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Voltage controlled Néel vector rotation in zero
magnetic field
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Shaloo Rakheja3 & Christian Binek 1✉

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and non-

volatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of

antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible

temperatures between 300 and 400 K. The boundary magnetization associated with the

Néel vector orientation serves as state variable which is read via magnetoresistive detection

in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and

non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin

resolved inverse photoemission, electric transport and scanning probe microscopy mea-

surements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy

reduction, dynamic polarization hysteresis and gate voltage dependent orientation of

boundary magnetization. The combined effect enables H= 0, voltage controlled, nonvolatile

Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of

about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy

efficient nonvolatile CMOS compatible memory applications.
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Magnetoelectric (ME) antiferromagnets, notably the
archetypical ME insulator Cr2O3 (chromia), have long
been exploited to realize voltage-controlled spintronic

devices1–3. In contrast to their multiferroic counterparts4,5, ME
antiferromagnets have one spontaneous ferroic order parameter
whose temperature (T) dependence determines the T-dependence
of the ME response6. In pristine chromia, the linear ME response,
αij, sets in below the Néel temperature TN= 307 K, where mag-
netization, M, (polarization, P) is induced by an electric E-field
(magnetic H-field) according to αij ¼ μ0∂Mi=∂Ej ¼ ∂Pi=∂Hj

7.
Voltage-controlled switching of the Néel vector between 180°
domain states can be achieved when their degeneracy is lifted. In
chromia this is accomplished by simultaneously applying E and H
along the easy axis (c-axis) such that the free energy difference
ΔF ¼ 2α33E3H3 overcomes the anisotropy energy barrier which
separates the two antiferromagnetic (AFM) single domain states8.
This mechanism has been exploited in voltage-controlled
exchange bias (EB) heterostructures fabricated from chromia
and an exchange coupled perpendicular anisotropic magnetic
thin film such as CoPd9–12. Uncompensated AFM surfaces with
equilibrium roughness often have a small interface magnetization.
Therefore EB tends to be small in heterostructures based on
antiferromagnets with uncompensated surfaces13. However, in
ME antiferromagnets, an equilibrium magnetic moment asso-
ciated with the AFM order parameter is symmetry allowed14–16.
Note that due to the rigorous symmetry argument leading to
boundary magnetization in linear ME antiferromagnets, the
boundary magnetization is strictly tied to the orientation of the
Néel vector. This moment can be sizable even in the presence of
roughness and enables effective coupling with the magnetization
of an adjacent ferromagnet. In such heterostructures, voltage-
controlled reversal of the Néel vector switches the EB field
between negative and positive values and can give rise to reversal
of the remnant magnetization of the adjacent ferromagnet9–12,17.
Note that switching based on the ME effect requires the simul-
taneous presence of E and H fields which, combined, have to
overcome a critical product (EH)c. The need for H-fields, even
when provided via stray-fields or exchange fields18, is detrimental
to the implementation of practical devices. Despite this limitation,
voltage-controlled EB heterolayers can serve as building blocks
for voltage-controlled spintronics where the orientation of the
exchange coupled magnetization defines the state variable2.
Voltage-control promises energy efficient performance due to the
absence of dissipative currents often required in spintronic
devices which switch the state variable via Oersted fields, spin
polarized electric currents through spin transfer torque19,
spin–orbit or Néel torque in metallic antiferromagnets20.

Chromia is an insulating antiferromagnet whose ME properties
can be exploited for voltage-controlled AFM spintronic devices.
However, in its pristine form, chromia falls short of two prime
objectives. Those are voltage-controlled switching in zero H-field
and stable device operation above room temperature. High-
temperature operation is an essential prerequisite to embed a ME
device in a CMOS environment where typical load temperatures
of central processing units reach 350 K or more21.

Our work demonstrates that B-doping of chromia creates
a single-phase material, which enables voltage-controlled
nonvolatile rotation of the Néel vector in zero H-field and
CMOS compatible operation temperatures. B:Cr2O3 simulta-
neously acquires new tunable functionalities in addition to the
linear magnetoelectricity known from Cr2O3. Those include TN
and resistivity enhancement, reduced and voltage controllable
anisotropy, spin-canting and transient electric polarizability not
observed in pure chromia. Our data imply that B-doping breaks
local symmetry allowing for the formation of polar nanoregions
(PNRs). The PNRs orient in an applied electric field giving rise to

transient polarization and piezoelectricity. Piezoelectrically
induced strain alters the reduced, nearly cubic anisotropy22 of
B:Cr2O3 giving rise to a π/2 rotation of the Néel vector into a new
stable state. Coupling between the AFM order parameter and the
boundary magnetization allows to read out the AFM state via
magnetoresistive detection in an adjacent Pt Hall bar. This
structure demonstrates the fundamental building block of an
ultra-low power electrically controlled AFM spintronic device
which operates above room temperature and in zero applied
magnetic field.

Results
Multi-functional properties of B:Cr2O3. In ME antiferro-
magnets, the AFM order and ME response disappear at T > TN
rendering device operation near or above TN impossible. Chro-
mia’s Néel temperature of 307 K is insufficient for CMOS com-
patible applications. To mitigate this shortcoming, B-doping has
been established as a viable path to increase TN23,24 with its only
potential alternative being epitaxial or chemical straining22,25,26.
Although AFM order and the persistence of magnetoelectricity
have been predicted and demonstrated up to T= 400 K in B-
doped chromia23,27, utilizing the high-TN material in device
structures which rely on EB, remains elusive. In device archi-
tectures based on voltage-controlled EB, B-doping does not
translate into improved device performance. Although B-doping
can increase the blocking temperature, exchange coupling is not
accompanied by effective pinning and thus voltage-control of the
ferromagnet (see note 1 in the Supplementary information). We
attribute the detrimental effect of B-doping on perpendicular EB
to reduced magnetic anisotropy and canting of the interface
magnetization relative to the surface normal. Nevertheless, AFM
order and ME functionality are preserved above 307 K, as is
evident from magnetometry23, spin polarized inverse photo-
emission spectroscopy, and X-ray magnetic circular dichroism
(see Fig. S11 in the Supplementary information), giving rise to
alternative device concepts with reduced complexity3.

When growing B:Cr2O3/CoPd heterolayers with in-plane
anisotropic CoPd films, sizable EB reappears below the blocking
temperature substantiating the interpretation that B-doping is
associated with anisotropy reduction and spin canting. Figure 1
shows the complex T-dependence, μ0HEB versus T, of the EB field
in Cr2O2.9B0.1(100 nm)/Pd(0.5 nm)Co(3 nm)Pd(0.5 nm), where
the ratio of Co to Pd film thickness tunes the anisotropy of
CoPd heterolayers to be in the plane (see note 9.3 in the
Supplementary information). The EB field is non-zero up to
400 K but only sizable at T < 100 K (open squares in Fig. 1). Insets
a and b in Fig. 1 show representative in-plane CoPd hysteresis
loops measured via vibrating sample magnetometry. The loops
show positive EB fields of 0.18 and 1.1 mT at 323 and 232 K,
respectively. The absence of perpendicular EB and the presence of
in-plane EB indicate that the boundary magnetization in B-doped
chromia tends to tilt away from the c-axis in agreement with
recent findings in CoFe2O4–Cr2O3 nanocomposites28. There is
strong support for this interpretation from T-dependent spin-
resolved inverse photoemission shown in Figs. 1c and S11c. This
result was seen to be consistent with X-ray magnetic dichroism
which also found an in-plane component of Cr3+ magnetic
moment (see Fig. S11a and b in the Supplementary information).
Inverse photoemission is a surface sensitive probe of the
unoccupied spin-dependent states. The presence of a spin-
resolved inverse photoemission signal, in the geometry of our
experiment requires a tilt of the surface spins relative to the c-axis,
as indicated in the cartoon in Fig. 1c. The difference in intensity
for each spin polarization versus binding energy (blue up and red
down triangles in Fig. 1c are signals associated with spin up and
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spin down electronic states) at 300, 315, and 325 K indicates that
boundary magnetization and thus AFM order persist above the
Néel temperature of pure chromia. The reduction of magnetic
anisotropy and the associated canting of the boundary magne-
tization in B:Cr2O3 hamper its use in devices which rely on
exchange coupling between a FM layer and the ME antiferro-
magnet. In Hall bar structures, where the FM constituent layer
has been eliminated, reduced anisotropy becomes a beneficial
feature. Hall bar structures from nonmagnetic heavy metals on
top of chromia can sense boundary magnetization and serve as
readout components in all AFM memory devices29. In our Hall-
device, a Pt Hall bar detects a transverse voltage signal, Vxy, in
response to an in-plane current density j (see Fig. 2a for
Hall geometry)30–32. The Hall-like signal Vxy is widely believed
to originate from spin Hall magnetoresistance due to the
fact that the mixing conductance has a non-zero imaginary
component31,33. Potential additional contributions might origi-
nate from the anomalous Hall effect caused by magnetization
which is proximity induced in the heavy metal Hall bar by the
exchange field of the boundary magnetization or by anomalous
Hall effect generated by spin chirality32,34. Regardless of the
details of the mechanisms generating Vxy, it has been experi-
mentally established that Vxy is a reliable proxy for the orientation
of AFM boundary magnetization30,31,35. Of particular importance
for this interpretation in heavy metal/chromia bilayers are the
complementary studies of magnetotransport and direct imaging
of boundary magnetization. In chromia, x-ray magnetic circular
dichroism photoemission electron microscopy (PEEM) is the
method of choice to detect Néel vector reversal via reversal of the
AFM boundary magnetization36. In antiferromagnets such as
CuMnAs and Mn2Au direct measurement of the reorientation
of the Néel vector require x-ray magnetic linear dichrosim-
PEEM37,38.

An optical image of a Hall bar device which detects
magnetization states of the electrically controllable boundary
magnetization is shown in Fig. 2b. The device comprises a

5 nm-thick Pt Hall-cross with two orthogonal legs of 7.0 μm×
1.0 μm. The Hall cross was fabricated by depositing Pt via DC
magnetron sputtering, and subsequent lithographic patterning,
on top of a 200 nm B-doped chromia film. The B-doped chromia
has been grown via pulsed laser deposition (PLD) on top of
20 nm PLD-grown V2O3 (see note 9.1 in the Supplementary
information). The V2O3 film serves as bottom electrode due to its
metallicity above the insulator to metal transition at T ≈ 150 K39.
Reduced device complexity through absence of an exchange
coupled FM layer ensures that reorientation of the Néel vector is
not affected by interfacial exchange energy which increasingly
contributes to the switching energetics in EB-type heterostruc-
tures on scaling down the device thickness12,35,40.

Figure 2c and d shows Vxy of the Hall measurements taken at
T=300 K with a readout current of 20 μA. The sequence of
measurements is numbered and the Hall signal Vxy is shown as a
function of this numbering. Hundred subsequent Hall measure-
ments in zero field were performed to determine a baseline for
Vxy associated with a particular AFM state. After every hundredth
point, a voltage pulse of VG= ±25 V was applied across the AFM
film for a duration of Δt= 4 s. The applied voltage gives rise to an
electric field, E. After exposing the AFM film to an E-field,
100 subsequent data points are taken at E= 0. Each of the 100
measurements takes about 400 ms probing the nonvolatile state of
the antiferromagnet. The grid of dashed vertical lines marks the
points where unipolar voltage pulses are applied. The data in
Fig. 2c demonstrate that a voltage pulse, VG, can switch Vxy and
thus the AFM spin structure of the B-doped chromia film in zero
applied magnetic field. The control experiment shown in Fig. 2d
shows data taken at μ0H=−1 T implying that the signal
switching is independent of the presence of an applied magnetic
field. Figure 2a shows a scheme of the Hall-bar device associated
with the optical image of Fig. 2b. The Pt Hall-bar and the bottom
V2O3 film serve as electrodes allowing to apply the gate voltage
VG across the AFM film. The spin structure of chromia is
depicted by up (green) and down (blue) spins. For simplicity,

Fig. 1 Spectroscopy and magnetometry of B-doped chromia films and their heterostructures. EB field μ0HEB versus T (open squares in main panel) for
heterolayer based on B-doped chromia and in-plane anisotropic CoPd top layer. Insets a (red squares) and b (blue circles) show representative hysteresis
loops at 323 and 232 K. The loops are associated with μ0HEB versus T data highlighted by solid symbols. Inset c shows spin-resolved inverse photoemission
data for the surface of a B-doped chromia thin film at 300, 315, and 325 K. The inset shows a cartoon of the film with spin structure (tilt not shown) and
boundary magnetization tilted by the angle θ relative to the c-axis (surface normal).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21872-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1674 | https://doi.org/10.1038/s41467-021-21872-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


canting present in B-doped chromia as well as the fact that the
magnetic unit cell contains four sublattices are not shown.

Remarkably, the toggling between AFM domain states in H= 0
and μ0H=−1 T indicates that ME switching, which is the well-
established switching mechanism in pure chromia, can be ruled

out. In both cases (H= 0 and μ0H=−1 T), deterministic and
nonvolatile switching between two distinct AFM states is
observed. The high degree of asymmetry in Vxy on switching
between different nonvolatile AFM states associated with Vxy ≈ 0
and Vxy ≈−15 mV implies 90° rotation of the Néel vector in
sharp contrast to Hall-signals observed for 180° switching29.
Rotation of the Néel vector by π/2 is consistent with the fact
that time reversal symmetry is not broken by an electric field.
Equilibrium reversal of the Néel vector by π requires a field
combination such as E � H which breaks time inversion
symmetry.

The findings presented in Fig. 2 are supported by hysteresis
loops Vxy versus VG measured at T= 300 K in H= 0 (Fig. 3a
open squares) and μ0H=−1 T applied along the c-axis of the
sample (Fig. 3b solid squares). The voltage VG is applied as a
quasistatic pulse between top and bottom electrode of the device
(see sketch in Fig. 2a) and removed prior to probing the
transverse voltage Vxy. The sharp transitions at the coercive
voltages of about ±15 V resemble deterministic switching between
distinct AFM states. The magnetic field has virtually no effect on
the voltage-controlled transition. We confirmed these results for
several devices and various temperatures (see note 3 and Fig. S4
in the Supplementary information for loops at T= 330 and
400 K). Because the switching is triggered by the applied electric
field alone we exclude ME switching and investigate an indirect
coupling between induced polarization and AFM order41.
Although the magnetic field has no effect on switching, it does
affect the Hall voltage. The dissimilar field dependence of Vxy in
the two AFM states provides strong support for the magnetic
origin of the switching shown in Figs. 2 and 3 and allows the
assignment of the orientation of the boundary magnetization to
the distinct voltage states (for details see Fig. S5 in the Supple-
mentary Note 3).

Independent evidence for electrically controlled magnetism in
B:Cr2O3. To provide independent evidence that the switching
effects shown in Figs. 2 and 3 are magnetic in origin, we carried
out additional measurements by magnetic force microscopy
(MFM). MFM utilizes the long-range forces, originating from
interaction between a magnetized tip and the magnetic stray field
of the sample. Figure 4 shows the topographic and MFM images
of a segment of the Pt Hall cross, which was deposited on the
same B:Cr2O3 thin film used for the devices in Figs. 2 and 3. The
MFM images illustrate a change in the magnetic response signal
of the pristine sample after application of the poling pulses of 2 s
duration and ±10 V magnitude. Clearly visible is the drastic
reduction of the MFM contrast after application of the +10 V
pulse and its partial recovery after application of the −10 V pulse.
Kelvin probe force microscopy measurements (Fig. S6 in the
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Fig. 2 Image of the lithographically patterned device, illustration of the
experiment, and switching results. a Cartoon of Hall bar device showing
V2O3 back gate, B-doped Cr2O3 film with AFM spin structure, Pt Hall cross
with Au electrodes, current density j flowing in direction of black arrow
causing signal Vxy which depends on applied voltage VG. b Optical image of
the device with 7.0 μm× 1.0 μm legs forming the Pt Hall cross with attached
Au electrodes on top of the B-doped Cr2O3 film. c and d show Vxy versus
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application of a voltage pulse VG= ± 25 V. Measurements are done at T=
300 K in (c) H=0 T, and d μ0H=−1 T applied magnetic field.
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Fig. 3 Electric hysteresis of Hall-like signal. Vxy versus VG hysteresis loops measured at T= 300 K in a μ0H=−1 T (open squares) and b H= 0 (solid
squares).
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Supplementary information) allowed us to rule out the effect of
the parasitic electrostatic tip–sample interaction signal on the
observed MFM contrast variations.

Going further, we are able to provide experimental evidence for
the presence of transient dielectric polarization in B: Cr2O3 and
show in a control experiment (see Fig. S8 in the Supplementary
Information) that no such response is observed in pure chromia.
This rules out the possibility of an artifact in the PFM
measurements. In order to explain the qualitative dielectric
differences between pure and B-doped chromia it is worth to
mention that our B-doped samples show significantly enhanced
resistivity compared to films of pure grown Cr2O3 grown in the
same PLD chamber. The resistivity enhancement directly
manifests in electric transport measurements (Fig. S9 in the
Supplementary information) but is even more compelling when
comparing the inverse photoemission data of pure and B-doped
chromia (see Fig. S2 in the Supplementary Information) where
smearing of the intensity profile near the Fermi energy is
indicative of charging and thus increased resistivity. Some studies
reported similarly high resistivity in thin chromia films doped by
metallic ions such as Ti4+ 42. Enhanced resistivity in B: Cr2O3 is a
necessary prerequisite for the presence of polar states. Their
formation require strong internal electric fields at low leakage
current.

Probing-induced polarization in B:Cr2O3. By using piezo-
response force microscopy (PFM), we provide experimental evi-
dence for the induced dielectric polarization in B:Cr2O3. In PFM,
the electromechanical response measured locally in the region
underneath the tip can be associated with the polar state of the
material43. PFM spectroscopic measurements of the Pt/B:Cr2O3/
V2O3 heterostructure performed in the bias-off regime reveal
typical butterfly-shape amplitude hysteresis loops along with the
180° change in the PFM phase (Fig. 5a) indicating presence of the
switchable polarization in B:Cr2O3. Importantly, no such
response has been observed in pure chromia (Fig. S8 in the Sup-
plementary information). Given that these measurements have
been carried out on the Pt top electrode, the electrostatic con-
tribution to the measured PFM signal can be ruled out.

Previously, it has been shown that robust PFM signals could be
registered in the non-ferroelectric materials due to the electrically
induced polarization, which in turn could result from various
mechanisms, such as redistribution of oxygen vacancies44 or
reorientation of PNRs45. Figure 5b shows that the PFM amplitude
signal, measured in the Pt/B:Cr2O3/V2O3 heterostructure, is not
stable but relaxes logarithmically with a characteristic relaxation
time varying in the range from several hundreds of milliseconds
to tens of seconds. This behavior suggests that voltage pulse
application produces a metastable polarization state in B:Cr2O3.
Similarity of the PFM relaxation dynamics to that observed in
ferroelectric relaxors allows us to assume that the induced
polarization in B:Cr2O3 could be due to the alignment of the
naturally existing PNRs (see discussion below).

The effective d33,eff piezoelectric coefficient of B:Cr2O3 can be
estimated by comparing its electromechanical response with the
PFM signal detected in another material with the well-known
piezoelectric properties46,47 (see note 7 in the Supplementary
information for details). In our case, we chose lithium niobate
LiNbO3 as a reference material. Comparative analysis of the PFM
amplitude signals measured in B:Cr2O3 and LiNbO3 yields a value
of ~8 pm/V for the effective d33 coefficient in B:Cr2O3 right after
+7 V pulse application.

The induced polarization is a key ingredient for the voltage-
controlled Néel vector rotation. Its origin and indirect coupling
with the AFM order parameter is discussed next.

Discussion
Our experiments show multifaceted effects of B-doping on
magnetic and dielectric properties of Cr2O3 which, when acting
jointly, enable the H= 0, nonvolatile Néel vector rotation above
room temperature. The logarithmic relaxation of the induced
piezo-response after poling is characteristic of thermally activated
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Fig. 4 Topographic and magnetic surface characterization in response to
applied voltages. Top row: topographic images of a segment of the Pt Hall
cross before and after application of the poling pulses (2 s; ±10 V). Bottom
row: MFM images of the same segment after application of the poling
pulses.

Fig. 5 Voltage and time dependence of local piezo response. a Bias-off PFM amplitude (bottom panel) and phase (top panel) hysteresis loops measured
in the Pt/B:Cr2O3(200 nm)/V2O3 structure. b PFM amplitude signal as a function of time elapsed after application of a positive (blue) and negative (red)
poling pulses (7 V, 12.5 ms). Solid lines in b illustrate the logarithmic fit of the temporal decay of the effective piezoelectric coefficient d33(t) in accordance
with a relaxation model for electric field-oriented PNRs.
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PNRs48 and contrasts stationary polar order in multiferroics
where spontaneous polar and magnetic order coexist49. Figure 6
illustrates a possible mechanism which gives rise to PNRs in B:
Cr2O3. The PNRs are linked to inhomogeneous local strains
produced by random substitution of O atoms for B. The local
strain moves the B atom to an off-center position within BCr4
tetrahedra resulting in emergence of PNRs50,51. Electric field-
induced alignment of dipole moments in PNRs leads to detectable
piezoresponse. Thermal fluctuations of polarization after the field
is off cause temporal decay of the piezoelectric coefficient, which

follows the logarithmic law: dzz tð Þ � d0 � S log10
t
t0

� �
(Fig. 5b)

where the slope S ¼ 2:2� 2:3 is a measure of viscosity and 1
t0
¼

1 Hz is the attempt frequency. The observed difference in the
peak amplitude of the piezo-response between positive and
negative poling voltages may be caused by residual strain near the
surface48. Similar logarithmic time dependences such as those
seen in the piezo-response in Fig. 5b have been reported in the
case of magnetic after effects, where magnetic viscosity originates
from the distribution of activation energy barriers of ferromag-
netic domains52.

E-field-induced orientation of PNRs plays a critical role in the
interplay between polarization, piezoelectricity, strain and aniso-
tropy control, which gives rise to the Néel vector rotation. The E-
field aligns the PNRs. This process transforms the local strain
distribution into a uniform strain field ϵ ¼ dzzE. The strain alters
the perpendicular magnetic anisotropy K⊥ via magnetoelastic
coupling. Before we investigated the effect of the magnetoelastic
coupling on B:Cr2O3, we reconsidered the case of undoped Cr2O3.
Chromia has perpendicular uniaxial anisotropy and collinear
alignment of the spins along the c-axis. In a (0001)-oriented Cr2O3

film the c-axis is normal to the film plane. However, stable in-
plane domain variants can be produced through lattice mismatch
with a substrate53 or substitutional defects. The chromia film
surface itself can be considered as a defect where temperature-
driven surface reconstructions take place, which include spin-
canting effects54–56. First-principles calculations show that the
magnetic anisotropy in unstrained Cr2O3 is close to cubic and the
preference to perpendicular anisotropy is strongly modified by
strain as ΔK?=K? � 103ϵ 22. Magnetometry and inverse photo-
emission data (see Fig. 1) provide experimental evidence that the
anisotropy in B:Cr2O3 is reduced and canting at the surface is
more prominent compared to undoped chromia. We therefore
express the free energy of the B-doped Cr2O3 in terms of the
perpendicular and in-plane components, n⊥ and nk, of the Néel
vector as Faniso ¼ K0n

2
?n

2
k � K?n

2
?, where K0 � K?. Depending

on the direction of electric E-field (parallel or antiparallel to the
c-axis), the piezoelectrically induced strain is compressive or

tensile enabling rotation of the Néel vector between in-plane and
perpendicular orientations in accordance with the switching
condition ΔK?=K?j j ¼ 1 (see note 8 and Fig. S10 in the Supple-
mentary information for details). The nearly cubic anisotropy
creates local minima in the free energy landscape giving rise to
nonvolatility after removal of the E-field. This switching criterion
is in agreement with the experimentally observed coercive electric
field of Ec ≈ 15 V/200 nm for a piezo-response coefficient of dzz=
13 pm/V. A dzz on the order of a few pm/V is in agreement with
our estimate obtained from the PFM data (Fig. 5) and supports
the model.

Although the magnetoresistive switching data shown in Figs. 2
and 3 refer only to quasistatic experimental conditions it is
possible to estimate the switching speed for nonvolatile memory
devices based on the outlined mechanism. The equation of
motion for 90° reorientation of the Néel vector maps onto angular
relaxation of a damped gravitational pendulum from an inverted
position57. Using this model we estimate a speed of 10Ms/(αγJ)=
100 ps for 90° planar relaxation of the Néel order, where Ms=
1.9 × 105 A/m is the sublattice magnetization, α= 2 × 10−4 is the
Gilbert damping, J= 9.5 × 107 J/m3 is the intersublattice exchange
and γ is the electron gyromagnetic ratio. This underlines the
advantage of AFM spintronics outperforming device concepts
which rely on notoriously slow reversal of ferromagnetic con-
stituents taking place on the ns time scale determined by the
inverse Larmor precession frequency.

Energy-efficient isothermal and deterministic switching of
remnant magnetic states above room temperature and in the
absence of a magnetic field is fundamentally challenging and of
highest interest for ultra-low power memory and logic device
applications. Switching of AFM states is of particular interest due
to inherent switching speed advantages over ferromagnets and
robustness against external magnetic field perturbations. The work
presented here demonstrates that the prototypical magnetoelectric
antiferromagnet Cr2O3 can be tuned into a multi-functional high-
TN material through B-doping. Emerging functionality associated
with B-doping include purely electric-controlled 90° nonvolatile
rotation of the Néel vector up to T= 400 K. Indirect coupling
between polar and AFM order explains the experimental findings
and allows to estimate switching speeds on the order of 100 ps. An
energy efficient memory which operates up to 400 K in zero
magnetic field has been fabricated on the basis of B-doped chro-
mia. Future investigations will focus on device stability, switching
speed, and scaling.

Methods
Magneto-optical polar Kerr effect and vibrating sample magnetometry are utilized
to investigate heterolayers of B-doped Cr2O3 (chromia) and ferromagnetic CoPd
with tuned perpendicular and in-plane anisotropy for temperature-dependent EB.
Magnetometry together with temperature-dependent spin-polarized inverse pho-
toemission spectroscopy were utilized to investigate canting of the AFM interface
magnetization relative to the film normal.

Our spin-polarized inverse photoemission experiments utilize a transversely
polarized spin electron gun based upon the Ciccacci design58. As described
elsewhere23,58, the spin electron gun was used in combination with an iodine-based
Geiger–Müller isochromat photon detector with a SrF2 window. As is typical of
such instruments, the electron gun has 28% spin polarization, and the data have
been corrected for this incident gun polarization. The direction of electron
polarization is in the plane of the sample. The magnetoelectric cooling was
accomplished in an axial magnetic field of >40 mT and a voltage of 3 kV applied
across the film thickness. The Fermi level was established from tantalum and gold
foils in electrical contact with the sample.

The AFM constituent films of the EB heterostructures are grown by PLD while
the anisotropy tuned CoPd multilayers are deposited via molecular beam epitaxy.
PLD in ultra-high vacuum is used to grow (0001)-oriented films of the sesquioxides
V2O3 and subsequently, in the presence of a decaborane background gas, B-doped
chromia. The V2O3 film, which is grown on the c-plane of a sapphire single-
crystalline substrate, serves as bottom electrode in a gated Hall bar structure. A
5 nm Pt film is deposited via DC magnetron sputtering on top of the B-doped
chromia film and various Hall crosses are lithographically patterned. The Hall cross

Fig. 6 Illustration of polar nanoregions. Local polarization (blue arrow)
arises from off-center B− substitutions and accompanying inhomogeneous
local strains which give rise to canting of neighboring spins.
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serves as readout device which detects the voltage-controlled AFM states of the
chromia film.

Electrical measurements
PFM characterization. PFM spectroscopy loops were obtained in the resonance
tracking mode using a commercial atomic force microscope system (MFP-3D,
Asylum Research) by employing Pt-coated tips (HQ:NSC18/Pt, Mikromasch). The
AC driving voltage was varied between 0.75 and 1 V at a frequency of ~330 kHz.
For the PFM studies, capacitive devices were fabricated on the same samples as
were discussed throughout this manuscript. Focused Ion Beam was used to mill
2 × 2 μm2 sized capacitive structures. In all PFM measurements, the top electrode
was biased while the bottom electrode grounded.

Theory. The switching criterion has been derived analytically by variation of the
anisotropy energy. The switching speed of a thermally excited state has been
determined by the time it takes for the state to relax from the top of the energy
barrier to the bottom. The relaxation process has been mapped to damping of an
equivalent inverted pendulum.

Data availability
All data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.
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