
Ribosomopathies: Global process, tissue
specific defects
Pamela C Yelick1,* and Paul A Trainor2,3

1Tufts University; Boston, MA USA; 2Stowers Institute; Kansas City, MO USA; 3University of Kansas Medical Center; Kansas City, KS USA

Keywords: anaemia, ribosomopathy, ribosome biogenesis, skeletal defects

Abbreviations: DBA; diamond blackfan anemia; rRNA; ribosomal RNA; TCS; treacher collins syndrome

Disruptions in ribosomal biogenesis would be expected to
have global and in fact lethal effects on a developing
organism. However, mutations in ribosomal protein genes
have been shown in to exhibit tissue specific defects. This
seemingly contradictory finding - that globally expressed
genes thought to play fundamental housekeeping functions
can in fact exhibit tissue and cell type specific functions �
provides new insight into roles for ribosomes, the protein
translational machinery of the cell, in regulating normal
development and disease. Furthermore it illustrates the
surprisingly dynamic nature of processes regulating cell type
specific protein translation. In this review, we discuss our
current knowledge of a variety of ribosomal protein
mutations associated with human disease, and models to
better understand the molecular mechanisms associated with
each. We use specific examples to emphasize both the
similarities and differences between the effects of various
human ribosomal protein mutations. Finally, we discuss areas
of future study that are needed to further our understanding
of the role of ribosome biogenesis in normal development,
and possible approaches that can be used to treat
debilitating ribosomopathy diseases.

Introduction

Ribosome biogenesis describes the process of making ribo-
somes, which are large ribonucleoprotein complexes that translate
mRNA into protein, thus synthesising all the protein within the
cell. Ribosomes are comprised of 4 distinct rRNAs transcribed by
RNA polymerases I and III, which are complexed together with
numerous ribosomal proteins, accessory proteins, and small
nucleolar RNAs (snoRNAs) all of which are transcribed by RNA
polymerase II.1,2 Ribosome biogenesis begins with transcription
of both the 47S precursor rRNA (rRNA) by RNA polymerase I
(RNA Pol I), and the 5S rRNA by RNA polymerase III, in the

nucleolus, and nucleus, respectively. The 47S rRNA precursor is
then modified, processed and cleaved into 5.8S, 18S, and 28S
rRNAs. The 18S rRNA together with 32 small subunit ribosomal
proteins (RPSs) forms the 40S subunit, which decodes the
mRNA sequences. In contrast, the 5S, 5.8S, and 28S along with
47 large subunit ribosomal proteins (RPLs) comprise the 60S
ribosomal subunit, which links amino acids through peptide
bonds.3,1 These ribosomal subunits unite to form the translation-
ally active mature 80S ribosome as they are exported to the
cytoplasm.

Transcription of the tandem repeat rDNA genes in mamma-
lian cells is catalyzed by the RNA Pol I machinery, whose activi-
ties are regulated by reversible acetylation and phosphorylation.4–
9 The transcription of rRNA is one of the rate-limiting steps dur-
ing ribosome biogenesis, and accounts for about 60% of overall
transcription activity in eukaryotic cells.10 However, a significant
proportion of mRNA transcription by RNA polymerase II in the
nucleus is also required for the production of the ribosomal pro-
teins.11 Hence ribosome biogenesis is a complex and metaboli-
cally expensive endeavor. Through its roles in regulating the
quality and quantity of proteins in a cell, ribosome biogenesis is
integral to all cell growth, proliferation and differentiation.12

Consequently, perturbation of any one of the steps during the
process of ribosome biogenesis can result in disorders in embry-
onic development or adult homeostasis.

Here we discuss ribosome biogenesis and the conundrum that
disruption of a purportedly global process can result in in the
pathogenesis of tissue specific diseases and disorders, which are
commonly referred to as ribosomopathies. We will highlight a
few of the many recent publications, including characterizations
of novel ribosome biogenesis mutant animal models, which have
significantly improved our understanding of roles for ribosome
biogenesis and function in tissue differentiation and disease.

Ribosomopathy Phenotypes

Although ribosome biogenesis is a global process that occurs
in all cells, a growing body of literature has revealed that certain
mutations in ribosomal proteins (RPs) can result in tissue specific
defects. A summary of identified human ribosomal gene muta-
tions, and existing animal models, presented in Table 1, shows
that specific ribosomal gene mutations can result in tissue specific
defects in post-embryonic development. The following brief
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descriptions of ribosomopathy phenotypes, summarized in
Table 1, are provided in order to emphasize the similarities and
distinct differences between RP gene mutations.

Treacher Collins syndrome (TCS)
TCS occurs with a frequency of 1 in 10,000–50,000 births,

and arises primarily due to autosomal dominant mutations in the
TCOF1 gene.13 TCS is a congenital birth defect characterized by
midface hypoplasia and underdeveloped external ears and inner
ear anomalies, and may include developmental brain abnormali-
ties.14-16 TCOF1 gene mutations have been mapped in more
than 200 families to date, and include splice site, missense and
nonsense mutations, insertions and deletions commonly ranging
in size from 1 to 40 nucleotides, including a 5 bp deletion in
exon 24 which accounts for nearly 20% of all TCS cases.6 The
considerable inter- and intra-familial variability in the severity of
TCS suggests that environmental factors and/or genetic back-
ground may contribute to the observed clinical variability in
TCS patients. The nucleolar phosphoprotein Treacle, which is
encoded by the TCOF1 gene, and co-localizes with UBF1 and
RNA Pol I, and plays an essential role both in rDNA transcrip-
tion and rRNA processing.17 The multiple functional require-
ments for Treacle in ribosome biogenesis suggest that defective
ribosome biogenesis may underlie the etiology of TCS. Mouse
models for human TCS revealed that upregulated p53 signaling
and subsequent apoptosis resulted in a~25% reduction in neural
crest cells (NCC), demonstrating how Tcof1 can influence NCC
formation and survival through the regulation of ribosome bio-
genesis.18 The recent identification of POLR1C and POLR1D
gene mutations in human TCS patients, both of whose gene
products participate in rDNA transcription, provides further evi-
dence that TCS is a ribosomopathy disorder.19,20

Postaxial acrofacial dysostosis (POADS)
POADS, caused by compound heterozygous mutations in the

gene coding for dihydroorotate dehydrogenase (DHODH), is an
acrofacial dysostosis syndrome resulting in craniofacial defects
similar to those of TCS, with the addition to defects in the post-
axial limb skeleton, including the absence of either the fifth or
both the fourth and fifth rays of the hands and feet, and ulnar
and fibular hypoplasia.21 DHODH is an enzyme that is required
for de novo pyrimidine synthesis, including uracil monophos-
phate, a constituent base of RNA, and is therefore critical to ribo-
some biogenesis. Therefore, POADS may also be the result of
deficient ribosome biogenesis. Interestingly, analyses of Dhodh
activity has revealed spatiotemporally specific expression in the
pharyngeal arches, forelimbs, hindlimbs and somites,22 consistent
the domains of observed defects in humans. Furthermore, zebra-
fish treated with a DHODH inhibitor (leflunomide) display
severe defects in NCC development due to blocked transcrip-
tional elongation of genes critical to NCC function.22 These
results suggest similarities between the deficient NCC numbers
observed in POADS and TCS. Curiously, mutations in genes
that function immediately downstream of DHODH do not
exhibit obvious skeletal and/or craniofacial defects, but rather

exhibit orotic aciduria and megaloblastic anemia, which, in con-
trast to TCS can be rescued by dietary uridine supplementa-
tion.23 It is important to note that although orotate
dehydrogenase is needed to make pyrimidines and that this defi-
ciency could affect ribosome biogenesis and thus account for the
skeletal abnormalities observed in this disease, it remains to be
formally proven that POADS is indeed a ribosomopathy. As
mentioned, a deficiency of the next enzyme in the pyrimidine
synthesis pathway causes orotic aciduria, which has the classic
features one might expect from a reduced amount of pyrimidines,
megaloblastic anemia. Orotic aciduria can be effectively treated
with uridine, clearly demonstrating that the lack of pyrimidines
are driving the disease state. But if POADS is a consequence of
reduced amounts of pyrimidines, which in turn affects ribosome
synthesis, it doesn’t explain why individuals with POADS don’t
have megaloblastic anemia, or alternatively why individuals with
orotic aciduria don’t have skeletal deformations. Together, these
data suggest that that the underlying basis for POADS may not
be restricted to pyrimidine synthesis, and that further biochemi-
cal and cellular analyses in suitable animal studies are needed to
fully elucidate the molecular mechanisms underlying the POADS
phenotype.

Diamond-blackfan anemia (DBA)
DBA is a congenital erythroid dysplasia typified by anemia

caused by selective decrease or absence of erythroid precursors,
and reticulocytopenia and macrocytosis.24 Individuals with DBA
present with craniofacial defects resembling those of TCS,
together with cardiac defects, and thumb abnormalities.25 DBA
is caused by mutations in a variety of ribosomal protein genes
including most commonly RPS19,26 and also RPL5 and
RPL11,24 although these mutations only account for ~50% of
DBA patients. As for TCS, analyses of animal models of DBA
have shown that inhibition of upregulated p53 signaling and
resulting apoptosis can rescue the developmental craniofacial and
other defects observed in these animals,27,28 suggesting common-
ality to the pathogenesis of both diseases. Interestingly, dietary
supplementation with L-leucine has been found to rescue the cra-
niofacial defects in DBA animal models, and anemia in certain
DBA patients.29,30 Although DBA is not thought to arise
through deficient rRNA transcription,31 the use of amino acid
supplements to induce the TORC1 pathway, and in turn activate
ribosome biogenesis, may be a fruitful treatment plan for a vari-
ety of neurocristopathies.

Robert syndrome (RBS)
RBS, an inherited disorder characterized by growth retarda-

tion, bilateral symmetric limb reduction and craniofacial defects,
is caused by homozygous or compound heterozygous mutations
in the ESC02 gene, which functions in rRNA production.32

Zebrafish models for RBS have been used to reveal increased
NCC death that is independent of p53 signaling, making it dis-
tinct from TCS and POADS.33 Yeast models for RBS showed
that eco1 mutants exhibited ribosome biogenesis defects and
reduced protein translation, which was also observed in
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fibroblasts cultured from human RBS patients.34 Recently, con-
nections between cohesinopathy mutations and RBS have been
made, implicating roles for cohesin proteins in NCC formation,
migration and differentiation.35-38

Shwachman-diamond syndrome (SDS)
SDS occurs in 1 in 50,000 live births and is associated with

compound heterozygous, or homozygous mutations in the gene
SBDS which is located on chromosome 7. SDS is characterized
by abnormal dermal and endochondral bone formation resulting
in short stature and progressive pathological bone conditions
including osteopenia, osteoporotic vertebral anomalies, and frac-
tures.39–41 SDS patients exhibit considerable variability in inher-
ited phenotypes, likely reflecting variable residual SBDS activity
and threshold requirements for the development of diverse tis-
sues. Cells derived from SDS patients exhibit perturbed activity
of ribosome biogenesis associated genes that govern both rRNA
and mRNA processing, and cell survival and growth.42 Muta-
tions in SBDS can have wide ranging effects, as SBDS functions
both early in ribosome biogenesis, and also later in ribosomal
subunit maturation and function.42,43 Consistent with the
observed bone defects observed in SDS patients, differentiating
chondrocytes and osteoblasts normally require high protein secre-
tory capacity,44 which can be compromised by SBDS mutations.
Mutations in SBDS may affect either general protein translation,
or more specifically proteins expressed in differentiating cartilage
and bone cells. SDS has been classified as a ribosomopathy
phenotype due to the fact that it is primarily caused by
impaired release of eIF6, resulting in deficient 80S translational
activity.45

Cartilage hair hypoplasia (CHH)
CHH is an autosomal recessive disorder arising from muta-

tions in the RMRP gene, which encodes the untranslated
snoRNA RNA subunit of the ribonucleoprotein endoribonu-
clease processing complex, RNase MRP.46,47 CHH is character-
ized by short-limb dwarfism resulting from metaphyseal or
spondyloepiphyseal dysplasia, affecting both limbs and ribs.48,49

CHH is also distinguished by a hair phenotype, consisting of
sparse, fine and thin hair. Other abnormalities may include liga-
mentous laxity, defective T-and/or B-cell mediated immunity,
hypoplastic anemia, and intestinal abnormalities consistent with
Hirschsprung disease in some individuals.50 Strong evidence that
CHH is a ribosomopathy is provided by studies in yeast, which
demonstrate that RMRP (nme1 in Yeast) gene mutations affect
yeast cell growth and are directly proportional to the observed
defects in 5.8S rRNA processing. Furthermore, defects in a single
subunit of the 60S ribosome can result in disintegration of the
entire 60S ribosome and interfere with crosstalk between the
secretory machinery and ribosome biogenesis.51 Recent publica-
tions also indicate roles for RMRP functions in gene-silencing.52

Study of skeletal variants of this disease, caused by different point
mutations in RMRP, will contribute to a better understanding of
roles for RMRP, and ribosome biogenesis, in skeletal develop-
ment. It is important here to address the controversy of whether

RNase MRP is required for pre-rRNA processing in humans,
which could argue against CHH being a ribosomopathy. RNase
MRP was first shown to be required for processing of rRNA in
yeast53,54 and this is supported by more recent data in yeast.55

Currently however there is no direct evidence for overproduction
of the long non-natural form of 5.8S rRNA in CHH patients
as observed in yeast. Furthermore it has been suggested that
RNase MRP has three RNA-processing activities, and that
mutations of RMRP gene would negatively affect all 3 physiolog-
ical functions, thus rendering the pathogenesis of CHH a
consequence of disruption of all three known functions of
RNase MRP, not just one or two.56 Although successful
gene knock-in models of CHH have yet to be reported, such
models would help clarify these and other questions regarding
CHH.

Bowen-conradi syndrome (BWCNS)
BWCNS, an autosomal recessive disorder caused by muta-

tions in EMG1 that result in death within the first year of life,
occurs in some populations at an incidence of 1 in 355.57,58

EMG1 participates in ribosome biogenesis, maturation and proc-
essing of the 18S rRNA, and 40S ribosome biogenesis, through
methylation.59,60 EMG1 is broadly expressed in most embryonic
and adult tissues, and mutations in EMG1 have been found to
cause impaired ribosome biogenesis resulting in impaired cell
division and proliferation.59,60

North American Indian childhood cirrhosis (NAIC)
NAIC is a rare autosomal recessive mutation in human

UTP4/Cirhin that results in cholestasis, the inability for bile to
flow from the liver to the duodenum due to metabolic defects
induced by genetic mutations.61,62 The only known cure for
NAIC to date is orthotopic liver transplantation.63 In humans,
UTP4 is required for pre-18S rRNA processing, but not for pre-
rRNA transcription (in contrast to Yeast where it is required for
both),64 and is highly expressed in E11.5 mouse fetal liver as well
as other developing tissues.61 Evidence that nucleolar dysfunction
is the cause of NAIC is provided by the fact that yeast UTP4
binds to multiple UTPs in the t-UTP/UTPA subcomplex, and
that rRNA biogenesis and processing defects are observed in yeast
defective in many of these genes.58,64 Further analyses of human
UTP4/Cirhin gene mutations in mouse and zebrafish models are
needed to fully elucidate the etiology of NAIC in humans.

Schleroderma
Lastly, mutations in a variety of ribosomal protein genes

including POLR3A and hUTP14a have been found to be linked
to Schleroderma, a disorder resulting in small blood vessel
disease, autoimmune problems, and fibrosis of connective tis-
sue.65–67 Infertility and ovarian cancer also are linked to hUTP14a
gene mutations,68 as well as epigenetic repression of bone mor-
phogenetic protein receptor II.69 Clearly, additional studies of the
role of ribosomal protein mutations in Schleroderma are needed
in order to better understand the molecular connections between
ribosome biogenesis and autoimmune diseases.58
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Many questions and a few answers

Interestingly, it has been established that p53 is a negative reg-
ulator of ribosome biogenesis when induced by the stress
response caused by deficient mature ribosome biogenesis.70 Fur-
thermore it has been shown that p53 can repress RNA Polymer-
ase 1 activity by preventing the interactions of UBF and SLI, and
in doing so directly interfere with transcriptional initiation at the
rRNA promoter.70 Thus, p53 can inhibit cell proliferation via its
role as a negative regulator of ribosome biogenesis. This directly
contrasts with Tcof1/Treacle, which is a positive regulator of ribo-
some biogenesis, and in turn cell proliferation,18 through its abil-
ity to bind UBF and promote RNA polymerase 1 transcriptional
activity.17 The p53 checkpoint control mechanism may have
evolved to monitor ribosome production in the nucleolus, and
activate a cell-cycle inhibitory response when confronted by
nucleolar stress or other defects in ribosome biogenesis.71,72

Many ribosomopathy phenotypes exhibit upregulated p53
signaling, resulting in cell cycle arrest or apoptosis mediated
through the nucleolar stress response.71,73 As such, the connec-
tion between Tcof1 and p53 in ribosome biogenesis has impor-
tant implications in our understanding of cancer and
tumorigenesis. The extent to which ribosome function is directly
modulated by tumor suppressors and oncogenes, and whether
this represents a cause or consequence of cancer progression, is
the subject of increasing scrutiny.74,75 For example, in dyskerato-
sis congenita (DC), a disease characterized by premature aging
and increased tumor susceptibility, work from Pandolfi and
Rugerro’s research groups identified that mutations in the DKC1
gene affect rRNA pseudouridylation that leads to the production
of under-modified ribosomes. Such ribosomes may be involved
in DC development. The ability of p53 inhibition to rescue hap-
loinsufficiency of Tcof1 raises the question as to whether the
reverse is also true – whether ribosomal proteins can modulate
tumor suppressors and oncogenes. Interestingly, despite extensive
searching, we have yet to discover individuals with mutations in
TCOF1, POLR1C or POLR1D resulting in Treacher Collins
Syndrome (TCS) that also develop cancer or related tumors.
This does not mean that such individuals do not exist, as they
would be extremely rare–the incidence of TCS alone is 1 in
50,000. However it does suggest that in cases where tumors are
associated with enhanced ribosome biogenesis, that Tcof1 could
be a potential modifier of tumor progression.70 It will be interest-
ing in future analyses to examine the effects of Tcof1 over-expres-
sion on ribosome biogenesis, and to determine whether there is
any prevention or delay in the onset of tumorigenesis in cancer
animal models that are also deficient for Tcof1.

Under normal cellular growth conditions, Mdm2 targets p53
for degradation through polyubiquitination. In contrast, under
conditions of perturbed ribosome biogenesis and nucleolar stress,
unincorporated ribosomal proteins bind to Mdm2 inhibiting its
polyubiquitination capacity (reviewed in 12). This leads to activa-
tion and stabilization of p53 and ultimately cell death.76,77 As a
case in point, direct inhibition of p53 dependent apoptosis can
successfully prevent the manifestation of ribosomopathy disor-
ders such as TCS (Tcof1) and DBA (Rps19) in animal

models.71,78 However, p53 functions as a tumor suppressor and
any inhibition of p53 would therefore carry a substantial risk of
cancer or tumorigenesis side-effects. This highlights the need to
explore other avenues for ribosomopathy prevention. Interest-
ingly, L-leucine supplementation has recently been used to suc-
cessfully treat DBA in humans,79,80 and in animal models.81,82

Zebrafish and mouse embryos that model DBA showed consider-
ably improved craniofacial and haematopoietic development
when their diets were supplemented with L-leucine.81,82 The
mechanistic basis for this is in the craniofacial region, is that L-
leucine stimulates ribosome biogenesis through the mTOR path-
way, and thus counters the p53 dependent apoptotic loss of neu-
ral crest cells. Thus L-Leucine supplementation may be a possible
treatment option for other disorders of ribosome biogenesis.
Consistent with this idea, L-leucine has been shown to ameliorate
the development of Roberts syndrome-like abnormalities in
zebrafish, and in patient specific cell based models of the disor-
der,78 as well as more recently with respect to Cornelia de Lange
syndrome.83

In contrast, p53 independent roles in ribosomopathy phe-
notypes have also been found in a variety of ribosomopa-
thies.31,84,85 Further analyses of both p53 dependent and
independent functions in ribosomopathy phenotypes are
clearly needed to obtain a full appreciation of possible
approaches to circumvent these deficiencies to improve phe-
notypic outcomes.

Future approaches and anticipated outcomes

Ribosomes are universally responsible for the quality and
quantity of proteins in all cells. Ribosome production therefore,
is highly regulated by and must be integrated with many cellular
processes including growth, proliferation and differentiation.
Considering the global importance of ribosome biogenesis in all
cell types, and that ribosomal proteins are widely if not ubiqui-
tously expressed, it is therefore surprising that disruptions in
ribosome biogenesis are associated with specific cell and tissue
defects in the pathogenesis of neurocristopathies. Furthermore,
there is considerable variability in the phenotypic spectrum of
individual ribosomopathy disorders. The variability in the sever-
ity of ribosomopathy phenotypes, combined with the observed
distinct modes of inheritance, presents a complex challenge to
understanding these diseases at a mechanistic level.

As a case in point, some ribosomopathies specifically affect the
craniofacial skeleton (i.e. Treacher Collins Syndrome), while
other ribosomopathies encompass combinatorial malformations
of the craniofacial, axial and/or limb skeletal systems (Diamond-
Blackfan Anemia, Postaxial acrofacial dysostosis, Roberts syn-
drome, Schwachman-Diamond syndrome, Cartilage Hair hypo-
plasia and Bowen-Conradi syndrome). Similarly, bone marrow
failure may or may not be present as part of the clinical spectrum
of skeletal anomalies. Bone marrow failure is a defining feature of
Diamond-Blackfan Anemia, Shwachman-Diamond syndrome
and Cartilage Hair Hypoplasia but is not a recognized compo-
nent of Treacher Collins syndrome or Postacrofacial dysostosis.12
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This raises fundamental questions about how mutations in genes
critical for ribosome biogenesis, which might normally have
global or widespread roles during organism development, can
lead to such selective traits.

The phenomenon of ubiquitously expressed genes or very
broadly active proteins exhibiting cell or tissue specific functions
is not unique or exclusive to ribosomal genes. However, with
respect to ribosomal genes and proteins, there is currently no sin-
gle unifying factor that collectively links ribosomal genes and
proteins except for their roles in various aspects of ribosome bio-
genesis and the clinical pathogenesis of ribosomopathies.

One of the rate-limiting steps of ribosome biogenesis lies in
transcription of the 47S rRNA. Therefore it is interesting to note
the recent discovery of ribosomal protein variants that may influ-
ence the absolute transcriptional levels and or possible isoforms
of rDNA transcription.86 Another possible mechanism that may
account for some of the clinical differences and their variability is
how each specific mutation affects the function of the gene prod-
uct. For example, Cartilage Hair Hypoplasia and Anauxetic Dys-
plasia are associated with distinct mutations in the same RMRP
gene. Mutations in RMRP that reduce rRNA (rRNA) cleavage
are associated with the bone dysplasia characteristic of Cartilage
Hair Hypoplasia, while in contrast, mutations in RMRP that
affect mRNA (mRNA) cleavage are associated with hair hypopla-
sia, immunodeficiency, and dermatologic abnormalities typical
of Anauxetic Dysplasia.49 Therefore, the observed clinical differ-
ences and variabilities may be explained by the types of altera-
tions in gene function, together with the magnitude of their
effect on ribosome biogenesis in specific tissues at specific devel-
opmental times.

It is also possible, and perhaps even more likely, that ribosome
biogenesis is spatiotemporally dynamic, and furthermore that dif-
ferent threshold levels of activity may be required in one tissue
versus another at different times, in order to effect normal devel-
opment. Consistent with this idea, such a cell type specific
requirement has been postulated in the pathogenesis of TCS,
with respect to the demands of high rates of proliferation of neu-
roepithelial cells and neural crest cells.18,87,88 Hence it is possible
that tissue-specific ribosomes themselves may be specialized, and
composed of diverse rRNA and ribosomal protein combinations,
along with different associated factors such as variable post-trans-
lational modifications. This type of diversity could conceivably
have a considerable impact on how mRNA templates are trans-
lated into functional proteins. Currently, we also have a poor
understanding of the stability of the subunit composition of
RNA Pol I and III, or how subunit specificity might influence
development and disease. For example, it is important to con-
sider the possibility that the subunit composition of RNA Pol I
and III is also spatiotemporally dynamic. Subunits such as Polr1c
and Polr1d, defects in which are associated with TCS, exist on
the periphery of the structure of RNA Pol I and III, while other
subunits are thought to specifically occupy the core.89 It is tempt-
ing to speculate that subunits in the core of RNA Pol 1 and III
may function as part of the basal machinery, whereas those subu-
nits occupying the periphery may provide tissue or activity speci-
ficity. It will be interesting in the future to isolate the RNA Pol 1

and III complexes from different cells and tissues, and to deter-
mine whether their composition is constant or if there is any evi-
dence for dynamic cellular or tissue specific subunit composition.

In contrast to our understanding of the many levels of regula-
tion controlling gene expression, our knowledge of the regulatory
control of protein production remains relatively poor. The his-
toric idea that ribosomes function constitutively to translate the
genetic code continues to be challenged. Even core ribosome
components may exert selective activity through their interac-
tions with specific cis-acting regulatory elements present within
subsets of mRNAs.90 Thus ribosome activity appears to be highly
regulated, and may provide an important new level of control
governing spatiotemporal gene expression during normal embry-
onic development, adult homeostasis, and in the pathogenesis of
diseases and disorders that comprise ribosomopathies. Under-
standing how the mechanisms of ribosomopathies overlap and
diverge will be instrumental in designing realistic avenues for
their therapeutic prevention. As a first step, it will be critical to
determine if there is any evidence for spatiotemporal activity for
the genes, RNAs and proteins that constitute the ribosomes.

Closing thoughts

Here we consider a few additional levels of control regulating
ribosome biogenesis, to further highlight the complexities of
human ribosomopathy disorders and possible connections with
the etiology of cancer.

RNA Pol I complex interactions with other nucleolar proteins
effect the regulation of transcription, elongation, and termination
of pre-rRNA production.91 RNA Pol I transcription is initiated
by an interaction between the upstream binding factor (UBF),
and the species-specific promoter selectivity factor, SL1. Specifi-
cally, UBF interacts with TATA binding protein92 and
TAF1,56,93 which are components of the SL1 complex, and
PAF53.94 UBF also interacts with pRb, which inhibits RNA Pol
I activity.95 As ribosomes determine the capacity for protein pro-
duction and their synthesis commandeers much of the cell’s met-
abolic efforts, ribosome biogenesis determines growth, cell
division rates, and survival.96 Therefore, the etiology and patho-
genesis of ribosomopathies can reveal new information about the
role of ribosome biogenesis in proliferation, growth, differentia-
tion and also importantly in cancer. The ribosome plays a unique
role in the maintenance of the species, translating mRNAs into
functional proteins.97 Moreover, it has been known for many
decades now that the affinity of the translational apparatus for
any single mRNA species is unique.98,99 Therefore, given that
there is an excess in the number of mRNA transcripts to ribo-
somes, a decrease in ribosome number would impinge not only
on the rates of translation, but also on the patterns of transla-
tion.98,99 This is because as the number of ribosomes to mRNA
transcripts decreases, those mRNAs for which the translational
apparatus has high affinity will continue to be translated, whereas
the translation of those mRNAs for which the protein synthetic
apparatus has low affinity will decrease.75,100 Importantly,
changes in gene expression, caused by alterations in ribosome
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number, have been implicated in aberrant growth and human
pathologies.101 Evidence in support of this concept initially came
from findings in model systems showing that ribosomal proteins
(RPs) act as haploinsufficient tumor suppressors.102-104 More
recently, it has become evident that patients affected by Dia-
mond-Blackfan anemia (DBA) 105,106 or 5q syndrome,107 patho-
logical conditions characterized by heterozygous loss-of-function
mutations in RP genes, have a propensity to develop tumors later
in life.108 There are, however, well recognized differences
between DBA and 5q deletion syndrome.109 Certain characteris-
tic features of the 5q- syndrome, namely thrombocytosis, mega-
karyotypic hyperplasia and clonal dominance, have not been
explained by RPS14 haploinsufficiency. This indicates that the
full phenotype may be a consequence of allelic insufficiency of
multiple genes and/or noncoding regions within the critical dele-
tion region. In agreement with this idea, a number of non-coding
miRNAs are deleted in patients with 5q- syndrome. Some of the
miRNAs target TRAF6, and overexpression of TRAF6 is consis-
tent with thrombocytosis, mild neutropenia, dysplastic megakar-
yopoiesis, and a propensity to AML, all of which are features of
5q- syndrome. Thus, although there are clear genetic differences
between DBA and the 5q- syndrome, with germline mutations
in the ribosomal proteins in the former and somatic deletions
that include RPS14 in the latter, the full phenotype in 5q- may
be due to both cell non-autonomous and cell autonomous
factors.

In summary, the disorders described in this review arise due to
deficient ribosome biogenesis. However, the converse is also true,
that excessive ribosome biogenesis can also lead to developmental
anomalies. This is particularly evident in Bent Bone dysplasia, a
congenital disorder of skeletal development, which was recently
shown to be caused by excessive ribosome biogenesis in

association with mutations in FGFR2.133 It is reasonable to
expect that perturbations in regulatory signals lying upstream of
ribosome biogenesis in bone may be able to elicit such effects and
consistent with this idea, it has long been known that signaling
molecules such as FGF, BMP, Wnt, and Hedgehog spatiotempo-
rally regulate growth, proliferation and differentiation. Yet, how
these signals are integrated with ribosome biogenesis as a means
to adapt to changing requirements for protein synthesis during
bone and general tissue formation and homeostasis remains an
open question.117 The answers however will provide a better
understanding of why bone is particularly sensitive to specific lev-
els of ribosome biogenesis. What is clear, is that the convergence
of developmental signaling pathways with ribosome biogenesis
provides additional levels of translational specificity that influ-
ence fundamental aspects of cell growth and proliferation in the
context of embryonic development, evolution and congenital
disease.
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