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ANALYTIC PERSPECTIVE

Teaching: confidence, prediction 
and tolerance intervals in scientific practice: 
a tutorial on binary variables
Sonja Hartnack1*   and Malgorzata Roos2 

Abstract 

Background:  One of the emerging themes in epidemiology is the use of interval estimates. Currently, three interval 
estimates for confidence (CI), prediction (PI), and tolerance (TI) are at a researcher’s disposal and are accessible within 
the open access framework in R. These three types of statistical intervals serve different purposes. Confidence inter-
vals are designed to describe a parameter with some uncertainty due to sampling errors. Prediction intervals aim to 
predict future observation(s), including some uncertainty present in the actual and future samples. Tolerance intervals 
are constructed to capture a specified proportion of a population with a defined confidence. It is well known that 
interval estimates support a greater knowledge gain than point estimates. Thus, a good understanding and the use of 
CI, PI, and TI underlie good statistical practice. While CIs are taught in introductory statistical classes, PIs and TIs are less 
familiar.

Results:  In this paper, we provide a concise tutorial on two-sided CI, PI and TI for binary variables. This hands-on tuto-
rial is based on our teaching materials. It contains an overview of the meaning and applicability from both a classical 
and a Bayesian perspective. Based on a worked-out example from veterinary medicine, we provide guidance and 
code that can be directly applied in R.

Conclusions:  This tutorial can be used by others for teaching, either in a class or for self-instruction of students and 
senior researchers.

Keywords:  Statistical interval estimates, Random sample, Bayesian analysis, Jeffreys prior

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Statistics can be understood as a set of analytical tools 
to quantify uncertainty. Currently, three interval esti-
mates for confidence (CI), prediction (PI), and tolerance 
(TI) are at a researcher’s disposal. Confidence intervals 
are designed to describe a parameter with some uncer-
tainty due to sampling errors. Prediction intervals aim 
to predict future observation(s), including some uncer-
tainty present in the actual and future samples. Tolerance 

intervals are constructed to capture a specified propor-
tion of a population in a future sample with a defined 
confidence. These intervals can be conveniently com-
puted within the open access framework in R [1]. The 
main ideas behind CI, PI, and TI are presented in Figs. 1, 
2 and 3. In contrast to point estimates, interval estimates 
consist of two numbers: lower and upper bounds. It is 
well known that interval estimates provide more infor-
mation and support a greater knowledge gain than mere 
point estimates or statistical hypothesis testing. There-
fore, it has been agreed that the use of interval estimates 
underlies good statistical practice [2]. Initiated by the 
British Medical Journal in 1986, other journals followed 
and promoted the computation of confidence intervals in 
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their guidelines as a key pillar of journal policy [2]. Cur-
rent guidelines, such as ICMJE, ARRIVE, STROBE and 
CONSORT suggest the usage of confidence intervals, 
whereas prediction or tolerance intervals are not mentio
ned.

The usage of CI instead of p-values was widely recom-
mended in a current ASA statement [3], but attempts to 
foster PI and TI are missing. Therefore, a concise over-
view of the construction and interpretation of CI, PI, 
and TI intervals in scientific practice is urgently needed. 
Although we focus on an example from veterinary medi-
cine, similar examples can be found in human and dental 
medicine and other areas of research. Because there are 
many tutorials and methodological papers for quantita-
tive variables [4–6], we focus on binary variables.

Below, we address one part of an already published vet-
erinary data set from Sprick et al. [7] and compute CI, PI, 
and TI estimates. We interpret the CI, PI, and TI results 
and show how the original results of Sprick et al. [7] are 
enhanced by new analyses. This hands-on tutorial pro-
vides functions in R and some statistical theory pertain-
ing to both classical and Bayesian statistical frameworks.

Main text
Data set
The data set from Sprick et  al. [7] assesses the damage 
inflicted by four different horseshoe materials (steel, 
aluminium, polyurethane, horn) on the long bones of 
horses. For welfare reasons, horses are increasingly kept 
in groups. During social interactions, kicks—particularly 
with the hind limbs—possibly cause fractures in the long 
bones, radii and tibiae when loads are applied perpen-
dicular to the longitudinal axis. In the study from Sprick 
et al. [7], kicks with a comparable velocity of 16 m/s were 
simulated during a drop impact test setup for four differ-
ent horseshoe materials. To obtain a random and repre-
sentative sample, the bones were allocated to the groups 
to obtain a uniform distribution with respect to age, sex, 
and type of bone. Each group did not contain more than 
one bone of the same horse. We focused only on one con-
dition: horn (2 radial or tibial fractures out of 16 kicks). 
The authors found a relative frequency of fractures equal 
to 12.5% and provided a Clopper-Pearson CI ( π ) (2 to 
38%).
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Fig. 1  Simulation for Wilson confidence intervals. Illustration of the meaning of ( 1− α = 0.95 ) Wilson confidence intervals CI(π) for an unknown 
probability π, based on 100 samples. A single sample is based on n = 20 observations generated from a true Be(π) distribution with π = 0.5 . The 
confidence intervals that do not cover the true probability π are coloured red (here, 7 out of 100)
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Classical and Bayesian approaches
There are two approaches in statistics: classical and 
Bayesian. In the classical or frequentist branch, the 
unknown true parameter of interest is assumed to be 
fixed and can be learned or estimated by repeatedly fre-
quently drawn samples of identical, independent obser-
vations from the population. Thus, classical statistics 
define statistical procedures by requiring certain prop-
erties to hold. Although classical statistics cover many 
inferential methods, the likelihood-based approaches are 
very popular for parametric models. By definition, the 
estimate of the parameter of interest is the value of the 
parameter for which the likelihood attains its maximum 
value. A 95% classical confidence interval alludes to the 
sampling experiment: “If one repeatedly calculates such 
intervals from many independent random samples, 95% 
of the intervals would, in the long run, correctly include 
the actual value of the parameter of interest” (Meeker 
et al. [8], p. 26).

In contrast, Bayesian methodology assumes that the 
parameter of interest is random, rather than a fixed 
quantity, and the observed sample is fixed. Bayesian pro-
cedures are valid if they are arrived at by following the 

Bayes theorem, which specifies how to combine a prior 
and the likelihood. In addition to the likelihood, con-
taining information about unknown parameters of the 
data-generating model, the prior information needs to 
be provided. Based on the likelihood and the prior, the 
posterior or “post-data” [9] distribution is derived, from 
which Bayesian interval estimates can be read. Therefore, 
Bayesian interpretation describes the properties of the 
distribution of the true parameter after having observed 
the data subject to the prior. Thus, Bayesian intervals, 
also called credible intervals (CrI), which are based on 
posterior distributions, have a completely different inter-
pretation from the repeated sampling (i.e., frequency) 
probabilities used in the classical statistics. The Bayesian 
95% CrI contains 95% of the posterior probability of the 
parameter of interest.

In applications of the Bayesian methodology, the use of 
a minimally informative Jeffreys prior has been recom-
mended [10]. For binary observations, the Jeffreys prior 
is a Beta distribution with both shape parameters a and 
b fixed at 0.5. For this particular choice of shape param-
eters, the prior has a minimal impact on the posterior 
results. In fact, for a = b = 0.5 , the sum of both shape 
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Fig. 2  Simulation for Bayesian prediction intervals. Illustration of the meaning of (1− α = 0.95) prediction intervals for the number of events of 
interest based on 100 samples. A single sample is based on n = 20 observations generated from a true Be(0.5) distribution, and the PI predicts the 
number of events in a future sample of size m = 50 . The prediction intervals, which do not cover the number of independently simulated events in 
m = 50 experiments out of iid Be(0.5), are coloured red (here, 8 out of 100)
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parameters a+ b = 1 reveals that the impact of the Jef-
freys prior corresponds to one observation (Additional 
file  1). The Jeffreys prior, which is also called the refer-
ence or default prior, is quite convenient because practi-
tioners do not need to decide on any prior themselves.

Random sample and point estimates
Below, we focus on one random sample with independ-
ent observations generated by a binary primary outcome 
at the patient, specimen or object level attaining only 
two values (0 = “no”, 1 = “yes”). Usually, the value 1 cor-
responds to an event of interest. Assume that the sample 
size is equal to n and observations are a vector (of length 
n ) of 0/1-values. From a statistical point of view, these 
observations are independent and identically distrib-
uted (iid) realisations of a Bernoulli distribution ( Be(π) ), 
which attains value 1 with a true probability π and value 
0 with a true probability 1− π . What the researchers are 
interested in is the true probability π of an event of inter-
est. Usually, this true value π is unknown, so experiments 
need to be conducted to obtain an estimate π̂ from the 
data that estimates the true probability π . The estimate π̂ 
is obtained by dividing x , the sum of all events of interest 
in the sample, by the total sample size n.

In applications, a random sample of independent 0/1 
observations is usually summarised by two numbers: 
n (sample size: the total number of considered objects 
in a sample) and x (the number of objects that show an 
event of interest in the sample). For the horn data set, a 
total of independent n = 16 kicks were performed, and 
x = 2 of these kicks resulted in a fracture (the event of 
interest). These numbers are frequently presented as a 
relative frequency π̂ = x/n = 2/16 = 0.125 = 12.5% . In 
statistics, the π̂ estimate is called a point estimate, which 
indicates what proportion of kicks resulted in a fracture 
when a sample size n = 16 of independent kicks was con-
sidered. The problem with the π̂ estimate is that it is only 
an estimate of the true probability π and is likely only to 
be close but not exactly equal to the truth. In fact, a point 
estimate does not show any uncertainty on its own and 
corresponds to confidence = 0 (Fig. 4). Therefore, to miti-
gate this serious drawback of point estimates, three inter-
val estimates, CI, PI, and TI, have been developed [8]. 
These interval estimates share three common properties. 
First, they indicate an interval marked by two bounds: a 
lower and an upper one. Second, they require a specifica-
tion of the confidence or probability level, which we set 
throughout at 0.95 = (1− α) by fixing the value of the 
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Fig. 3  Simulation for Bayesian tolerance intervals. TIs do not need to cover any true parameter, but they contain at least a specified proportion P 
of the population with confidence ( 1− α ). Illustration of the meaning of (1− α = 0.95, P = 0.9) tolerance intervals based on 100 samples. A single 
sample is based on n = 20 observations generated from a true Be(0.5) distribution, and the TI predicts the number of events in a future sample of 
size m = 50 specifying that at least P = 0.9 of the results must be covered by the TI. TIs that have a content less than P = 0.9 and do not satisfy the 
coverage condition Cx(L,U, θ) ≥ 0.9 (Additional file 1) are coloured red (here, 7 out of 100)
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statistical error α at 0.05. Third, although CI, PI, and TI 
intervals are computed given one sample of 0/1 observa-
tions, they provide new insights into the true underlying 
distribution Be(π) . As we will show below, the three CI, 
PI, and TI interval estimates inform us about either the 
unknown probability π or new realisations out of the true 
distribution Be(π) . In the following three subsections, we 
demonstrate the differences in interpretation and use of 
the three CI, PI, and TI interval estimates. We present 
either our own functions or functions implemented in 
specific packages in R [1].

Applications of CI, PI, and TI
In what follows, we provide a description of methods 
for CI, PI, and TI combined with results, interpretation, 
and some remarks on their applicability. Table 1 reports 
CI, PI, and TI obtained for the data from Sprick et al. [7] 
with x = 2 out of n = 16 fractures with a horn impactor. 
Note that the interpretation of CI, PI, and TI hinges on 
the assumption that these data are from a random sam-
ple, i.e., long bones were collected from 16 different and 
unrelated animals, which are representative of the popu-
lation of horses. For a binary variable, the original scale of 
CI (CrI) is the probability scale, and for both PI and TI, it 
is the count scale. Multiplication (division) of the interval 

bounds by the constant sample size can transform the 
result to the other scale and vice versa (see Table 1).

Confidence interval (CI)
In classical statistics, the original approach to compute 
a CI for a mean was first described by Student [11], 
Neyman [12] and Welch [13]. Procedures for computa-
tion of CI for an unknown probability followed [14–16]. 
Morey et al. [17] and Gelman and Greenland [18] warn 
that classical CI can be (mis)interpreted in the Bayesian 
way in practice. Occasionally, users claim that there is a 
95% probability that the true parameter lies between the 
lower and the upper bounds of the CI, although the fol-
lowing interpretation for a classical CI for an unknown 
probability π applies: “For identical and independent 
repetitions of the underlying statistical sampling experi-
ment, a (1− α)× 100 % confidence interval will cover π 
in (1− α)× 100 % of all cases” [19].

This property of CI(π ) is illustrated in Fig.  1. Con-
fidence intervals marked in red do not overlap the true 
probability π . Red CI(π ) conveys an incorrect piece of 
information, as the true probability π is not included 
within their lower and upper bounds. Note that such an 
incorrect result should occur for a 95% CI ( π ) only in 5 
out of 100 repetitions on average. In Fig. 1, there are 7 red 
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Fig. 4  Funnel plot depicting Wilson-CIs for confidence levels ranging between 0 and 100%. The grey dashed line indicates that the Wilson 
95% CI (0.034, 0.360) reported in Table 1 corresponds to the level of confidence equal to 95%. The funnel plot points at the point estimate, 
π̂ = x/n = 2/16 = 0.125 . This indicates that one may claim that the true probability π is equal to 0.125 with a level of confidence equal to 0
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CIs ( π ) out of a total of 100 simulations, resulting in an 
error rate of 7%.

There are several different approaches to computing 
CI(π ), such as the Clopper-Pearson CI [15], the Wilson-
CI [14] and the Wald-CI [16]. Held and Sabanés Bové 
([19], p. 113 – 119) show that the Wilson procedure for 
CI(π ) computation has the best statistical properties, and 
we recommend it for wide use in practice. The Wilson-
CI(π ) can be conveniently computed in R using the pack-
age DescTools [20] with the command BinomCI(), 
specifying the number of successes x out of n trials. A 
(1− α) = 95% Wilson-CI is obtained by:

Note that there are also other packages in R offering 
such functionality: most prominently binom [21] with 
the command binom.confint() and PropCIs [22] with 
the command scoreci().

The interpretation of the classical Wilson-CI ( π ) (0.034 
to 0.360) from Table  1 is as follows: For repeated, i.e., 
independent, identical realisations of the kick experiment 
with a horn impactor at a velocity of 16 m/s, the Wilson-
CI(π ) will contain the (unknown) true probability π of a 
fracture in 95% of repeated kick experiments.

Table 1  Confidence interval (CI), prediction interval (PI), and tolerance interval (TI) estimates for horn: 
π̂ = x/n = 2/16 = 0.125 = 12.5% with confidence level (1− α) = 0.95, classical Wilson (W) and Bayesian Jeffreys (J) for different 
contents P , and different numbers of predicted future observations m

Original bounds are marked in bold
a  CLB = n ∗ LB and CUB = n ∗ UB lead to CI for the counts
b  LB = CLB/m and UB = UB/m lead to PI and TI for π
c W-CI: classical Wilson confidence interval
d J-CI: Bayesian Jeffreys credible interval
e J-PI: Bayesian Jeffreys prediction interval
f W-TI: classical Wilson tolerance interval
g J-TI: Bayesian Jeffreys tolerance interval

Type P m Length count 
scale

Lower bound 
count
(CLB)

Upper bound 
count ( CUB)

Lower bound 
( LB)
π

Upper bound
(UB)
π

Length
π scale

W-CIc 6a 0a 6a 0.034 0.360 0.326
J-CId 6a 0a 6a 0.026 0.344 0.318
J-PIe 50 19 0 19 0b 0.38b 0.38b

J-PIe 100 34 2 36 0.02b 0.36b 0.34b

W-TIf 0.8 50 22 0 22 0b 0.44b 0.44b

W-TIf 0.8 100 41 1 42 0.01b 0.42b 0.41b

W-TIf 0.9 50 24 0 24 0b 0.48b 0.48b

W-TIf 0.9 100 43 1 44 0.01b 0.44b 0.43b

J-TIg 0.8 50 22 0 22 0b 0.44b 0.44b

J-TIg 0.8 100 40 1 41 0.01b 0.41b 0.40b

J-TIg 0.9 50 23 0 23 0b 0.46b 0.46b

J-TIg 0.9 100 42 0 42 0b 0.42b 0.42b

library(DescTools) 

BinomCI(x = 2, n = 16, conf.level = 0.95, method = "wilson") 

est     lwr.ci    upr.ci

      0.125 0.03497749 0.3602283 
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Bayesian CrI
An alternative to the classical approach is the Bayesian 
approach, resulting in a credible interval (CrI) based on a 
posterior distribution. The unknown parameter π is con-
tained in the (1− α) credible interval with probability 
(1− α).

To calculate the posterior distribution of the parameter π , 
the concept of conjugacy is useful. Choosing as a prior distri-
bution, a member belonging to the same family of distribu-
tions as the posterior distribution is called a conjugate prior 
distribution [19]. For a binomial distribution, a beta distri-
bution with a support ranging from 0 to 1 is a convenient 
choice for a conjugate prior [10].

A Jeffreys credible interval with x out of n trials is computed 
based on a (1− α) = 95% probability and a minimally inform-
ative Beta prior with both parameters a and b fixed at 0.5 [8]. 
This approach is demonstrated in Fig. 5. In [16], it is proven 
that an equal-tailed Jeffreys CrI is always contained within the 
corresponding confidence interval computed according to the 
classical Clopper-Pearson approach and can be regarded as an 
improved version of the Clopper-Pearson interval. Moreover, 
Jeffreys CrI has good frequentist properties (coverage).

In R [1], a number of packages facilitate the calculation 
of Bayesian Jeffreys credible intervals, such as the package 
Desctools with BinomCI() [20] (see details on Jeffreys CrI 
in Additional file 1).
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Fig. 5  Density plots of the posterior distributions based on the Jeffreys prior (Beta(0.5,0.5)) and the binomial likelihood for x = 2 and n = 16 for a 
horn impactor from [7]. The likelihood (dotted black) and the posterior distribution (red) are similar. The (1− α = 0.95) credible interval (0.026 to 
0.344) is indicated by green lines

library(DescTools) 

BinomCI(x = 2, n = 16, conf.level = 0.95, method = "jeffreys") 

est     lwr.ci    upr.ci

0.125 0.02691279 0.3441756 
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The recommended Bayesian approach leads to a Jef-
freys CrI(π ) (0.026 to 0.344) interval estimate, shown in 
Table 1, and can be interpreted as follows: the posterior 
probability π of a fracture in a kick experiment with a 
horn impactor at a velocity of 16 m/s lies in the Jeffreys 
interval CrI(π ) with probability 95%, when a minimally 
informative Jeffreys prior is assumed. The corresponding 
prior, likelihood and posterior distributions are displayed 
in Fig. 5.

If the main objective is the true probability π , the CI 
(CrI) is useful when planning the design of a new study. 
For example, the length of the CI (CrI) can facilitate the 
computation of the sample size for a future study. Given a 
target precision of the result (length of CI (CrI) after the 
study), one computes the sample size of the study nec-
essary to achieve the required target precision of the CI 
(CrI).

Note that the length of both CI and CrI highly depends 
on the sample size n . The lengths of the Bayesian CrI 
0.317 for 2/16 and 0.032 for 200/1600 differ drastically. 
This clearly demonstrates that CI ( π ) and CrI ( π) are 
mostly concerned with the value of the true probability π 
but do not predict the outcome in any new future study.

Prediction interval (PI)
The main idea behind a prediction interval is to provide 
an interval that covers the outcome from m future obser-
vations with confidence (1− α) , given the data ( x and n ) 
at hand. If the main focus is on the outcome of the future 
m observations, prediction intervals are recommended 
for planning future studies, power calculation, model 
checking or deciding whether to conduct a future trial. 
For details see [10, 23] and references therein.

Classical approaches to prediction intervals are mainly 
based on regression methods, which are conveniently 
applicable to quantitative primary outcomes [2]. To our 
knowledge, there is no simple classical procedure that 
shows good statistical properties in the setting with 
one sample and a binary primary outcome. Instead, the 
Bayesian methodology relying on predictive distributions 
is recommended in such a situation [10].

For the posterior predictive distribution, a binomial 
distribution is combined with a conjugate Beta prior with 
parameters a and b , and the parameters of the posterior 
predictive distribution are determined by the sum of ini-
tially chosen a and b parameters and the already observed 
data [10]. Further details are presented in the Additional 
file  1. The Jeffreys PI is obtained for a = b = 0.5 . In a 
Bayesian approach, the unknown predicted value lies in 
a prediction interval with a 1− α = 0.95 probability. This 

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

Horn impactor: Binomial likelihood, x = 2, n = 16, m = 100

number of events

po
st

er
io

r p
re

di
ct

iv
e 

di
st

rib
ut

io
n

post pred

PI

Fig. 6  Posterior predictive distribution for a future sample of m = 100 kicks based on the Jeffreys prior (Beta(0.5,0.5)) and the binomial likelihood for 
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probability statement is induced by the posterior predic-
tive distribution and should not be mistaken for cover-
age probability (see Coverage properties and asymptotic 
behaviour of CI, PI, and TI).

The following R functions compute the Bayesian Jef-
freys prediction interval for the number of events of 
interest for a future sample of m and a (1− α) probability 
level using the data from observed sample x of size n.

dbetabinom <- function(x, size, a, b) { 

  exp(lbeta(x + a, size - x + b) - lbeta(a, b) + lchoose(size, x))

 

} 

 

qbetabinom <- function(p, size, a, b) { 

  the.cumsum <- cumsum(dbetabinom(0:size, size, a, b)) 

sapply(p, function(x) sum(the.cumsum < x)) 

}

Jeffreys.PI <- function(x, n, m, alpha){ 

a_post   <- x + 0.5 

b_post   <- n - x + 0.5 

size     <- m

low.ci   <- qbetabinom(alpha/2, size, a = a_post, b = b_post) 

up.ci    <- qbetabinom((1-(alpha/2)), size, a = a_post, b = 

b_post) 

return(c(lower=low.ci, upper=up.ci)) 

}

Jeffreys.PI(x = 2, n = 16, m = 50, alpha = 0.05) 

lower upper

0 19
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The computation behind PI, based on the poste-
rior predictive distribution, which predicts the num-
ber of events of interest (fractures) in a future sample 
of m = 100 kicks, is illustrated in Fig. 6. Based on x = 2 
fractures in n = 16 kicks, the Bayesian PI states that the 
predicted number of fractures for future experiments 
based on m = 50 or m = 100 kicks lies between (0 to 19) 
or (2 to 36) fractures.

A PI is less concerned with the true probability π but 
rather aims to show the variability in the future data 
when the same experiment is conducted again several 
( m ) times, given the information contained in the current 
( x, n ) data. PI enables computation of lower and upper 
bounds on the count of observations that show the event 
of interest (attaining value 1) in the future sample of m 
observations. This is shown in Fig. 2 with 100 simulations 
for PI with m = 50 . Red PI indicates situations when the 
actual observed number of events generated in m = 50 
future iid Be(0.5) experiments is not included in the PI, 
which predicts m = 50 future observations based on x 
and n = 20 obtained from iid Be(0.5). The proportion 
of the red PI in 100 simulated PIs is 8, which is approxi-
mately equal to the assumed 1− α = 95% confidence 
level. The main drawback of the PI is that it is useful to 
predict the performance of one, or a small number, of 
future observations and does not explicitly specify the 
proportion of the population to be covered by PI [8]. To 
mitigate this drawback, tolerance intervals (TIs) have 
been suggested.

Tolerance interval (TI)
Frequentist definitions of tolerance intervals have a long 
history, dating back at least to the seminal works of Wilks 
[24] and Hamada et  al. [25]. The origins of Bayesian 

tolerance intervals can be traced to Aitchison [26]. 
Krishnamoorthy and Mathew [27] and Meeker et al. [8] 
define the Bayesian tolerance interval by a frequentist 
formula applied to the posterior distribution. Similar to a 
PI, a TI enables computation of lower and upper bounds 
on the count of observations showing an event of interest 
(attaining value 1) in the future sample of m observations. 
TI requires specification of two inputs: the percentage of 
the population P that is covered by TI and its confidence 
level (1− α) . P is also called the content of the tolerance 
interval. For two-sided and equal-tailed tolerance inter-
vals with an upper and a lower limit, a specified propor-
tion P of the population is contained within the bounds 
with a specified level of confidence (1− α) [27, 28] (Addi-
tional file  1). It is also possible to create one-sided tol-
erance intervals with respect to a threshold of interest. 
Both values for α(i.e., 1− α ) and P can be varied indepen-
dently to adjust for the requested level of confidence and 
the content. Several authors indicate that TIs are under-
used in the literature [29, 30] and are frequently not used 
in  situations when they actually should be applied. For 
example, reference values for diagnostic purposes are a 
special case of application of tolerance values. In the R 
code below, P denotes the chosen content or proportion 
of the population and does not have anything in common 
with p-values.

In R, the command bintol.int() available in 
the package tolerance [28] calculates a two-sided TI 
(side  =  2) of content P = 0.9 for a future sample of 
size m based on x fractures out of n kicks, based on Wil-
son’s approach (“WS”) together with a statistical error 
α = 0.05 . Note that package tolerance facilitates compu-
tation of a broad range of tolerance intervals far beyond 
this binomial application.

library(tolerance) 

bintol.int(x = 2, n = 16, m = 100,  

+            alpha = 0.05, P = 0.9, side = 2, method = "WS") 

  alpha   P p.hat 2-sided.lower 2-sided.upper 

  0.05 0.9 0.125             1            44 
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Based on current x = 2 and n = 16 observations, the 
classical Wilson-TI for the confidence level 1− α = 0.95 , 
content P = 0.8 and a future sample of m = 50 observa-
tions indicates a TI interval for counts (0 to 22) in Table 1. 
This result can be interpreted as follows: When pre-
dicting the count of radial or tibial fractures for m = 50 
future kicks, based on observed x = 2 fractures in n = 16 
kicks, at least a proportion of 80% of future fractures 

(when repeating such an experiment a large number of 
times) will be covered by the Wilson-TI (0 to 22) interval 
with confidence of 95% (i.e., for repeated, i.e., independ-
ent, identical realisations of such a kick experiment with 
a horn impactor at a velocity of 16 m/s in 95% of repeated 
kick experiments). It is also possible to obtain TIs based 
on a Bayesian approach by specifying the method indi-
cating that the Jeffreys approach (“JF”) is used.

> library(tolerance) 

> bintol.int(x = 2, n = 16, m = 100,  

+            alpha = 0.05, P = 0.9, side = 2, method = "JF") 

  alpha   P p.hat 2-sided.lower 2-sided.upper 

  0.05 0.9 0.125             0            42 

The Bayesian Jeffreys-TI for the confidence level 
1− α = 0.95 , content P = 0.8 and a future sample of 
m = 50 observations indicates a TI interval for counts (0 
to 22) in Table 1. This result can be interpreted as follows: 
When predicting the count of radial or tibial fractures for 
m = 50 future kicks, given already observed x = 2 frac-
tures in n = 16 kicks and the minimally informative Jef-
freys prior, at least a proportion of 80% of future fractures 
(when repeating such an experiment independently a 
large number of times) will be covered by the Jeffreys-TI 
(0 to 22) interval with a probability of 95%.

Given a fixed future sample size m , both classical and 
Bayesian TI show that a larger content P induces wider 
TI on the count scale. Moreover, for a fixed content P , 
increased future sample size m is linked to narrower TI 
on the probability scale (Table 1).

A Bayesian TI is computed by a hybrid approach. First, 
a posterior distribution based on the data and a Jeffreys 
prior is computed. Second, the classical methodology 
for TI computation is applied to the posterior distribu-
tion [27]. Consequently, the interpretation of a Bayesian 
TI only partly benefits from the Bayesian argument. For 
one part of a TI, the classical “when sampling multiple 
times…” interpretation remains.

Figure 3 demonstrates the properties of the TI. TIs do 
not need to cover any true parameter π , but they contain 
at least a specified proportion P of the population with 

confidence (1− α) . Red TIs indicate TIs that are too 
short and do not contain the requested proportion P of 
the population. This occurred in 7 out of 100 simulated 
samples.

The use of TI is recommended if a researcher wants 
to use the observed data to make predictions for a large 
number of future observations and, simultaneously, 
wants the interval to contain a prespecified proportion 
( P ) of typical observations with confidence (1− α) [8]. 
For large sample sizes, the length of the TI approaches 
the quantiles of the underlying population so that the 
requested content P is guaranteed for any future sample 
size m.

Coverage properties and asymptotic behaviours of CI, PI, 
and TI
An important indicator of adequacy of interval estimates 
is their coverage. According to Meeker et al. ([8], p.403), 
the coverage probability “is the probability that the inter-
val obtained using the procedure actually contains what 
it is claimed to contain, as a function of the procedure’s 
definition”. Coverage can be verified either by mathemati-
cal derivations or through extensive Monte Carlo simu-
lations. The adequacy of mathematical procedures used 
to compute interval estimates is proven if their effective 
coverage levels agree well with nominal levels stipu-
lated by assumptions imposed for their computation. 
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For example, in the context of confidence intervals, 
those procedures for 95% CI computation are adequate 
and effectively cover the true probability π in 95% of the 
cases. For CI, it was shown that not every mathematical 
procedure suggested for computation of 95% CI attains 
nominal coverage [8, 16, 19, 31–33]. For PI, the cover-
age was investigated by [8, 34]. Lai et al. [35] and Meeker 
et al. [8] present coverage for TI, called admissibility by 
the former. J-TI has been shown to provide a greater 
mean coverage probability than the nominal confidence 
level of 95% [8].

There were differences in the asymptotic behaviour of 
the three CI, PI, and TI intervals subject to increasing 
sample size. The length of CI converges to 0 for increas-
ing sample size. In contrast, PI and TI stabilise at a certain 
stable value when the sample size is large enough with TI, 
resulting in longer interval estimates than PI ([8], Fig. 3.4 
(binary)). Note that the discreteness of binary data leads 
to nonconstant coverages resembling step functions. In 
fact, CI, PI, and TI for a binary variable are only approxi-
mate statistical intervals [8].

Comparison of the applicability of CI, PI, and TI
Although CI, PI, and TI share the same crucial assump-
tion that the data at hand contain a representative ran-
dom sample of kicks, the three statistical intervals 
address different research questions. CI (CrI) focuses 
on the probability parameter π of fractures and quanti-
fies the precision of the knowledge about this particular 
parameter based upon the data at hand. PI and TI do not 
focus on any parameter but rather predict the number 
of future kicks. PI and TI are calculated from the data 
at hand under the important assumption that the n past 
kicks and the m future kicks can be regarded as random 
samples from the same distribution. The PI provides 
information about the performance of all m future kicks 
based upon the already observed performance of simi-
lar n kicks. PIs are recommended for the prediction of a 
small number m of future kicks (smaller than 100) ([8], 
p. 29). In contrast, a J-TI for P = 0.9 and m = 50 future 
kicks is not concerned with all m = 50 future kicks but 
only with enclosure of a proportion P = 0.9 of kicks. 
TIs apply to large numbers of future kicks m = 100 or 
m = 1000 ([8], p. 29).

Although we demonstrate the meaning of CI, PI and 
TI for one kick experiment, similar observations hold 
when the prevalence or the number of positive animals 
in future studies is of interest. When the focus shifts from 
the observed prevalence, well estimated by a CI (CrI), to 
the number of affected animals in a future study, PI or TI 
are recommended. Moreover, TIs can be used in the con-
text of reference values for diagnostic purposes.

Thus, if we are interested in the probability of an event 
of interest, then we should consider a CI. If we are inter-
ested in the number of observed events in a sample of m 
future observations, then we should consider a PI. If we 
are interested in the number of events in a certain pro-
portion of observations, then we should consider a TI. In 
any case, a study should be carefully planned to obtain a 
random sample, and the decision of which interval to use 
should be justified depending on the objective (Meeker 
et al. [8], Fig. 1.1, p.16 and Table 2.1, p.24).

Additional remarks
The meaning, properties, and applicability of confidence 
or credible (CI), prediction (PI) and tolerance (TI) inter-
vals have been illustrated with a real-world veterinary 
data set based on a binary primary outcome. Compared 
with CI and PI, TI is rarely presented in teaching and 
publications [29, 30]. Although Meeker et al. [8] report in 
chapters 6, 11, 16, 18 the application of CI, PI, and TI to 
many case studies from different areas of research, appli-
cations of PI and TI in veterinary medicine and other 
areas of research seem to be scarce.

The traditional and—albeit contested by many [16]—
still widely used method for obtaining confidence inter-
vals is based on a normal approximation, the Wald CI. 
The Wald approach is not appropriate for very small or 
large proportions, i.e., when π̂ is near the boundaries of 0 
or 1 and subsequently SE

(
π̂
)
=

√
π̂∗(1−π̂)

n
 is close to 0. 

The true probability π attains, by definition, values only 
in a unit (0, 1) interval. Therefore, a typical indicator of 
problems produced by the strongly discouraged Wald 
methodology is either negative lower bounds (lower than 
0) or upper bounds larger than 1. If a researcher obtains 
such unreasonable results, she/he should be warned and 
should instead be encouraged to use the Wilson proce-
dure for CI computation, as strongly recommended here.

Held and Sabanés Bové ([19], p. 113–119) show that the 
Wilson-CI has the best properties. They also show that 
although the Clopper-Pearson interval is widely used in 
practice, presumably due to the misleading specification 
“exact”, the use of this methodology is not recommended. 
Sprick et  al. [7] used the Clopper-Pearson interval, and 
we have improved this analysis here by providing a 
Wilson-CI.

In addition to the Wilson-CI, a Bayesian alternative 
using Jeffreys prior is recommended. Moreover, classical 
and Bayesian approaches are used interchangeably. Thus, 
from a didactical point of view, presenting the Bayesian 
approach next to the classical one can help to prevent 
misunderstandings [30]. The usage of Bayesian intervals 
can be advocated on the grounds that the interpreta-
tion is more intuitive than the interpretation of classical 
intervals based on repeated sampling. Because there are 
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several approaches to compute interval estimates, it is 
essential that the name of the effectively applied statisti-
cal methodology is clearly stated in the statistical meth-
ods section in published papers.

For prediction intervals, a Bayesian approach is rec-
ommended because in the classical context, only unsat-
isfactory approaches based on the Wald technique exist. 
Spiegelhalter et  al. [10] recommend the use of PI for 
planning future studies. We extend this recommendation 
and state that both PI and TI are useful for the planning 
of future studies. The use of TI is similar to PI but has the 
advantage of explicitly specifying the content of the pop-
ulation covered by TI. CI can also be used for planning 
future studies; however, these studies should be focused 
on the quantification of the true parameter π.

Note that CI, PI, and TI are strongly affected by poten-
tial departures from the random sample assumption. Vio-
lation of this assumption occurs if there is any inherent 
structure present (e.g., clustering within animal or barn, 
consanguinity, members of the same household, genetic 
relationships, teeth in a mouth). If the assumption of a 
random sample is violated, statistical intervals presented 
in this tutorial should be used with caution. Instead, 
more advanced methods should be used, such as Bayes-
ian hierarchical models ([8], chapter 17). Here, we trust 
that the dataset from [7] is based on long bones collected 
from 16 different animals. Moreover, we trust that these 
16 animals are representative of the population of horses.

In the context of the so-called replication crisis, weak-
nesses in statistics have been described as one of the main 
drivers [36–38]. The usage of p-values in statistics has 
become highly controversial, and voices have been raised to 
abandon p-values in publications [39, 40]. As a solution, CIs 
have been proposed [41] but are also not without criticisms 
[18, 42]. PI and TI are less often taught and published. 
Therefore, in view of these ongoing discussions, a good 
understanding of the applicability of CI, PI, and TI can be 
beneficial for both researchers and scientific journals.

Conclusion
The three types of intervals, CI (CrI), PI, and TI, serve 
different purposes. The decision of which interval to use 
should be context-driven and clearly justified. To avoid 
confusion and misunderstandings, all three types of 
intervals should be taught and presented. This hands-on 
tutorial on two-sided CI, PI and TI for binary variables 
provides guidance on applicability of these intervals from 
both a classical and a Bayesian perspective. A worked-out 
example from veterinary medicine clearly demonstrates 
the use of the code in R. This tutorial can be used for 
teaching, either in a class or for self-instruction of stu-
dents and senior researchers.
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