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Abstract

In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless
measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial
environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral
remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine
learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex
seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in
identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic
macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species
cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method
in the modelling of aquatic species in the large variety of ecosystems.
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Introduction

The ultimate goal in ecology is to understand biotic patterns

and their changes in nature. In order to achieve an understanding,

ecologists have spent much of their time engaged in mapping of

different habitats or performing experiments to demonstrate

interactions between physical environment and organisms. The

vast majority of studies have been performed on limited spatial

scales even though the studies covered larger areas than the grain

size i.e. the size of sampling units still remained small and vast

areas between grains were left unstudied [1,2]. However, due to a

wide range of spatial and complexity scales, the grain size

profoundly affects how we see the world around us [3,4]; hence

flagging this issue as one of the critical problems in ecology [5].

There is an obvious need for high-quality mesoscale or even

larger-scale spatially continuous measurements of biotic patterns

either for validating current theories or to build better predictive

spatial models. In recent decades there have been concomitant

technological advances on the spatially continuous large-scale

mapping of many of the Earth’s habitats. Such remote sensing

methods usually acquire information about an object or phenom-

enon over vast areas with 1 m or even higher spatial resolution.

The remote sensing methods have been applied with reasonable

success in terrestrial environment [6]. However, their use in

aquatic ecosystems remains challenging because water is a strongly

absorbing medium and the sensors used in remote sensing over

water therefore must be very sensitive. Also, the strong attenuation

of light by water and it’s constituents limits the depth where any

information can be collected and dampens the specific optical

features that can be used to separate between different biotic

features.

Currently it is believed that remote sensing does not allow

mapping of aquatic communities at species level, except in simple

environments with a few optically distinct species. The entire

argument is based on the assumption that variability in optical

signatures within species is far smaller than between species

variability and earlier studies tried to classify the species

accordingly. However, this is not likely in nature providing the

complexity of fine-scale patterns of species distribution [7]. For

example, there are coral species that vary in optical properties to

the extent equal to the spectral variability of all corals [8]. The

optical properties of green macroalgae and higher plants including

seagrasses [9] are nearly identical, especially if the spectral

resolution of the sensor used is not very fine. Although spectral

unmixing methods have been proposed [10], the measured signal

is usually an inseparable combination of signals from optically

different objects [11].

Marine macrovegetation plays an irreplaceable role in main-

taining coastal life by providing habitat as well as a source of

organic matter and energy for upper trophic levels [12,13]. Some

plants such as seagrasses typically grow in monospecific stands but

others may form mixed assemblages with varying amount of
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green, brown and red algae either attached on primary substrate

or growing epiphytically on other algae. Similarly, seafloor may be

covered either with small algal patches or lush benthic vegetation

[14]. As the optical signature is formed when integrating

information from spatial resolutions of meters to tens of metres,

changes in spatial arrangement and densities of macrovegetation

have a strong effect on the outcome [11,15]. This leads to the

conclusion that the optical signature may capture well algal cover

but not necessarily its identity unless providing information on the

algal cover. The distribution of assemblages is often characterised

by a clear gradual continuum of changes in species densities and

includes few sharp borders between classes [16]. Thus, any

classification system tends to over-simplify natural assemblages

whereas models incorporating species cover may succeed in

replicating the species patterns.

The rising interest in marine habitat mapping has resulted in

numerous modelling studies focussed on the distribution of species

and habitats. Recently, generalized linear models enabled

pioneering regression-based species distribution models. By

handling non-normal error distributions, additive terms and

nonlinear fitted function they provided useful flexibility for

reproducing ecologically realistic relationships [17]. Moreover,

the development of geographic information systems enabled the

increasing range of emerging technologies to measure and share

environmental data [18]. However, marine and freshwater

applications are still rare [19,20,21,22] compared to terrestrial

modelling and these models are still based on surprisingly weak

theoretical foundations [23]. This is because in the species

distribution modelling, predictive purposes are usually aimed

[24]. Alternatively, modelling can simultaneously be a sophisti-

cated tool to improve our understanding on the relationships

between environment and biota [25].

Ecological understanding is a prerequisite when it comes to

selecting model environmental variables. It is plausible that

traditional statistical modelling itself may not be the most

rewarding way to disentangle the environmental-species relation-

ships as it starts by assuming an appropriate data model and model

parameters are then estimated from the data. By contrast, machine

learning avoids starting with a data model and rather uses an

algorithm to learn the relationship between the response and its

predictors [26]. The novel predictive modelling technique called

Boosted Regression Trees (BRT) combines the strength of

machine learning and statistical modelling. BRT has no need for

prior data transformation or elimination of outliers and can fit

complex nonlinear relationships. The BRT also avoid overfitting

the data, thereby providing very robust estimates. What is most

important in the ecological perspective it automatically handles

interaction effects between predictors. Due to its strong predictive

performance, BRT is increasingly used in ecology [27].

As the array of available remote sensing products and statistical

predictive tools is by far not fully exploited in the existing

literature, the aim of the paper is to test the ecological relevance of

remote sensing by combining hyperspectral remote sensing (HRS)

and BRT in order to predict macrophyte and invertebrate species

cover in the optically complex Baltic Sea. Specifically, we

determined if HRS is sensitive to biotic patterns, and if so, how

much the models can be improved by including other environ-

mental variables that affect the species under study. We expected

that HRS responds to changes in the cover of dominant species

and BRT can recapture multitude of environmental-biota

interactions intuitively very common in marine ecosystems. We

also expected that the performance of species distribution models

increases with the size of macrophyte species as bigger plants are

more likely distinguishable from the surrounding environment

[28]. And finally we expected that the models explain better the

distribution of shallow than deep water species as water column

absorbs significant amount of reflectance [29,30].

When building models, care was taken to include ecologically

the most relevant variables in order to reach the best predictions

and insight on the role of various environment-biota interactions.

When the selection is inadequate a model can just pick up

irrelevant variables and its predictive power is low [31]. The

selection of environmental variables was based on earlier results of

field and experimental studies. Specifically, in the shallow waters

of the Baltic Sea sediment characteristics, water exchange and

exposure to waves are anticipated to shape to the largest extent

benthic macrophyte and invertebrate assemblages [32]. We expect

that different macrophyte and invertebrate groups have specific

response functions to the studied environmental variable: e.g.

seagrasses and soft bottom algae are sensitive to slight changes in

wave exposure as even small increase in turbidity reduces their

growth rates [33]; algae are fairly insensitive to changes in wave

exposure unless hard substrate is not limited [32]; suspension

feeders accumulate at elevated coastal slopes and/or exposed

coasts where intense water movement provides an ample food

supply [34,35]. And we also expect large variability of species

responses within each group as species are shown to have strong

individualistic responses to their environment [36].

Materials and Methods

1. Study area
The study was carried out in the Vilsandi National Park, the

Western Estonian Archipelago, the Baltic Sea (Fig. 1). The study

area was approximately 210 km2. Most of the area is less than

5 meters deep although water depth reaches 15 meters in some

parts of the study area. The area is characterized by complex

topography with numerous island, islets, bays, and peninsulas. The

western part of the study area is wave-exposed while eastern bays

are sheltered. Hard limestone substrate dominates in the exposed

areas and soft silty sediments prevail in the sheltered bays.

Different mixed sediments can be found in the mid-range of

exposure gradient. Salinity ranges from 5 to 7.5. Regardless of low

salinities, benthic flora and fauna are relatively diverse and

abundant. Vascular plants (Stuckenia pectinata, Ruppia maritima,

Zostera marina) and charophytes can be found at high densities in

sheltered bays. The perennial brown alga Fucus vesiculosus, the red

alga Furcellaria lumbricalis and several filamentous algae (e.g.

Ceramium tenuicorne, Cladophora glomerata, Polysiphonia fucoides) domi-

nate on hard substrate, occasionally giving space for the mussels

Mytilus trossulus and the cirripeds Amphibalanus improvisus.

2. Biological sampling
A total of 207 stations were visited on August 31st and

September 1st 2010 (Fig. 1). In order to establish the sampling

stations, a grid of rectangular cells was generated with cell sizes of

50 m using the Spatial Analyst tool of ArcInfo 10 [37]. Then we

calculated the values of wave exposure and inclination of coastal

slopes for each grid cell (see below). The exposure and slope classes

were combined to the available information on depth and bottom

sediments (divided into clay, silt, sand and gravel bottoms). Using

ArcInfo software sampling sites were located randomly in a way

that each combination of exposure, slope, depth and sediment

class had the same number of sampling sites. In areas deeper than

10 m, where the nature of bottom is homogeneous (unvegetated

sands), equal distances between stations were used. At each station

the seabed was sampled by deploying a remote underwater video

device from an anchored boat. The camera was set at an angle of
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35u below horizontal and held 1 m above the sea floor resulting in

a forward view of about 2 m. A full 360u rotation was captured at

each station. All recorded videos were subsequently analysed by

estimating the coverage of different substrate types (mud, clay,

sand, gravel, pebbles and cobbles, boulders (diameter .20 cm),

rock), benthic macrophyte and invertebrate species. Biomass

sampling and analysis followed the guidelines developed for the

HELCOM COMBINE programme [38]. According to the

Protection Rules of the Vilsandi National Park, a biological

sampling does not require specific permits or approvals. The study

location is not privately-owned and the study did not involve

endangered or protected species.

3. Remote sensing
Airborne imagery was collected on September 1st 2010 using

hyperspectral imager CASI (Itres, Canada) belonging to the

Institute for Environmental Solutions, Latvia. The spectral range

of the instrument is 37021045 nm and widths of the spectral

bands are programmable. Altogether 25 spectral bands were pre-

programmed in order to capture the reflectance spectra of

different benthic features, to gather information about the sun

glint and to provide reference data for atmospheric correction and

masking land surfaces. We used the wavelength region from

480 nm to 699 nm in the model (for model description see

subchapter 5 of the section of material and methods). Bands 1 to 4

(3702458 nm) were excluded from the analysis because vegeta-

tion absorbs light very strongly at these wavelengths and there is

practically no difference between different benthic habitats.

Besides, water absorption increases exponentially in read and

near-infrared part of spectrum. A few tens of centimetres of water

absorb nearly all water leaving signal at wavelengths longer than

720 nm. These spectral bands can be used to identify vegetation

floating on the water surface, to estimate the amount of sun glint

and to mask out land. The bands 17225 (71921045 nm) were

used for these purposes but not in the model. The number and

width of the bands were also optimized taking into account low

water leaving signal and the speed of the aircraft. The aircraft was

flown at an altitude of 2000 m resulting a pixel size of 1 m. A

flyover was performed around midday and flight direction was

chosen taking into account the sun angle in order to minimize the

sun and sky glint. Flight lines were planned in the form of ellipses

shifting west from the previous path. In this way, a half of the study

area was flown into the sun and a half of the study area off from

the sun in order to minimise the striped mosaic that may occur

when flying back and forward. Pre-processing of the radiance

imagery included cross-track illumination correction, geocorrec-

tion of the flight lines and mosaicking. The positional accuracy was

within a range of 1 m. The longitudinal extent of the mosaicked

image was 11.6 km and latitudinal extent 12.9 km.

Individual bands of the CASI image had extensive interband

correlation. We used principal component analysis (PCA) on

bands 5 to 16 (see previous paragraph for the explanation of why

some bands were excluded from the model) for reducing the

redundancy in hyperspectral images and for compressing all of the

information that was contained in an original n-channel set of

hyperspectral images into their principal components [39]. The

spatial structure of first three principal components were highly

similar to the structure of the original hyperspectral remote sensing

bands; thus, the technique was highly relevant in order to reduce

the redundancy in the remote sensing data. The first principal

component explained more than 96% of variance and had

correlation of more than 0.9 with all the CASI bands. The second

component had highest correlations with bands 15 and 16. The

third component correlated the most with bands 7, 8, and 9

(Table 1). All further analyses were done using three first principal

components instead of original CASI bands.

4. Supporting environmental variables
Based on a bathymetry raster of 50 m pixel resolution (available

at the Estonian Marine Institute, University of Tartu) the

Figure 1. Study area. Filled dots denote the locations of the sampling stations.
doi:10.1371/journal.pone.0063946.g001
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inclination of coastal slopes was calculated using the Spatial

Analyst tool of ArcInfo software [37]. High values of coastal slopes

indicate the occurrence of topographic depressions or humps at

the measured spatial scale. Low values refer to flat bottoms.

The Simplified Wave Model method was used to calculate the

wave exposure for mean wind conditions represented by the ten-

year period between 1 January 1997 and 31 December 2006 [40].

A nested-grids technique was used to take into account long-

distance effects on the local wave exposure regime. The resulting

grids had a resolution of 25 m. In the modelling the shoreline was

divided into suitable calculation areas, fetch and wave exposure

grids were calculated and subsequently the separate grids were

integrated into a seamless description of wave exposure along the

study area. This method results in a pattern where the fetch values

are smoothed out to the sides, and around island and skerries in a

similar way that refraction and diffraction make waves deflect

around islands.

5. Modelling methods
The contribution of different environmental variables on the

coverages on benthic species was explored using the Boosted

Regression Tree technique (BRT) and the BRT models were used

to predict the species coverages. BRT models are capable of

handling different types of predictor variables and their predictive

performance is superior to most traditional modelling methods.

The BRT iteratively develop a large ensemble of small regression

trees constructed from random subsets of the data. Each successive

tree predicts the residuals from the previous tree to gradually boost

the predictive performance of the overall model. Although BRT

models are complex, they can be summarized in ways that give

powerful ecological insight [27].

Prior to using the BRT models, we stored our data in a

data.frame object, which is a data structure used by the R

software. A data frame may be regarded as a matrix with columns

of differing modes and attributes. It may be displayed in matrix

form, and its rows and columns extracted using matrix indexing

conventions. The names of the variables must match exactly the

names used in the gbm function calls. For BRT modelling the

independent variables were: depth (primarily a proxy for light),

sediment characteristics (cover of hard bottoms), exposure to

waves (proxy for wave disturbance), coastal slope (proxy for water

exchange) and three principal components of CASI bands. They

were regressed to predict the coverage of benthic macrophyte and

invertebrate species. As organism size and morphology is expected

to determine its interactions with the ambient environment [41],

test organisms have been selected to cover small and large

seagrass, algae with fine and coarse thalli and sessile benthic

invertebrates. Considering that algal colour can interfere with

CASI measurements, green, brown and red algae were included

into the study (Fig. 2).

In fitting a BRT the learning rate and the tree complexity must

be specified. The learning rate determines the contribution of each

successive tree to the final model, as it proceeds through the

iterations. The tree complexity fixes whether only main effects

(tree complexity = 1) or interactions are also included (tree

complexity .1). Ultimately, the learning rate and tree complexity

combined determine the total number of trees in the final model.

For each species, multiple models were run varying either the

model learning rate (between 0.01 and 0.0001), number of trees

(between 1000 and 10,000), and number of splits (1 and 5). Then

the optimum model was selected based on model performance.

Typically, optimal learning rates, number of trees and interaction

depth were 0.001, 3000 and 5, respectively. Model performance

was evaluated using the cross validation statistics calculated during

model fitting [42]. A random 20% of the data was assigned for

testing model accuracy. As a total of 207 stations were visited, all

these samples were used in the modelling i.e. n = 207 for each

species. All statistical analyses were done in the statistical software

R version 2.0.1 using the gbm package [43]. We used the BRT

script provided by [27]. All major methodological steps from field

sampling to the BRT modelling are summarized in the schematic

flowchart on Figure 3.

In addition, we compared the performance of BRT modelling

with a common supervised classification technique, the Spectral

Angle Mapper (SAM) [44] in order to demonstrate a significant

methodological improvement. SAM is a spectral classification

scheme that uses an n-dimensional angle to match pixels to

reference spectra. We chose the reference spectra from the

imagery based on the results of field sampling. A reflectance of half

of the sampling points for each class was used as reference spectra

and the rest were used for validation. It is possible to use different

angles in SAM. Smaller angle means tighter fit between the

reference and image spectra. We used variable angles in SAM as

using too small angle results in most of the image being

unclassified. The criterion for selecting the angle was to classify

the full image. Due to the differences in approaches, the BRT

models and supervised classification are not directly comparable as

the BRT model provides information on both species identity and

quantity whereas the supervised classification technique informs us

on species presences only. Therefore, we also analysed, using the

one-way ANOVA, whether the cover of macroalgae differs among

supervised classification classes (classification levels: species pres-

ent, species absent).

Results

1. Object features contributing to remote sensing
The BRT models identified that success at object detection

depended largely on its properties and was uncoupled of its

environment. Specifically, hyperspectral remote sensing when

combined with the BRT modelling described a significant

proportion of variability in the cover of benthic macroalgae and

invertebrates but not higher plants including seagrasses (Table 2;

Fig. S1). On the other hand, a traditional supervised classification

Table 1. Correlation of the CASI bands with the PCA
components.

CASI band PC1 (96.58) PC2 (1.43) PC3 (0.77)

5 0.98 0.15 20.01

6 0.99 0.12 0.05

7 0.97 20.01 0.20

8 0.93 20.10 0.31

9 0.90 20.15 0.35

10 0.99 0.09 20.01

11 0.99 0.00 20.04

12 0.99 20.08 20.03

13 0.99 20.09 20.02

14 0.99 20.13 20.03

15 0.96 20.22 0.04

16 0.97 20.21 20.08

The proportion of variance in the CASI bands explained by the first three
principal components are shown in brackets (%).
doi:10.1371/journal.pone.0063946.t001
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technique only performed slightly better than chance as indicated

by moderate class agreement values. Moreover, when we analysed

whether the cover of macroalgae differs among supervised

classification classes (classification levels: species present, species

absent) then we realized that in majority of cases, the differences

were not statistically significant (Table 2).

As expected there was a strong linear relationship between the

size of organism and the predictive power of remote sensing

variables in the BRT models. However, the macroalgae-inverte-

brate group had a significantly higher regression slope than higher

plants (Fig. 4). There were also two outliers of these linear

relationships. In terms of predictive power, the red algae C.

tenuicorne fitted to the regression line of higher plants and the cover

of brown alga F. vesiculosus was about 2.5 times less predictable as

expected from its size.

Contrary to our expectations, there was no significant

relationship between the average depth inhabited by species and

the variance explained by remote sensing variables. The highest

performing boosted regression tree models (including only remote

sensing variables) were for the shallow-water green algae C.

glomerata (r2 = 0.61) and Chara sp. (r2 = 0.69) but, surprisingly, also

the deep-water red alga F. lumbricalis (r2 = 0.63).

In general, broad taxonomic category did not explain how well

remote sensing variables contributed to the BRT models. Only the

cover of green algae had a very strong signal in the remote sensing

variables. The models of red algae and higher plants had very high

within group variability in their predictive power.

2. Effect of abiotic environment on species
When remote sensing data were combined with coastal

geomorphology and weather data then the performance of BRT

models were significantly improved with the half of species

exceeding model r2 values above 0.70 (Table 2). Specifically, the

higher plants, the brown alga F. vesiculosus and the bivalve M.

trossulus models benefitted the most from combining remote

sensing and other environmental variables. In contrast, the models

of green algae were practically not enhanced.

The BRT modelling showed that the effect of environmental

variables on the patterns of species distribution largely varied

among the studied species. However, some generalities can be

Figure 2. Still photographs of benthic species in the study area.
doi:10.1371/journal.pone.0063946.g002
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drawn. Besides remote sensing variables, exposure and partly

water depth and sediment characteristics were the best predictors

for the majority of the BRT models (Fig. S2). Overall, wind

patterns best explained variability in the coverage of shallow water

species whereas coastal geomorphology largely contributed to the

models of deep water species. All species inhabiting the shallowest

Figure 3. Schematic flowchart on the main methodological steps used to combine hyperspectral remote sensing and Boosted
Regression Tree technique in order to predict macrophyte and invertebrate species cover in the optically complex Baltic Sea.
doi:10.1371/journal.pone.0063946.g003

Table 2. The percentage of variance explained by the BRT species models including only remote sensing variables (Remote model
total) and combining both remote sensing and abiotic environmental variables (Combined model total).

Species
Remote
model total

Combined
model
total Depth Exposure Slope Sediment

Remote sen
sing variables

Class agree
ment P

Amphibalanus improvisus 35 48 21 21 8 22 28 NA NA

Mytilus trossulus 39 61 9 39 15 15 22 NA NA

Fucus vesiculosus 43 76 12 16 9 25 38 53 0.354

Chara sp. 69 77 4 63 1 6 26 66 0.011

Cladophora glomerata 61 77 6 42 2 8 42 69 0.743

Stuckenia pectinata 25 71 15 24 4 33 24 62 0.154

Ruppia maritima 11 32 10 19 27 11 33 64 0.180

Zostera marina 16 58 26 17 8 32 17 64 0.346

Ceramium tenuicorne 13 60 19 21 23 21 16 53 0.160

Furcellaria lumbricalis 63 71 46 9 3 2 40 82 0.015

Polysiphonia fucoides 42 55 28 10 5 9 48 60 0.188

For the models combining remote sensing and abiotic environmental variables, the separate explained deviance of abiotic environmental and remote sensing variables
are shown (% of combined model total). In addition the column ‘‘class agreement’’ denotes the percentage of match between predicted and observed species
presences using a common supervised classification technique. Higher than 50% class agreement indicates that supervised classification is performing better than
chance. NA refers that the supervised classification technique was not able to classify the image. Please note that the shown percentage agreements of BRT models and
supervised classification are not directly comparable as the BRT models provide information on both species identity and quantity whereas the supervised classification
technique only informs us on species presences. Please also note that if probability ‘‘P’’ value is less than 0.05 then differences in species cover among supervised
classification classes (levels: species present, species not present) are actually statistically significant.
doi:10.1371/journal.pone.0063946.t002
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part of the sea were highly sensitive to slight changes in exposure

levels with their cover exponentially decreasing with increasing

wave activity. Deeper water species, including higher plants, had

various responses to exposure and in general, the responses were

small in magnitude. Among deeper water species only R. maritima

inhabited a relatively narrow exposure range.

Our data also revealed that diverse functional relationships also

exist between availability of hard substrate and species cover. An

increased availability of hard substrate linearly raised the cover of

suspension feeders, F. vesiculosus and P. fucoides and decreased the

cover of Z. marina over an entire sediment gradient. R. maritima

benefitted the increment in the share of soft sediment containing

up to 40% sand grains. Other species avoided mixed sediments

and primarily inhabited either truly hard (C. tenuicorne) or soft

bottom habitats (S. pectinata). And finally there was a group of

species that were practically insensitive to change in sediment

characteristics (F. lumbricalis, Chara sp., C. glomerata).

As expected exposure to waves was the key correlate of the

cover of suspension feeders and the relationship approximated a

logistic function. From low to mid range exposure level the cover

of both M. trossulus and A. improvisus was almost insensitive to

change in exposure. At mid range of exposure the elevated wave

activity exponentially increased the cover of suspension feeders

until a certain threshold was reached and beyond that point other

variables controlled the populations of suspension feeders in the

model. The models also showed a clear niche separation of these

benthic taxa with M. trossulus inhabiting steeply sloping shores and

A. improvisus gently sloping shores.

Besides suspension feeders coastal slope also contributed to the

cover of R. maritima and C. tenuicorne with elevated slope values

increasing the species cover. Other macrophyte species were

insensitive to changes in coastal slope. However, when combined

with other variables (e.g. sediment characteristics) coastal slope

interactively contributed to the cover of Z. marina. All other

interactions did not differ in direction of effect from the separate

influence of environmental variables on species cover (Fig. 5).

Discussion

This study demonstrated the strength of combining machine

learning, statistical modelling, remote sensing and traditional

spatial modelling variables in order to model the species

distribution of marine benthic macrophyte and invertebrate

species. Even though the water column absorbs a significant

amount of water leaving signal [29,30,45] and the strength of

correlation between remote sensing variables and biotic patterns is

expected to be higher in terrestrial environments than in aquatic

environments, our models reached or even exceeded the predictive

power of terrestrial models. If the terrestrial models often describe

50275% of variability in biotic patterns [46,47] then the aquatic

models rarely reach such predictive power, often explaining only

up to 40% of variability [48] but see [20] for higher predictive

power using non-boosted regression trees. As such, our modelling

approach performed far better than the traditional methods.

Considering the optical complexity of the Baltic Sea compared to

open ocean environments [49,50], the results indicate a strong

potential of the method in the modelling of aquatic species in the

large variety of ecosystems.

The same CASI imagery and field sampling data were used in

another remote sensing study [51]. This study demonstrated that a

conventional supervised classification technique could not separate

many of the benthic habitats from each other. The finest

classification scheme achieved contained only 8 broad classes

(bare substrate, brown algae, red algae, dense higher plants, etc.)

and optically deepwater class. This is because the optical

signatures of species were not different for any remote sensing

sensors. Some of the species either covered too small area of 1 m2

pixel or were growing under larger vegetation. Consequently,

these species could not be mapped with remote sensing as they did

not contribute to the optical signal remote sensing instruments

were measuring. Thus, the level of detail provided by the

supervised classification technique and BRT modelling is not

comparable. Moreover, the BRT models provide information on

species cover and therefore carry much more information

compared to the majority of previous models that just predicts

species distributions.

1. Object features contributing to remote sensing
Remote sensing varied in its effectiveness to explain the cover of

different benthic macrophyte and invertebrate species. The

expectation that the role of remote sensing variables in the species

distribution models increases with the size of macrophyte and

invertebrate species was confirmed. In fact the importance of

image object size in mapping has been emphasized both in

terrestrial and aquatic environments [52,53,54]. This is because

with the increasing object size the probability that objects are

omitted and/or wrongly detected substantially decreases, thus the

prediction accuracy substantially increases. However, studies that

specifically target prediction accuracy related to object size are

almost lacking and the focus is almost strictly on the issues of

image classification [55].

Organism size also reflects the physiological state associated

with the allometric relationship between size and metabolic rate of

the organisms [56]. In this respect remote sensing better detects

physiologically less active functional forms e.g. brown and red

perennial algae compared to small ephemeral seaweeds. A

plausible biophysical mechanism for the observed effect is the

presence of a protective (i.e. remotely well detected) tissue

associated with the perennial algae. Besides, independently from

the size of an object, the functional form of organisms seems to

determine how well the species is detected. Namely, our study

clearly showed that the relationship between object size and its

prediction significantly differed among higher plants and other

marine organisms. It is plausible, though, that habitats character-

ized by higher plant species are in general more turbid than areas

inhabited by hard bottom macroalgae and sessile invertebrates

Figure 4. Relationship between object size and predictive
power of remote sensing variables in the BRT models. Each data
point represents single species. Filled circles denote macroalgae and
benthic invertebrates whereas crosses denote higher plants.
doi:10.1371/journal.pone.0063946.g004
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[32] and therefore the observed differences in the model’s

predictive power may partly arise from water properties and not

on colour, texture and shape of an object. However, this is not the

only explanation for the results. As an example charophytes

inhabit sandy/silty bottoms and in such habitats wind induced

resuspension of fine particles is very likely; nevertheless, they were

the best predicted objects in our study.

There were also two outliers of the observed relationships.

Remote sensing method was far less sensitive to the detection of

the brown seaweed F. vesiculosus than was predicted from the size of

seaweed. This is exactly the opposite of what we expected

considering that among the studied species F. vesiculosus encom-

passes the largest gradients of environmental variability and occurs

at high frequency [32] both facilitating the emergence of strong

relationships between remote sensing variables and the brown

seaweed cover. Nevertheless, F. vesiculosus hosts a wide array of

epiphytic algae and invertebrates [57] and the heavy epiphyte load

may haze its optical signature and thus hinder the species

detection. The prevailing epiphytic algae Pilayella littoralis is not

host specific in the study area. Besides F. vesiculosus, P. littoralis may

grow on other perennial macroalgae, directly attach to hard

substrate or even form a drifting algal mats [58], thus making the

separation of F. vesiculosus habitat very difficult in terms of their

optical properties from e.g. other perennial macroalgal and/or

drifting algal habitats. Another exception includes the detection of

the red alga C. tenuicorne. Although, the species inhabits shallow

water environments and therefore can be potentially well detected,

the red alga has a translucent appearance and is difficult to be

seen. Moreover, as the red alga do not appear to tolerate high

irradiance it often forms an understory of other macroalgae [59]

which further complicates its detection from sea surface.

Surprisingly, there was little or no difference how remote

sensing detected shallow and deep water species. Green algae,

which grow in the shallowest parts of the study area, had a very

strong signal in the remote sensing variables. Similarly, the highest

performing model was also for the deep-water red alga F.

lumbricalis. In general, the predictive power of models of red algae

and higher plants were independent of depth. It is plausible that a

lack of depth dependency reflects large spatial differences in water

transparency in our study area. Specifically, soft bottom substrates

tend to be systematically more turbid than hard bottom habitats

and thus, the detection of hard bottom macrophytes is expected to

be more efficient compared to soft bottom macrophytes.

2. Effect of abiotic environment on species
Accurate prediction and explanation are fundamental objectives

of statistical analysis and BRT attains both of these objectives [60].

By doing so, they can determine relationships between the

response and the predictors, and thus they have a high potential

to explain the underlying processes behind the pattern of species

distribution in the seascape. In contrast, traditional statistical

models such as linear regression analyses are routinely used to

Figure 5. Selected interactions between abiotic environmental variables and species cover. Environmental variables are as follows:
exposure – exposure to waves, slope – inclination of coastal slope, soft sediment – percentage cover of soft substrate, hard sediment – percentage
cover of hard substrate.
doi:10.1371/journal.pone.0063946.g005
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explain data relationships, but despite its simplicity and ease of use,

they are often relatively poor predictors. As expected our models

easily predicted a large quantity of macroalgal and invertebrate

species cover and recaptured multitude of interactions between

environment and biota, contrasting earlier results on the ease of

use of remote sensing methods in marine environments [30,61].

The studied species varied widely in how they responded to the

environment. It is a well-publicized fact that species’ traits

determine the strength and direction of relationship between

environment and biota [62]. Specifically, some species have wide

tolerance ranges and are found over over a wide range of habitats.

However, other species have very narrow tolerance ranges and are

therefore very limited in their ranges. The BRT models clearly

distinguished between such specialist and generalist species. The

specialist species were characterized by a narrow peak in the the

functional form of a relationship between environment and species

cover, the peak indicating the optimum range of species natural

distribution. The commonest examples of specialists were the

charophytes and the higher plants Stuckenia pectinata and Zostera

marina. All these species hold a very specific biological niche in the

coastal ecosystem i.e. Chara sp. preferred shallow depths and very

sheltered areas, S. pectinata inhabited fine sediments in shallow and

sheltered areas and Z. marina preferred moderate depths and

moderate exposure regimes and avoided flat bottoms. The

gereralist species such as the cirriped A. improvisus and the brown

alga F. vesiculosus had high cover over values over a wide range of

environmental conditions.

The BRT models also identified the most important environ-

mental variables limiting the spread of the studied species in the

study area (i.e. those environmental variables having the highest

contribution to the model performance). Specifically, our models

predicted strong relationship between wave patterns, benthic

macrophyte and invertebrate cover in the shallowest parts of the

sea but not deeper down. This conforms to the earlier evidences

that in the dynamic coastal habitats local weather patterns largely

define the observed biotic patterns [63,64]. In our study area such

effects are related mainly to the duration of ice cover and are

probably due to the varying intensities of ice abrasion [32]. Strong

physical disturbance in shallow exposed areas may even counter-

act the effects of nutrient loading as ice abrasion periodically

removes the excess biomass i.e. attached macrophytes and sessile

invertebrates. Deeper down the role of mechanical disturbance is

reduced and the benthic macrophyte species are controlled by the

availability of substrate, nutrient and light and biotic interactions

[12,32].

Wave exposure and resulting sediment patterns were seemingly

major controls of the distribution of higher plants, with the mosaic

of sediment supporting high species richness and variability in

benthic communities in the study area [65]. There are, plausibly,

several physical mechanisms behind the observed relationship.

Firstly, the availability of soft substrate is prerequisite for the

establishment of the species. Secondly, sediment modulates the

flow above seabed [66,67] and the intensity of flows is directly

related to the cover pattern of the macrophytes [68,69]. In soft

sediments, water flow also determines the light climate; i.e., large

waves may cause considerable resuspension of sediments and

prolonged periods of poor light conditions [69]. Thirdly, small

scale topographic heterogeneity i.e. boulder fields may provide the

species refuges against physical disturbances including ice scouring

and mechanical stress due to waves [70,71].

In addition, the BRT modelling indicated that seagrass and

similar group of plants were poorly predicted by our models. If the

ephemeral species such as C. glomerata and C. tenuicorne are very

responsive the environment over short time intervals and be very

influenced by local conditions [72] then seagrasses are known to

modify their local abiotic environment by trapping and stabilizing

suspended sediments and thereby improving water clarity and

seagrass growth conditions [73]. Thus, seagrass distribution is

expected to be less coupled with their adjacent abiotic environ-

ment compared to many non-engineering species. Moreover, the

cover of seagrass species is rather a function of a colonization

history that spans decades to centuries [74].

The universal relationship between wave climate and the cover

of suspension feeders suggest that suspension feeders are food

limited in the study area. Besides, it is expected that suspension

feeders benefit from the increased water flow on the more complex

bottom topography, as a rising flow velocity improves their food

supply, and positive interactive effects between current velocity

and phytoplankton biomass are expected [75,35].

In addition to the direct effect of food transport, the relationship

between wave exposure and cover of suspension feeders may

involve indirect interactions between macroalgae and suspension

feeders. Namely, macroalgae are known to outcompete benthic

suspension feeders at shallow depths, and lush macrophyte

communities are therefore often characterised by low densities of

suspension feeders [76]. Moderate exposure to waves and ice

disturbance partly removes the algal carpet, thus releasing benthic

suspension feeders from such interspecific competition [77]. Too

great an ice disturbance, however, also removes sensitive

suspension feeders. This may explain why A. improvisus inhabits

gently sloping shores where such mechanical disturbance is not as

severe as in steeply sloping shores.

As seen in some examples above, the BRT modelling enabled to

identify critical thresholds marking tipping points where even a

slight change in environmental conditions resulted in the abrupt

shifts of species distribution. Understanding factors that shape

niche width, species coexistence and thereby habitat diversity are

of utmost importance in ecology both theoretically and for

conservation policies. Such knowledge can be potentially used to

predict species distribution e.g. under current environmental

conditions and the projected influences of different management

strategies and climate change scenarios. Therefore, our models

can be seen as a valuable tool for improving environmental

protection of coastal benthic habitats.

Conclusions

The machine learning technique combined with statistical

modelling, remote sensing and traditional spatial modelling

variables succeeded in identifying, constructing and testing

functionality of abiotic environmental predictors on the coverage

of benthic macrophyte and invertebrate species. Although

correlative in nature, the resulting response curves matched well

with the current understanding on the interdependence of abiotic

environment and benthic species. The models also provided many

ecologically realistic second-order interactions that can be tested in

controlled experimental conditions. However, our study showed

that the majority of species had individualistic responses to their

environment. This provides the strong conceptual argument for

modelling individual species rather than communities and fosters

the usage of machine learning over traditional modelling methods

in order to unravel the environment-biota interactions.

Certainly, the present study has some limitations that need to be

taken into account when considering the study and its contribu-

tions. Some of these limitations, however, can be seen as fruitful

avenues for future research under the same theme. Clearly, the

size of the object affects its detection together with aspects such as

water transparency. Nevertheless, we believe that further devel-
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opment of remote sensing instruments and signal processing

technology ensure stable detection of small objects. It must be

stressed that only objects, that are situated at the top of biota, are

seen by remote sensing. Thus, the patterns of multi-layered

communities are currently relied by spatial modelling component

only. A single case study naturally brings forth many limitations as

far as the generalisation of the results of the study is concerned.

Thus, it becomes rewarding to seek generic standardized

procedure to map multiple species in multiple areas. Such maps

would greatly expand our capacity to understand biotic patterns,

their changes and causes and thereby improve ecological theory

and potentially preserve endangered seascapes for future gener-

ations.

Supporting Information

Figure S1 Functional relationships between remote
sensing variables and species cover. PC 1, PC 2 and PC

3 are the first principal components of CASI bands. Percentage

shows the separate contribution of remote sensing variables in the

model.

(TIF)

Figure S2 Functional relationships between studied
environmental variables and species cover. Environmental

variables are as follows: depth – water depth, exposure – exposure

to waves, slope – inclination of coastal slope, sediment –

percentage cover of soft substrate. Percentage in each plot shows

the separate contribution of environmental variables in the model.

(TIF)
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51. Vahtmäe E, Kutser T, Kotta J, Pärnoja M (2011) Detecting patterns and

changes in a complex benthic environment of the Baltic Sea. J Appl Remote
Sens 5: 053559. Available: http://remotesensing.spiedigitallibrary.org/article.

aspx?articleid = 1182423. Accessed: 18 June 2012.

52. Dorren LKA, Maier B, Seijmonsbergen AC (2003) Improved Landsat-based
forest mapping in steep mountainous terrain using object-based classification.

For Ecol Manage 183: 31–46.
53. Bontemps S, Bogaert P, Titeux N, Defourny P (2008) An object-based change

detection method accounting for temporal dependences in time series with

medium to coarse spatial resolution. Remote Sens Environ 112: 3181–3191.
54. Silva TSF, Costa MPF, Melack JM (2010) Spatial and temporal variability of

macrophyte cover and productivity in the eastern Amazon floodplain: A remote
sensing approach. Remote Sens Environ 114: 1998–2010.

55. Roelfsema C, Phinn S, Lyons M, Miecznick G (2012) Mapping coral and algal
patches at Heron Reef, Australia using object-based analysis and pan-sharpened

WordView-2 images. Australia, Melbourne: Proceedings of the XXII Congress

of the International Society for Photogrammetry and Remote Sensing.
56. Kleiber M (1932) Body size and metabolism. Hilgardia 6: 315–351.
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