable addition to the existing drugs.

MATERIALS AND METHODS

Mtb and Human Models of Metabolism
We used the genome-scale metabolic model of Mycobacterium
tuberculosis called sMtb, in silico Mycobacterium tuberculosis
which represents a modification of the model presented in
Rienksma et al. (2014). The GEM reconstruction of human
metabolism RECON 2.2 (Swainston et al., 2016) was used as a
model representing the host.

Creating a Combined sMtb-RECON Model
From the biomass precursors of the biomass reaction of RECON
2.2, all precursors were selected that could be present in the
cytoplasm. As Mtb is known to be able to escape from the
phagosome to the cytosol (van der Wel et al., 2007) and no
phagosomal compartment was present in RECON 2.2 we took all
metabolic precursors from the cytoplasm as biomass precursors
for the macrophage condition-specific biomass reaction. A
macrophage condition-specific biomass reaction was created
using this list of biomass precursors and the gene expression
profile of the macrophage-like THP-1 cells (Rienksma et al.,
2015). The same method was applied to create an Mtb condition-
specific biomass reaction using the gene expression profile of
the Mtb-like Mycobacterium bovis BCG gene expression profile
(Figure 1, up to the lower right panel). This condition-specific
biomass reaction is used as a proxy for the number of available
nutrients and their corresponding maximum uptake rates for
Mtb in the combined sMtb-RECON model (Figure 1, middle
right panel).

Constraining the Combined Model With
Gene Expression Data
Model sMtb and RECON 2.2 were constrained as described in
Rienksma et al. (2018), using raw sequence read data available
in the EMBL-EBI European Nucleotide Archive under the
Accession No. PRJEB6552, http://www.ebi.ac.uk/ena/data/view/
PRJEB6552 for M. bovis BCG cells infecting THP-1 cells. In
brief, reads mapping to either M. bovis BCG genome or human
transcriptome were used to constrain each model, respectively.
In brief, reads aligning to each gene in the model were added.
Genes with <100 counts per million were considered lowly
expressed and assigned a count value of zero. Gene count values
were transferred to their corresponding reactions: for reactions
catalyzed by isozymes, gene counts were added; for reactions
catalyzed by a protein complex, the smallest number of counts
associated to genes encoding a part of such a complex was
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FIGURE 1 | Predicting the metabolic state of Mtb during infection and drug application. Schematic overview of the steps required to calculate a metabolic state

of Mtb during infection from the upper left panel following the arrows to the upper right panel. Mtb (yellow shape) is depicted inside the phagosome (light blue shape) of a

(Continued)
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FIGURE 1 | macrophage (gray shape). Metabolisms of both Mtb and Macrophage are indicated with diamonds and arrows. Yellow diamonds represent metabolites,

blue diamonds represent biomass precursors, gray/brown/red diamonds represent phagosomal nutrients, and the large green diamond represents the

condition-specific biomass reaction. Gray arrows represent metabolic conversion rates, green arrows represent uptake rates, and red arrows represent secretion

rates, wherein the thickness of the arrows is proportional to the rate. Red crosses represent blocked metabolic conversions. Upper left panel: A constraint-based

genome-scale model of Mtb metabolism is coupled to one of human metabolism and a combined model is obtained. Middle left panel: Metabolic conversion rates

(i.e., metabolic fluxes) are constrained proportional to mRNA transcript abundance in both Mtb and macrophage. Lower left panel: For each potential biomass

precursor, the flux through metabolism toward that precursor is maximized, both for Mtb and the macrophage, obtaining two condition-specific biomass reactions.

Lower right panel: The constraints based on mRNA transcript abundance are removed from the combined model. Middle right panel: The nutrients available for Mtb in

the phagosome, and their maximum uptake rate are set according to the condition-specific biomass reaction of the macrophage. Subsequently, the condition-specific

biomass reaction of Mtb is maximized, while the total flux through enzymatically-catalyzed reactions is minimized. Upper right panel: The rate of an

enzymatically-catalyzed reaction is constricted by the effect of a metabolically active drug (red cross within the rounded square) and metabolic rerouting occurs toward

a part of metabolism that contains a relatively higher number of enzymatically catalyzed reactions.

assigned to the reaction; for reactions that can be catalyzed
by different protein complexes, the smallest number of counts
associated to genes encoding a part of a complex was assigned
to each complex and the sum of the counts for all the complexes
was assigned to the reaction. Total number of counts assigned to
each reaction was normalized by dividing by the largest number
of counts assigned to any reaction in the corresponding model,
resulting in a value ranging between 0 and 1 for each enzyme-
catalyzed reaction. Normalized values were used as upper (upper
and lower) bounds on unidirectional (bidirectional) reactions.

Obtaining a Condition-Specific Biomass
Reaction for sMtb and a
Phagosomal Environment
After assigning counts to the reactions in both sMtb and RECON
2.2 a condition-specific biomass reaction was obtained for sMtb
as described in Rienksma et al. (2018). For RECON 2.2 a similar
approach was taken. A list of cytoplasmic biomass precursors,
obtained from the biomass reaction present in RECON 2.2 was
used for maximization of said precursors one-by-one, while
keeping all uptake rates for model RECON 2.2 unconstrained.
The resulting condition-specific biomass reaction, which is in
essence a ratio between different cytoplasmic biomass precursors,
was used as a proxy for the phagosomal composition. These
biomass precursor values were subsequently linearly scaled such
that all values range between 0 and 1 mmol/h by dividing each
value by the largest value obtained.

Applying Constraints and Calculating a
Reference Metabolic State
A reference metabolic state, representing non-drugged growth
of Mtb in the phagosome, was calculated in a similar manner
as previous efforts (Rienksma et al., 2018), using a bi-
objective optimization method, with the exception of using the
calculated phagosomal composition and its corresponding values
as maximal allowable nutrient uptake rates. The ratio between
biomass formation and enzyme usage is expressed by fr . There
exists a range wherein biomass formation and enzyme usage
are balanced. An fr value of 0.8 was used for these calculations
(Rienksma et al., 2018), wherein

fr =
fb

∑n
i=1 fe,i

and fe,i represents the weight factor for enzymatically catalyzed
reaction i and fb represents the weight factor for the
biomass reaction.

Creating a Weights Vector for Each
Metabolic Drug
A list of available metabolic drugs was created and the genes
encoding the enzymes that are known or expected to be affected
by these drugs were listed (Table 1). For each drug, i, a vector,
cd,i, containing weights ranging between 0 and 1 was created. A
0 represents a non-affected reaction and a 1 represents a fully
affected reaction. A reaction that, for example, is catalyzed by
three isozymes, and from among these isozymes only one is
affected by the respective drug, would receive a value of 0.33.
Likewise, if two out of the three isozymes are affected by the drug,
a value of 0.67 is be attributed to that reaction. On the other hand,
if the reaction would be catalyzed by a complex of three enzymes,
a value of 1 would always be attributed to the respective reaction
if at least one enzyme in the complex would be affected by the
respective drug.

Calculating Drugged Metabolic States of
Mtb With sMtb-RECON
After obtaining drug weight vectors, cd,i for each drug, first, the
bi-objective optimization problem as described in Rienksma et al.
(2018), was solved:

w = max
{(

∑n

i=1
−fe,i · |vi|

)

+ fb · vb

}

subject to:

S · v = b

1 ≤ v ≤ u,

wherein w is the objective function value, vi represents the flux or
rate of a reaction catalyzed by at least one enzyme; fe,i represents
the weight factor for each of those reactions; vb represents
the specific growth rate, i.e., the flux through the condition-
specific biomass reaction; fb represents the weight factor for the
biomass reaction; n is the total number of reactions catalyzed
by at least one enzyme; S represents the stoichiometric matrix;
v represents a vector with all fluxes (comprising vi and vb);
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TABLE 1 | Drugs acting on metabolic enzymes.

Drug Mode of action Target

Isoniazid Inhibits mycolic acid

synthesis and folate

synthesis

Activated by KatG,

targets InhA, KasA, and

DfrA

Ethambutol Inhibits arabinogalactan

synthesis

Possibly EmbB

Ethionamide/prothionamide* Inhibits mycolic acid

synthesis

Activated by EthA,

targets InhA

Cycloserine/terizidone* Inhibits peptidoglycan

synthesis by blocking

the synthesis and use

of D-alanine

Targets Alr and ddlA

Para-amino salicylic

acid

Inhibits folate

metabolism

DfrA

TMC207 Inhibits ATP synthase AtpE

BTZ043 Inhibits essential

cell-wall arabinan

synthesis

DprE1

V-13-011503/V-13-

012725

Inhibits cholesterol

catabolism

HsaAB

V-13-009920 Inhibits the

methylcitrate cycle

PrpC

*Drugs with common targets have been grouped.

b represents a vector with zeros; l represents a vector with
lower bounds for all fluxes and u represents a vector with
upper bounds for all fluxes. The lower bounds for the nutrients
available to Mtb in model sMtb-RECON were set according
to the condition-specific biomass reaction obtained for the
macrophage part.

Afterwards, the bi-objective optimization problem is altered
such that the objective function value that was obtained is set
as a constraint. A new optimization problem is formulated to
calculate the minimal flux through the reaction(s) affected by the
respective drug:

w′ = min
{

cd,i · v
}

subject to:

w =

(

∑n

i=1
−fe,i · |vi|

)

+ fb · vb

S · v = b

1 ≤ v ≤ u.

Wherein w’ represents the new objective function value and cd,i
represents the drug weight vector for the current drug, i. Finally,
a third optimization problem is formulated:

w = max
{(

∑n

i=1
−fe,i · |vi|

)

+ fb · vb

}

subject to:

fd · w
′ =

{

cd,i · v
}

S · v = b

1 ≤ v ≤ u.

Wherein fd is a value that is gradually lowered from 1 to 0 to
represent increasing drug dosages, wherein a value of 1 represents
no drug is applied or total ineffectiveness of the drug, and a value
of 0 represents total effectiveness of the drug.

RESULTS

Host-Pathogen Model sMtb-RECON
Model sMtb-RECON has a total of 8,987 reactions and 13.4%
are from Mtb. Model sMtb-RECON contains 6,373 metabolites
and 2,605 genes, of which 16.5 and 35.7% are from Mtb,
respectively. RECON 2.2 has 9 compartments in total (number
of metabolites indicated between brackets): cytoplasm (1,918),
extracellular space (770), Golgi apparatus (312), lysosome (291),
mitochondrion (756), nucleus (161), endoplasmic reticulum
(675), peroxisome (440), and the mitochondrial intermembrane
space (1). No phagosome compartment is available in RECON
2.2. There is a lysosome, but Mtb is known to block phagosome-
lysosome fusion, therefore, the metabolites in this compartment
are not likely to be available as nutrients for Mtb. Mtb is however
assumed to acquire access to the cytosol. As this compartment
contains the majority of the biomass precursors for the host,
Mtb is assumed to have access to these. The cytosolic biomass
precursors in model RECON 2.2 are thus set as metabolites
that can be taken up by the Mtb part of model sMtb-RECON.
A list of the metabolites and their maximal uptake rates is
given in Additional File 1. Model sMtb-RECON is available in
Additional File 2 and bounds used in the simulations are given
in Additional File 3.

Modeling Host-Pathogen Interaction
We extended the method presented in Rienksma et al. (2018)
to integrate model and gene expression data to arrive at a
model describing the metabolic state of the system during
infection. The approach is summarized in Figure 1. We used dual
RNA sequencing data obtained 24 h after exposing macrophage-
like THP-1 cells to Mycobacterium bovis BCG, a close relative
to Mtb (Rienksma et al., 2015).

First, the combined sMtb-RECONmodel wasmodified so that
all reversible reactions of theMtb part of sMtb-RECONwere split
in a forward and backward reaction, to make the sMtb part of the
model irreversible (thus bringing the total number of reactions
to 9,408). Then the combined model was constrained using the
dual RNA seq data and condition-specific biomass reactions were
obtained, for host and pathogen, by maximizing each human
biomass precursor one-by-one for both the Mtb and the human
part of sMtb-RECON. Afterwards, the constraints placed on
sMtb-RECON were removed and the condition-specific biomass
reaction of the human part of sMtb-RECON was used as a
proxy for nutrient availability for the Mtb part of sMtb-RECON.
The maximum allowable uptake rates of the Mtb part were
thus limited to the maximum obtainable fluxes for each human
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biomass precursor. Thereafter, all reactions affected by a drug
were gradually constrained as metabolism starts to reroute.

Using this method, uptake and secretion profiles can be
predicted. This allows prediction of metabolites that are taken up
or secreted even if in the starting model no additional constraints
are imposed to limit uptake or secretion rates, apart from the
oxygen uptake rate. Mtb encounters a hypoxic environment
inside the host (Schnappinger et al., 2003; Matta and Kumar,
2016; Prosser et al., 2017). Therefore, we used the oxygen uptake
rate to constrain the model to such an extent, that prediction of
uptake and secretion rates becomes feasible without arbitrarily
chosen limits on other uptake and/or secretion rates.

For the simulations of metabolic states using sMtb-RECON,
three different assumptions have been made. The first being that
the non-growth associated maintenance flux is 0.1 mmol gDW

−1

h−1 or higher, as this maintenance flux was shown to have the
best fit to experimental data (Rienksma et al., 2014), the second
being that the condition-specific biomass reaction is maximized
and the third being that overall enzyme usage is minimized.
The first requirement is set as a constraint, while requirements
two and three are captured as a bi-objective function in a
bi-objective optimization problem. The weight factor ratio, fr ,
between the condition-specific biomass reaction weight, fb, and
the total enzymatically catalyzed reactionweight, fe, equals 0.8. By
lowering this factor, more emphasis is put on the minimization of
enzyme usage, while increasing this factor puts more emphasis
on attaining a higher value for the condition-specific biomass
reaction. Lowering this factor would result in a larger part of
nutrients being used by Mtb to generate energy, while increasing
this factor would result in the uptake profile looking more similar
to the condition-specific biomass reaction itself. Lowering and
raising fr is however limited to a range wherein a single objective
of the bi-objective optimization problem is not dominant over
the other (Rienksma et al., 2018).

Metabolic State During Infection
Mtb is predicted to take up and secrete a plethora of different
metabolites at varying rates (Figures 2–5). A comprehensive
list of predicted uptake and secretion rates is given in
Additional File 1.

Almost all amino acids are predicted to be taken up by
Mtb (Figure 2). Most notably serine and proline are predicted
to be taken up at relatively high rates. Glycine uptake and/or
secretion rates remain largely underdetermined, in fact using
this approach the model is not able to predict whether it is
produced or consumed. Notably, our approach also allows a
small production of glutamine, glutamate, aspartate and alanine.
Glutamate can be interconverted to glutamine by, for example,
glutamine synthase at the expense of ATP (Tullius et al., 2003).
In this way any additional uptake of glutamate can serve as
a potential source of glutamine, or the other way around,
although ATP expenditure limits this interconversion. Therefore,
the ranges wherein glutamate and glutamine are predicted to be
taken up are equal. The pattern observed in Figure 2 is not a
reflection of the coefficients for the amino acids in the condition-
specific biomass reaction of sMtb, as one would perhaps expect.
This can be seen in Figure 6, where one would expect that

FIGURE 2 | Predicted amino acids uptake and secretion rates by Mtb in the

host. Predicted ranges of uptake and secretion rates (mmol gDW
−1 h−1) of

amino acids by Mtb inside the host are indicated by blue bars. Negative values

denote uptake and positive values denote secretion.

all amino acids that are taken up, would be incorporated into
biomass, which is obviously not the case. By multiplying the
flux through the condition-specific biomass reaction with the
respective column of the stoichiometric matrix corresponding
to this biomass reaction, the fluxes required for synthesis of the
individual biomass precursors can be obtained.When comparing
the fluxes required for biomass synthesis with their respective
predicted uptake rates, most notably alanine and aspartate are
predicted to be synthesized by Mtb (Figure 6, upper panel). On
the other hand, almost all serine, proline and glycine is used
for purposes other than biomass synthesis, i.e., ATP and NADH
production required for maintenance (Figure 6, lower panel).
Such behavior has been described in cancer cells (Tedeschi et al.,
2013; Amelio et al., 2014), but not for Mtb.

Glycerol-3-phosphate is a lipid (precursor) that is taken
up in a relatively high amount (Figure 3). It is known that
glycerol-3-phosphate serves as a major carbon source for several
intracellular pathogens (Eisenreich et al., 2010) and it has been
suggested that glycerol-3-phosphate might serve as an alternative
carbon source for Mtb in vivo (Pieters and McKinney, 2013).

Glycerolipids such as diacylglycerol (DAG), triacylglycerol
(TAG), and phosphatidylcholine are predicted to be taken up as
well. Most notably, DAG is taken up in relatively large amounts
(0.5 mmol gDW

−1 h−1). These three metabolites are closely
related, as phosphatidylcholine can be converted to DAG and
choline phosphate by phospholipase C (Bopape et al., 2004).
DAG can be converted to TAG, which is subsequently stored
in lipid droplets (Daniel et al., 2011). Unsaturated fatty acids
(octadecenoic and hexadecenoic acids) are predicted to also be
taken up. On the other hand, a range of saturated fatty acids
are predicted to be secreted. These fatty acids are derived from
TAG and DAG, indicating that there is a higher requirement
for the glycerol backbone of TAG and DAG than for the
attached fatty acids.
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FIGURE 3 | Predicted lipid uptake and secretion rates by Mtb in the host. Predicted ranges of uptake and secretion rates (mmol gDW
−1 h−1) of lipids by Mtb inside

the host are indicated by blue bars. Negative values denote uptake and positive values denote secretion.

FIGURE 4 | Predicted uptake and secretion rates of cofactors and small molecules by Mtb in the host. Predicted ranges of uptake and secretion rates (mmol gDW
−1

h−1) of cofactors and small molecules by Mtb inside the host are indicated by blue bars. Negative values denote uptake and positive values denote secretion.

FIGURE 5 | Predicted uptake and secretion rates of molecular oxygen, carbon dioxide and other small molecules by Mtb in the host. Predicted ranges of uptake and

secretion rates (mmol gDW
−1 h−1) of oxygen, carbon dioxide, and other small molecules by Mtb inside the host are indicated by blue bars. Negative values denote

uptake and positive values denote secretion.

Small metal cofactors, such as molybdate and iron are
predicted to be taken up (Figure 4). Mtb is known to chelate
iron using siderophores, called mycobactins, via a specialized
ESX-3 system (Siegrist et al., 2009). This ESX-3 system is
essential for in vitro growth (Griffin et al., 2011). In sMtb,
iron as an ion or element, without being integrated in a larger
molecule, is not incorporated in the condition-specific biomass

reaction, as is the case in most biomass reactions of models of
Mtb metabolism (Jamshidi and Palsson, 2007; Rienksma et al.,
2014). However, iron incorporated in larger molecules, such
as heme groups, is present in the condition-specific biomass
reaction(s) of sMtb.

The excretion of orthophosphate and nitrite (Figure 5) are
probably artifacts from the model, where phosphate might be
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FIGURE 6 | Usage of amino acids derived from the host. Top: Rate of amino acids synthesis by Mtb for biomass incorporation relative to their respective uptake rates.

Bottom: Relative rate of amino acid uptake that is used in processes other than biomass synthesis.

derived from the phosphate group of glycerol-3-phosphate and
nitrite could be related to the nitrogen groups of the variety
of amino acids that are taken up. The model predictions show
that free ammonia can be taken up as well as secreted at about
equal rates, so the fate of ammonia uptake or secretion remains
inconclusive from these predictions.

The oxygen uptake rate equals 0.01 mmol gDW
−1 h−1 which

equals the imposed maximum uptake rate (Figure 5). Decreasing
the lower bound on oxygen exchange, i.e., allowing a higher
uptake rate of oxygen, results in a higher specific growth rate. As
such, the system is limited by oxygen and it is obvious that oxygen
is taken up at its maximum rate. Carbon dioxide is secreted
mainly due to respiration.

Metabolic States of Drugged Mtb:
Rerouting Metabolism
Table 1 illustrates the mode of action of 12 anti-TB drugs
known to interfere with metabolic enzyme activity with known
targets. To simulate increasing dosages of these drugs, we
gradually decreased the flux through the reactions catalyzed by
the affected enzymes.

Of the 12 drugs in Table 1, some are grouped as they
have the same enzyme target, resulting in nine drugs or
groups of drugs with different targets. No effect on Mtb
metabolism could be predicted for three of these: V-13-
011503/V-13-012725, V-13-009920, and para-amino salicylic
acid. The drugs BTZ043, cycloserine/terizidone, ethambutol,

ethionamide/propionamide, and isoniazid are predicted to have
a very similar effect on metabolism and their effect is therefore
grouped (Figures 7–9, left panels), even though their enzymatic
targets are very different (Table 1). Notably, TMC207 has a very
different effect on metabolism (Figures 7–9, right panels).

For TMC207, the flux through alanine, aspartate, glutamate,
arginine, and proline metabolism becomes relatively low
(Figure 7), while the flux through porphyrin metabolism
and fructose metabolism becomes relatively high, as the
percentage of constriction of the reactions affected by
TMC207 increases (Figures 8, 9). Porphyrins are heterocyclic
compounds able to form metal complexes, such as heme,
the latter attenuating growth of Mtb if absent from the
growth medium (Owens et al., 2013). In addition, with
moderate constriction (around 40% in Figures 8, 9) flux is
lowered through pathways such as cholesterol degradation
and cofactor metabolism in general while flux trough these
pathways is relatively large when the drug-affected reactions
are constrained mildly (<10%) or heavily (>70%). Metabolism
of glutathione, an antioxidant, shows behavior opposite to
that of cholesterol degradation and cofactor metabolism in
general (Figure 9).

The specific growth rates gradually approach zero upon the

application of the drugs. The application of TMC207 is predicted

to result in a relatively faster drop to zero growth rate (at 80%

restriction of the flux through the affected reactions instead of
100%) (Figure 10).
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FIGURE 7 | Flux rerouting through amino acid metabolism and major pathways upon application of drugs. Heat maps indicate a predicted relative increase (pink) or

decrease (light blue) through various pathways upon the application of a variety of drugs. The logarithm of the sum of all absolute fluxes is given per pathway (values

are indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates the percentage of restriction of the drug-affected

reaction(s). Left: average of BTZ043, cycloserine/terizidone, ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.

FIGURE 8 | Flux rerouting through cell wall component metabolism, lipid metabolism, and cofactor metabolism upon application of drugs. Heat maps indicate a

predicted relative increase (pink) or decrease (light blue) through various pathways upon the application of a variety of drugs. The logarithm of the sum of all absolute

fluxes is given per pathway (values are indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates the percentage

of restriction of the drug-affected reaction(s). Left: average of BTZ043, cycloserine/terizidone, ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.

DISCUSSION

Mtb is under considerable stress from the host during infection.

This situation can worsen with the application of drugs. As
the dosage of a metabolic drug(s) increases, so does the

pressure on Mtb to circumvent the effects of the(se) drug(s) by

rerouting metabolism. The percentage of restriction, as shown in
Figures 7–10 can be viewed as a proxy for the drug dosage, as

the effectiveness of a drug is dependent on its ability to interact

with as many target enzymes as possible. As metabolism is an
interconnected network, alternative metabolic states can exist to
bypass the part of Mtb metabolism that is malfunctioning due to
the effect of the drug(s).

The host-pathogen model first created by Bordbar et al.
(2010), iAB-AMØ-1410-Mt-661, contained 2,071 genes
associated to 4,490 reactions describing interconversions
between 3,399 metabolites. The sMtb-RECON model here
presented represents a major improvement in scope. The
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FIGURE 9 | Flux rerouting through sugar metabolism, nucleotide metabolism, and various other metabolic pathways upon application of drugs. Heat maps indicate a

predicted relative increase (pink) or decrease (light blue) through various pathways upon the application of a variety of drugs. The logarithm of the sum of all absolute

fluxes is given per pathway (values are indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates the percentage

of restriction of the drug-affected reaction(s). Left: average of BTZ043, cycloserine/terizidone, ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.

FIGURE 10 | Growth rate decline upon application of drugs. Blue line:

predicted average specific growth rate of Mtb upon application of BTZ043,

cycloserine/terizidone, ethambutol, ethionamide/propionamide, or isoniazid.

Red line: predicted average specific growth rate of Mtb upon application of

TMC207.

number of reactions and metabolites has almost doubled (8,987
reactions and 6,373 metabolites in sMtb-RECON) whereas there
has been a 25% increase in the number of associated genes
(2,605). The increase in reactions and metabolites is mainly
driven by the expanded coverage of RECON 2.2 (Thiele et al.,
2013) compared to RECON 1 (Duarte et al., 2007). RECON 1

accounts for 2,766 metabolites and 3,311 metabolic reactions
whereas RECON.2.2 describes 5,324 metabolites and 7,785
reactions. In addition to the expanded scope, reactions in
RECON 2.2 are mass and charge balanced, which is not always
the case in RECON 1. This curation effort rendered RECON 2.2
able to correctly predict ATP yield on different carbon sources.
Even though, the generation of iAB-AMØ-1410-Mt-661 entailed
a manual curation step some of these unbalanced reactions can
still be found in this model, which limits its predictive value
regarding energy generation by the host.

Both RECON 1 and RECON 2.2 describe a relatively similar
number of genes 1,496 and 1,675, respectively for. The increase in
the number of genes in sMtb-RECON compared with iAB-AMØ-
1410-Mt-661 is mainly due to the more detailed description of
metabolism of Mtb provided by sMtb compared to iNJ661 (on

which the iAB-AMØ-1410-Mt-661 model was based). Model
sMtb was seen to outperform previously published models,
among which iJN661, regarding predictions on gene essentiality,
metabolic state, and drug associated phenotype. Additionally,
sMtb includes pathways, such as the cholesterol degradation
pathway, specifically relevant for intracellular growth and
survival. sMtb-RECON inherits the respective improvements of
sMtb and RECON 2.2.

Both sMtb and iAB-AMØ-1410-Mt-661 where specifically
designed to model in vivo conditions of Mtb and in both cases,
the biomass reaction was modified through incorporation of
gene expression data. However, important differences appear.
In the case of AB-AMØ-1410-Mt-661, the microarray data
described gene expression levels in the host (Thuong et al., 2008),
whereas the dual RNA seq data used in this study captures the
transcriptional response of both the host and the pathogen.
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Data used in this study were obtained for M. bovis BCG 24 h
after infection of the human macrophage-like cell line THP-1.
Mtb and M. bovis BCG are closely related, however differences
between both renders Mtb a human pathogen andM. bovis BCG
a vaccine strain (O’Reilly and Daborn, 1995). When tuberculosis
as a human disease is studied, it is obvious that M. bovis BCG
is not suited as a study object. However, here metabolism is
modeled to ultimately identify response to drugs that can lead
to the development of new drugs or therapeutic strategies. Even
though many of the differences between both species pertain
metabolic capabilities (Rehren et al., 2007), when the entire
metabolism of both species is compared, only minor differences
appear (Lofthouse et al., 2013). So, if a metabolic drug is found
that can eradicate M. bovis BCG, it is likely that it can eradicate
Mtb as well. There are however obvious differences between Mtb
andM. bovis BCG and some having an impact on metabolism are
discussed below.

M. bovis BCG has a specific point mutation of a C to G
in position 169 of the pncA gene encoding pyrazinamidase
(Scorpio et al., 1997). This mutation results in a loss of activity
of the pyrazinamidase. The effective first line drug pyrazinamide
(PZA) is a prodrug that is converted to its active form by this
pyrazinamidase. The loss of activity thus has severe implications,
as mycobacteria having this point mutation are resistant to PZA
(Juréen et al., 2008). Another difference between M. bovis BCG
and Mtb lies within their regulation of cholesterol degradation.
Cytochrome P450s Cyp125 and Cyp142 are encoded in the
genomes of both M. bovis BCG and Mtb. These cytochrome
P450s catalyze the first steps of the degradation of the side
chain of cholest-4-en-3-one (Ouellet et al., 2011). In M. bovis
BCG cyp142 contains a specific point mutation, resulting in
a premature stop codon and a non-functional product. There
is thus redundancy and thus backup of cholesterol oxidation
capacity in Mtb as compared to M. bovis BCG (Driscoll et al.,
2010). In addition to these point mutations altering the function
of very specific genes, there are whole genes present in the
genome of Mtb, while absent in the genome of M. bovis BCG,
and vice versa. One such example is the type VII ESX secretion
systems. M. bovis BCG lacks the ESX-1 secretion system and
ESX-1 secreted proteins EsxA (ESAT-6) and EsxB (CFP-10)
(Mahairas et al., 1996; Gey van Pittius et al., 2001; Gröschel et al.,
2016). There is increasing evidence that this system is used to
access the cytosol already during the early stages of infection
(Manzanillo et al., 2012; Simeone et al., 2012; Augenstreich et al.,
2017). The absence of these genes perhaps causes a difference
in nutrient availability for Mtb and M. bovis BCG. The ESX-
1 secretion system and secreted protein of Mtb could provide
access to a whole range of nutrients that M. bovis BCG under
the same conditions does not have access to. This would imply
that the metabolic states of both bacteria could vary significantly
under intra-host conditions. Dual RNA sequencing performed
on Mtb (Zimmermann et al., 2017) might therefore result in an
improved modeling of the intracellular state of Mtb, however
currently available data only represent the very early response
(4 h post infection).

Similarly, data from the human macrophage-like cell line
THP-1 have been used to characterize the host. These cells were

induced to differentiate into mature macrophages and they have
been shown to behave, after infection, in a manner similar to
that of monocyte-derived macrophages (Riendeau and Kornfeld,
2003). They have been shown to exhibit similar responses
regarding receptor expression, bacterial uptake, survival, and
drug response (Stokes and Doxsee, 1999). Similarities also appear
regarding metabolic responses, such as levels oxygen radicals
and lack of nitric oxide production (Sly et al., 2001; Fontán
et al., 2008), however we cannot exclude other differences
in metabolism.

For the simulations of metabolic states using sMtb-RECON
we have considered biomass maximization and minimization
of overall enzyme utilization using a bi-objective optimization
approach. However, this does not result in the direct uptake
of all amino acids in a ratio that is proportional to the
ratio of the corresponding coefficients in the condition-specific
biomass reaction (Figure 6). As the direct uptake of amino acids
represents a much shorter, and thus less enzyme intensive route,
such a route would be preferred if the only function of the amino
acids were direct incorporation into biomass. This is however
not the case, because the amino acids are also used to generate
energy in the form of ATP. Whether amino acids are required to
synthesize biomass or are required to generate energy or both,
it has been shown that Mtb is reliant on amino acids to thrive
within the host (Gouzy et al., 2013, 2014a,b).

Some nutrients are closely related and their interconversion
involves the usage of one or only a few enzymes. These
interlinked metabolites, such as glutamate/glutamine and
TAG/DAG/phosphatidylcholine can be relatively easily
substituted and predictions on their individual uptake and/or
secretion rates can only be derived from the predictions of their
combined uptake and/or secretion rate. This is especially visible
in Figure 2, where the ranges of uptake and secretion rates are
equal for both glutamate and glutamine.

Perhaps surprisingly, the metabolic states predicted
with sMtb-RECON after perturbation with BTZ043,
cycloserine/terizidone, ethambutol, ethionamide/propionamide,
or isoniazid are all highly similar. For some drugs, such as
isoniazid and ethionamide/propionamide, this can be explained
by an overlapping enzyme target InhA. Inhibition of this enoyl
acyl carrier protein (ACP) reductase is one of the most effective
ways to eradicate Mtb. This enzyme catalyzes 2-trans-enoyl ACP
reduction and catalyzes the final step in fatty acid synthesis and
is involved in mycolic acid synthesis. Inactivation of InhA results
in cell wall alterations and eventually lysis of the cell (Duan et al.,
2014). However, the mycolic acid synthesis inhibition caused
by isoniazid and ethionamide/propionamide is not directly
related to the cell wall synthesis inhibiting effects of ethambutol
and cycloserine/terizidone. Even though there is evidence
that arabinogalactan and mycolic acids are physically attached
to each other, this is not reflected in model sMtb-RECON
(Birch et al., 2008).

Nevertheless, both mycolic acids and arabinogalactan are part
of the condition-specific biomass reaction ofMtb. The condition-
specific biomass reaction of Mtb is based on RNA sequencing
data derived from M. bovis BCG 24 h post infection (Rienksma
et al., 2015). The ratio between the metabolic precursors in
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this biomass reaction is constant within model sMtb-RECON.
Therefore, a decrease in the ability to synthesize mycolic acids,
which are part of the biomass reaction, by constraining the
reactions catalyzed by InhA, results in a decreased maximally
achievable value of the condition-specific biomass reaction. This
in turn will result in a decreased amount of arabinogalactan
needed to achieve this value. The minimization of enzyme
usage ensures that the overall flux through the arabinogalactan
synthesis pathway is minimized. This process works the other
way around as well. A limitation of the flux through the
arabinosyltransferase EmbB, that is required for the synthesis
of arabinogalactan (Goude et al., 2009), will result in a lower
value of the condition-specific biomass reaction, in turn leading
to a lower need of mycolic acids. The mycolic acid synthesis
pathway is a highly linear pathway, and completely unidirectional
in model sMtb-RECON. No ATP for maintenance can be
generated by mycolic synthesis in the model. The lower need
of mycolic acids will result in less flux through the mycolic acid
synthesis pathway.

The reason the predicted metabolic state of TMC207-affected
Mtb differs from the other drugs is due to the function of AtpE
as an ATP generating enzyme involved in respiration. ATP is on
the one hand a direct biomass precursor in the condition-specific
biomass reaction, but it is also required to synthesize almost all
other biomass precursors. In addition, ATP is required to satisfy
the non-growth associated maintenance constraint. As such, the
effect of constraining AtpE is not nearly as straightforward as
the effect of constraining InhA or EmbB. This effect can be
seen in Figure 10, wherein the effect of limiting AtpE, due to
the application of TMC207, on the maximum condition-specific
biomass reaction value is visible (red line). The line contains
multiple bends, the most notable at 30%, but at 10 and 20%
as well. These bends represent metabolic rerouting that can
vary with the severity of constraining the respective reaction(s).
An example of such variance can be seen in Figure 7, in the
methyl citrate cycle. The flux through this cycle does not linearly
increase or decrease with the constraining percentage at all,
which can be more clearly seen when comparing the methyl
citrate cycle in Figure 7 with a linear increase in biomass and
maintenance, as seen in Figure 9. As TMC207 is predicted to
have an effect that substantially differs from the effect of BTZ043,
cycloserine/terizidone, ethambutol, ethionamide/propionamide,
and isoniazid, a combination of TMC207 and the latter drugs
would probably provide a more effective strategy to combat TB
than combinations of drugs without TMC207.

Model RECON 2.2 is a general model of human metabolism.
A macrophage is however, a very specialized human phagocytic
cell, which engulfs and digests pathogens in a specialized
compartment, the phagosome. An important mechanism
of pathogen killing by phagocytes involves generating the
superoxide anion, which reacts with iron sulfur clusters in the
pathogen, releasing iron and subsequently damaging DNA
(Hurst, 2012; Winterbourn and Kettle, 2012). RECON 2.2 does
not have a phagosomal compartment and the applied metabolic
state simulation strategy (Figure 1) assumes that all cytoplasmic
biomass precursors for the macrophage are available for Mtb
inside the phagosome, while the effect of or presence of other
compounds is overlooked. The effect of oxygen radicals and

resulting hydrogen peroxide is not captured by the approach
applied in this study, which can be seen in Figure 9 where no
change is visible in peroxide (degradation). The overall flux
through peroxide degradation processes should increase relative
to the flux through the condition-specific biomass reaction,
assuming a more or less constant supply of superoxide anions by
the macrophage.

Divalent metal cofactors such as iron, manganese, and zinc are
essential for Mtb virulence (Zondervan et al., 2018). Currently,
only the iron requirement is reflected in model sMtb-RECON in
the form of heme being an essential precursor for Mtb biomass.
The metal availability in cells in general is limited and proteins
compete for these metals (Foster et al., 2014). Therefore, a
better strategy would be to identify Mtb enzymes that require
a certain metal cofactor and to simulate low availability of
such a cofactor by constraining the total flux of all reactions
associated with these enzymes (Wegrzyn et al., 2019). This could
provide a more accurate representation of the metabolic state of
Mtb during infection, especially as macrophages are known to
use high affinity iron binding proteins to limit the availability
of iron (Kurthkoti et al., 2017), making this a promising
modeling strategy.

The question remains whether these predictions are accurate
enough to warrant pinpointing specific genes and their
corresponding enzymes as drug targets. Previous modeling
efforts have shown a poor predictive power of essential genes,
using a bi-objective optimization strategy (Rienksma et al., 2018).
Continuous step-by-step improvements of Mtb models to reach
one functional standardized model of Mtb metabolism is a solid
step in this direction (Kavvas et al., 2018).

Understanding the metabolic rerouting upon drug
administration can lead to the identification of new metabolic
bottlenecks, the identification of new targets and in the long
run the development of new therapies based on combination of
drugs. Moreover, detailed analysis of the mechanisms deployed
by Mtb to counteract the impact of drugs might offer insights on
the role of genetic modifications related to the development of
drug resistances.
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