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GLP-1 is derived from intestinal L cells, which takes effect through binding to GLP-1R and
is inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4). Since its discovery, GLP-1
has emerged as an incretin hormone for its facilitation in insulin release and reduction of
insulin resistance (IR). However, GLP-1 possesses broader pharmacological effects
including anti-inflammation, neuro-protection, regulating blood pressure (BP), and
reducing lipotoxicity. These effects are interconnected to the physiological and
pathological processes of Alzheimer’s disease (AD), hypertension, and non-alcoholic
steatohepatitis (NASH). Currently, the underlying mechanism of these effects is still not
fully illustrated and a better understanding of them may help identify promising therapeutic
targets of AD, hypertension, and NASH. Therefore, we focus on the biological
characteristics of GLP-1, render an overview of the mechanism of GLP-1 effects in
diseases, and investigate the potential of GLP-1 analogues for the treatment of related
diseases in this review.
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HIGHLIGHTS

• Apart from facilitating insulin secretion, additional effects of GLP-1 include anti-inflammation,
neuro-protection, and reducing the accumulation of fat.

• There is a high consistency between AD and T2DM, both of which occur with insulin resistance
(IR) in the brain.

• As the native GLP-1 has a short half-life, GLP-1 analogues have been produced to prolong effects
and many of them could cross blood-brain barriers (BBB) such as Liraglutide (LG), lixisenatide,
and exendin-4.

• GLP-1 analogues have proven utility in retarding diseases development in many animal and
clinical trials, which are the potential and promising drugs to be utilized in AD, hypertension,
and NASH.
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INTRODUCTION

With the assistance of prediction and decipherment of
recombinant cDNA clones, it has been claimed that the
anglerfish preproglucagon cDNA encodes a different glucagon-
related peptide (1–3). Afterwards, two glucagon-related peptides,
glucagon-like peptides 1 and 2 (GLP-1 and GLP-2), were
recognized in the hamster (4), rat (5), and human (6)
proglucagon sequence. In various experimental models, GLP-1,
which is extracted from the intestines of humans and the porcine
gut, can promote glucose-dependent insulin secretion (7–9).
Based on this, GLP-1 is classified as an incretin hormone (10),
promoting its use in the treatment of type 2 diabetes mellitus
(T2DM). In the preceding 20 years, copious strategies for
treating T2DM have been generated in various clinical and
fundamental studies. However, apart from its role in
improving glucose control, extensive effects of GLP-1 and its
broad potential in pharmacology still remain to be explored.
Other studies have shown that GLP-1 possesses neuroprotection
functions along with enhancement of cognitive functions (11).
Moreover, GLP-1 analogues, including Liraglutide (LG) and
exendin-4, possess longer half-lives than native GLP-1 and
provide prospects for broader clinical applications (12). Studies
have also shown that LG possesses neuroprotection and anti-
inflammatory effects, which could conceivably delay the
progression of AD (13). As of right now, neuroprotective and
anti-inflammatory effects of GLP-1 analogues have been
investigated in AD, while more detailed actions of them still
remain to be clarified. Additionally, numerous investigations
found that blood pressure (BP) and heart rate (HR) increased
transiently when normal rodents were given the acute infusion of
GLP-1R agonists (14) while chronic injection of that reduces BP
in mice studies (15). This decrease in BP was found in
hypertensive patients with T2DM when they were given GLP-
1R agonists over a long period of time (16). It is possible that the
difference in injection speed and physiological status could
account for these opposite BP alterations which were induced
by GLP-1 and GLP-1R agonists. Along with that, GLP-1 has a
close correlation with non-alcoholic steatohepatitis (NASH),
which is characterized by hepatic inflammation and cell injury.
NASH has currently been regarded as the main cause of the
increased burden of hepatocellular carcinoma (17), but the
molecular mechanism of it is still complex and multifactorial
(18). Moreover, the use of GLP-1 analogues LG and Exendin-4
effectively reduced both their weight and liver fat in NASH
patients (19). Based on the findings above, this review focuses on
the biological characteristics and the underlying mechanistic
effects of GLP-1 in AD, BP, and NASH.
Frontiers in Endocrinology | www.frontiersin.org 2
BIOLOGICAL CHARACTERISTICS
OF GLP-1
It is well-known that GLP-1 has manifold forms processed from
proglucagon, such as GLP-1 (1–37), GLP-1 (7-36 amide), and
GLP-1 (7–37) (20). Furthermore, proglucagon is cleaved from
preproglucagon and is differentially processed via the
prohormone convertase 2 (PCSK2) and prohormone
convertase 1/3 (PCSK1/3) as shown in Box 1. In addition to
intestinal L cells, pancreas a-cells and the nucleus tractus solitarii
(NTS) are also sites of preproglucagon processing (24). The
proglucagon gene (Gcg) encodes human’s preproglucagon and
the constituent parts of the promoter of Gcg consist of four
enhancers including G1, G2, G3, and G4 together with a cAMP
response element (CREPG). Although G2-G4 enhancers of rats
could markedly activate the expression of more proximal human
promoters, the comparable human sequences homologous to the
G2–G4 enhancers are insufficient to activate reporter expression
from the proximal rat promoter in islet and intestinal cells (25).
In addition, CREPG could mediate transcriptional responses to
physiological stimuli from the neuronal and dietary origin (26).
As shown in Figure 1, the spliceosome of proglucagon includes
glicentin, glicentin-related pancreatic polypeptide (GRPP),
glucagon, oxyntomodulin (OXM), GLP-1, and GLP-2 (27).

In 1966, Hopsu-Havu and Glenner discovered the existence
of the enzyme dipeptidyl peptidase-4 (DPP-4) (28), encoded by
theDPP4 gene. A study has shown that high expression of DPP-4
is not only found in intestinal epithelial brush border, but also in
endothelial cells (29). Owing to DPP-4 and renal elimination,
native GLP-1 in human retain a short-lived half-life of around
1-2 minutes. For this reason, GLP-1 analogues were synthesized
to prolong their short half-life. Meanwhile, DPP-4 cleaves the
two active forms of GLP-1, GLP-1 (7-36 amide) and GLP-1 (7–
37), into GLP-1 (9-36 amide) and GLP-1 (9-37), which have a
relatively low affinity to GLP-1R and serve as the major
circulating forms (30–32). These intact forms and inactive
GLP-1 metabolites can be quickly cleared via renal elimination.
By contrast, there is some laboratory evidence, indicating that
kidneys are not the chief organs of the DPP-4 mediated
metabolism of GLP-1 (33). Further studies in pigs revealed
that a high degree of NH2-terminal degradation of GLP-1
occured in the hepatic portal system (34), concomitant with
the evidence that DPP-4 is found in high concentrations in
hepatocytes and endothelial cells (35, 36). There are two types of
DPP-4, the membrane-spanning cell surface protein and the
circulating protein (37). Pharmacological inhibition of DPP-4
using DPP-4 inhibitor sitagliptin could inhibit GLP-1 cleavage to
maintain a higher concentration of GLP-1 in the blood
Box 1
Proprotein convertases (PPCs) are a family of proteins responsible for other proteins activation and involved in many important biological processes, such as cholesterol
synthesis.
PCSK1/3 and PCSK2, PPCs subtypes in humans, perform the proteolytic cleavage of prohormones to their intermediate forms (21).
Brain and intestine GCG + cells are discovered to express PCSK1/3 while PCSK2 is expressed in the pancreas (22, 23).
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circulation (29). This could induce insulin secretion from b cells
of islet so as to improve glucose tolerance in normal and diabetic
animals (38, 39).
TISSUE DISTRIBUTION OF GLP-1R

To gain further insights into the involvement of GLP-1 by
binding to GLP-1R (40), GLP-1R’s presence was first
confirmed and effects of the peptide on cAMP concentrations
were investigated (9). However, the analysis of GLP-1R always
confronted an obstacle due to the absence of antibodies that were
sufficiently selective and available. Further, it is noteworthy that
there was disputed information in the expression of GLP-1R in
different cell types. Due to the lack of selective antibodies and
application of specific anti-GPCR antibodies (41), the exact
cellular localization of the GLP-1R remains equivocal (42).
Notably, Novo Nordisk, a Danish pharmaceutical company,
has recently developed the monoclonal antibody [MAb]3F52,
which can specifically bind to the extracellular domain (ECD)
Fab region of GLP-1R, and enabled the selective detection of
GLP-1R in C57BL mice (43). Different from specific anti-GPCR
antibodies, the monoclonal GLP-1R antibody could be used for
specific and highly sensitive detection of GLP-1R in primate
pancreas, kidney, lung, heart, gastrointestinal (GI) tract, liver,
and thyroid. It is generally accepted that GLP-1R was detected in
the b-cells, arterial walls of the kidney and lung, heart myocytes
of the sinoatrial node, and the Brunner’s gland of the duodenum
(43). Moreover, GLP-1 expressed in the liver has been reported,
while no other publications showed its expression in hepatocytes
Frontiers in Endocrinology | www.frontiersin.org 3
(44). In terms of structure, GLP-1R is constituted by seven
transmembrane helices (TMH) interconnected by intracellular
loops, accompanied by a C-terminal intracellular domain and a
large (w120 amino acid) N-terminal extracellular domain (ECD)
(45). GLP-1 binds to GLP-1R in a complicated procedure, with
GLP-1 peptide stably anchored in its position through an
extensive network of interactions (40). In particular, recent
studies identified the expression of GLP-1R in adipocytes (46,
47). The latest research proved that LG promotes pre-adipocytes
differentiation and decreased fatty acid synthase (FASN)
expression in differentiated adipocytes (47). In addition, LG
could decrease lipogenesis in the liver in times of IR, driving
the pathogenesis of non-alcoholic steatohepatitis (NASH) (48).
Furthermore, some experiments demonstrated that LG could
serve as an important intervention in NASH, which increased
adipose insulin sensitivity (49). Moreover, PKA and ERK1/2
inhibitors can reverse the LG-induced FASN down-regulation.
In GLP-1R-/- mice, lack of GLP-1R expression in adipocytes
caused a reduction in adipogenesis, through the induction of
apoptosis in pre-adipocytes by inhibiting ERK, PKC, and AKT
signaling pathways (50) (Figure 2). Among non-human
primates (NHPs), the highest GLP-1 immunoreactivity is
present in the hypothalamus, the area postrema, the NTS, and
the dorsal vagal nucleus (51). In the human brain, GLP-1R
mRNA is expressed in the cerebral mantle, the hypothalamus,
the hippocampus, thalamus, putamen, and the dorsal pallidum
(44). The high affinity and specificity could be showed in GLP-1
binding to GLP-1R, suggesting that GLP-1 may play a potential
role in the central nervous system (CNS) through mediating
some biological processes such as food intake and body weight
FIGURE 1 | Diagram showing the relationship between translation and post-processing of glucagon precursors and its physiological processing pattern in the
tissue. Coded by the preproglucagon gene, proglucagon is catalyzed by PCSK1/3 in the gut and brain and further processed to glicentin-related pancreatic
polypeptide (GRPP) and oxyntomodulin (OXM), GLP-1, intervening peptide-2 (IP-2), and GLP-2. In the a-cells of the pancreatic islet, PCSK2 predominates and
processes proglucagon to glucagon, GRPP, intervening peptide 1 (lP1), and a proglucagon fragment.
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(BM) (52). Actually, GLP-1 analogues have the ability to lower
body weight through inhibition of food intake, which is related to
peripheral GLP-1R signaling and central GLP-1R signaling. In
1996, it was reported that intracerebroventricular (ICV) of GLP-
1 reduced food intake in fasted rats in a dose-dependent (53),
suggesting that GLP-1 may act on central GLP-1R to produce
satiation. Furthermore, exendin (9–39), a selective antagonist of
GLP-1R, blocked the inhibitory effect of GLP-1 on food intake in
fasted rats (53) with an increase in food intake and fat mass (54).
Along with that, the anorectic effect vanished after administering
LG and exendin-4 in GLP-1R KO mice (55). This suggested that
central GLP-1 had a physiological role in regulating food intake
in rats and GLP-1R may be necessary for the anorectic effect.
Recent studies have also reported that the expression of
hindbrain GLP-1R control food intake and BM in rats (56).
Besides, infusion of exendin-4 into the 4th ventricle reduced food
intake through reducing meal frequency in rats (57).
Undoubtedly, central GLP-1R signaling is vital for the
anorectic effect of GLP-1 analogues. In humans, satiety was
increased and food intake was reduced after IV infusions of
physiological doses of GLP-1 during meals (58, 59).
Furthermore, the anorectic effects of IP injection of LG and
exendin-4 were attenuated by subdiaphragmatic vagal
deafferentation in rats, indicating that peripheral GLP-1 could
inhibit food intake. In humans, the anorectic effect of GLP-1 was
disappeared after truncal vagotomy (60), suggesting that vagal
afferents are related to mediating the satiating effects of GLP-1.
Frontiers in Endocrinology | www.frontiersin.org 4
Despite the findings above, the mechanisms underlying GLP-1
inhibiting food intake and BM are still complex. A variety of
evidence indicates that peripheral injection of GLP-1 analogues
may act directly on the hypothalamus and hindbrain or the
signal is transmitted to the hindbrain by vagal afferents (57).
With that, central GLP-1R activation suppresses food intake and
lower BM by enhancing phosphorylation of PKA and MAPK
and decreasing the activity of AMPK in the NTS. Contrary to
behavior therapy without them, multiple studies confirmed that
LG and semaglutide could reduce BM and enhance weight loss
maintenance (61). Furthermore, reducing weight effects of
semaglutide is greater than LG (62). Therefore, it is worth
anticipating that GLP-1 analogues are hopeful obesity drugs to
control food intake, BM, and appetite.
DYSFUNCTION OF GLP-1 AND DISEASES

GLP-1 and AD
AD is the most common neurodegenerative disease with an
incurable cognitive impairment, but recently hope is proposed
due to the development of Biogen’s monoclonal antibody drug
aducanumab (ADU) in the USA. ADU selectively binds to Ab
fibrils and soluble oligomers, which reduced amyloid plaques in a
dose-dependent and time-dependent manner (63). However, it
has not been proven that ADU has clinical benefits in treating
cognitive dysfunction in AD (64). Despite the extensive studies
FIGURE 2 | Model diagram of potential mechanisms of neuroprotective and anti-inflammatory effects of GLP-1. GLP-1 analogues like native GLP-1 have a longer
half-life. Their effects are mediated through binding to GLP-1R, which could inhibit pathways such as the NF-kB pathway and MAPKs pathway. LPS, combined with
TLR-4, activates the NF-kB pathway and triggers an inflammatory response while GLP-1 could inhibit the response to protect the synaptic plasticity. Besides, GLP-1
binds to GLP-1R to the active AMPK pathway involved in neuroprotection.
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in the past decades, the fundamental mechanism responsible for
the development and progression of AD has not yet been fully
elucidated. Recent experimental and clinical studies have shown
that AD can be considered as a metabolic disorder corresponding
with T2DM (65) and is referred to as Type 3 diabetes in some
instances. Postmortem analysis has revealed that insulin
resistance (IR) also occur in AD patients brain with
significantly decreased expression of the insulin receptor,
concomitant with the disease progression (66, 67) and
indicated that the defects in insulin signaling are associated
with AD pathogenesis (68). It is also worth noting that the
correlations between T2DM and AD have been found in
epidemiological studies (69). Along with that, the network
meta-analysis demonstrated that the cognition of AD patients
could be significantly improved after using anti-diabetic drugs
(70). Convincing evidence has proved that AD is impacted by
GLP-1 analogues through various mechanisms (71), such as IR,
inflammatory cytokines, and oxidative stress, which supports
and helps the proposed correlations (69). In addition, evidence
from recent experimental studies suggests that most GLP-1
analogues can be injected peripherally and absorbed into the
brain, indicating that they could cross the blood-brain barrier
(BBB) and exert physiological influences directly on the human
brain (72) (detail seen Box 2). These impacts include increasing
neuron progenitor cells proliferation, prolonging potentiation in
the hippocampus, improving learning, as well as reducing plaque
formation and inflammation in the brain (73). Hence, from the
experimental results mentioned above, it could be inferred that
anti-diabetic incretin-related drugs may indirectly affect AD. It
has also been confirmed that AD pathologic markers, oligomeric
Ab and Ab plaque load, could be reduced by LG and microglial
activation is decreased and memory behaviors are improved in
APPswe/PS1_E9 (APP/PS1) mouse model after using LG (74). In
addition, mice overexpressing GLP-1R in the hippocampus has
shown an increase in neurite growth and improvement in spatial
learning abilities (75). It has also been demonstrated in a
randomized, placebo-controlled, double-blind study that LG
improved glucose metabolism and cognition in AD patients
(76). Furthermore, in streptozocin (STZ i.c.v) -induced AD
rats (77) and APP/PS1 mice (78), DPP-4 inhibitors sitagliptin
and saxagliptin were observed to have the ability to eliminate Ab
accumulation, clear abnormal phosphorylation of tau, and
improve brain mitochondrial dysfunction probably through
activation of AMPK in neuronal cells (66). Besides, a novel
GLP-1/GIP receptor agonist DA5-CH could reverse STZ-
induced working memory and spatial memory impairments in
rats (79). The drug also decreased the expression of tauS596
protein and increased the expression of synapse-related proteins
in the hippocampus (79). As mentioned above, insulin receptors
Frontiers in Endocrinology | www.frontiersin.org 5
and synapses which correlate to memory in the brain are reduced
after amyloid-b oligomers (AbOs) are infused into the lateral
cerebral ventricle of NHPs, while LG could provide partial
protection and decrease levels of tau (80). The neuroprotective
effects of LG may involve in activation of the PKA signaling
pathway, indicating that activating GLP-1R is propitious to
protect brain insulin receptors and synapses in patients with
AD (80). As mentioned above, DPP-4 inhibitors can increase
endogenous GLP-1 levels by suppressing GLP-1 degradation.
With that, DPP-4 inhibitors have a lower risk than GLP-1R
agonists in leading to hypoglycemia. Therefore, it is beneficial for
their possible usage in treating AD (81). Currently, common
DPP-4 inhibitors include gliptin, saxagliptin, linagliptin,
vildagliptin, and sitagliptin. Studies showed that gliptin is
helpful for improving cognition in AD. Vildagliptin and
sitagliptin could prevent mitochondrial dysfunction in the
brain and improve learning behavior in high-fat diet-induced
IR rats (82). Besides, previous studies in mice models of AD
showed that linagliptin could decrease Ab accumulation,
attenuate tau phosphorylation and inhibit neuroinflammation
(83). However, clinical data are still not sufficient and available
for the application of DPP-4 inhibitors in AD patients. Based on
the analysis above, despite the requirement of more clinical
evidence, existing data has indicated the potential prospect for
the use of GLP-1 and its analogues in AD treatment in the
future (81).

Analyzing cerebrospinal fluid (CSF), ventricular fluid (VF),
and postmortem brain tissue by means of multiplex bead-based
ELISAs, the results of the experiment further suggested that there
are fifteen cytokines whose levels are elevated in CSF and brain in
the course of early-stage AD (84). However, pro-inflammatory
mediators in VF and brain are suppressed during later stages of
AD, indicat ing that neuro- inflammat ion-mediated
neurodegeneration occurs mainly in the early or a specific
stage of AD rather than the whole clinical course (68). It is
widely known that inflammation is a common feature in
metabolic diseases, spreading from peripheral tissue to the
brain, thus resulting in cognitive dysfunctions (85).
Consequently, scientists put forward the “gut-brain axis”
hypothesis to explain the functional collaboration between gut
homeostasis and cognitive dysfunctions (85). Moreover, previous
studies (53), as well as recent researches approved that GLP-1
analogues influence CNS to promote satiation (86). In order to
further confirm the role of the gut-brain axis in this regulation,
MG1363-pMG36e-GLP-1 was constructed, which could directly
express GLP-1. As discussed above, lipopolysaccharides (LPS)
could prompt inflammation and amyloidogenesis in the brain,
by inducing the disorder of TNF-a, IL-1b, and cyclooxygenase-2
(COX-2) (87). MG1363-pMG36e-GLP-1 decreased the escape
Box 2
Protein kinase C (PKC), as a family of protein kinase enzymes, plays a vital part in several signal transduction cascades and have the ability to regulate other proteins
through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues.
As we know, proteins involved in p-p38 and p-JNK are MAPKs pathways and p-AKT are all proteins belonging to PI3K/Akt pathway.
Various GLP-1 analogues include exendin-4, LG, lixisenatide, albiglutide, dulaglutide, semeglutide, taspoglutide and so on. And small peptide GLP-1 analogues have
been demonstrated to cross BBB via peripheral administration, including LG, lixisenatide and exendin-4 (72).
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latency in mice that are injected with LPS. It has also impaired
the ability of spatial learning and memory compared with the
control model mice. Consistently, supplementation of MG1363-
pMG36e-GLP-1 could also offset the markedly enhanced level of
TLR-4 expressing on glial cells induced by LPS (88). According
to the previous reports, LPS can bind to the TLR-4 on the glial
cells, activate the NF-kB pathway to trigger inflammatory
responses, and subsequently facilitate the secretion of TNF-a
and IL-6 (89). This can alter the normal balance in synaptic
plasticity and lead to cognitive decline (90). Similarly, GLP-1
reduced the expression of p-p38, p-JNK, and p-AKT, as shown in
Box 2, suggesting that GLP-1 suppresses inflammatory responses
by inhibiting the MAPKs signaling pathway (88) as shown in
Figure 2. Therefore, anti-inflammatory and neuroprotection
effects might be exerted through inhibiting NF-kB and MAPKs
signaling pathways (88). Based on the results mentioned above,
GLP-1 related signaling pathways have been corroborated as
promising strategies to prevent and treat AD.

GLP-1 and Hypertension
GLP-1 analogues LG and exendin-4 have been investigated in
multiple models of hypertension. Not only do the effects on BP
differ between acute and chronic administration methods, it is
also seemingly species-dependent. A short-term administration
of LG results in an unchanged or slightly elevated BP while the
long-term administration has the opposite effect. Regardless of
distinctive administration methods, it was confirmed that the
speedy decline in BP could be observed after LG or exendin-4
injection in response to angiotensin II (Ang II) infusion in the
C57BL/6 mouse model while in Glp1r−/− mice BP was not
affected (91). Studies have also found that in vitro application
of LG in isolated blood vessel segments cannot lower blood
pressure. In most of the acute infusion studies conducted in
healthy adults, BP was unchanged. Current clinical data indicate
that GLP-1R agonists reduce BP in diabetic patients (92) and the
antihypertensive effect can also be observed in Dahl salt-sensitive
rats (93), in Ang II -induced hypertension rats (15, 91) and
SHRs rats (94). Collectively, these studies indicate that the
antihypertensive effect of GLP-1 is mediated by its natriuretic
effect on the kidneys, vasodilation on endothelial cells, and
reduction of sympathetic activity on brain stem catecholamine
neurons (95). Following healthy human subjects infusion with
native GLP-1, diastolic blood pressure (DBP) showed a slight
increase, concomitant with a related increase in muscle
sympathetic nerve activities (96). This suggests that
endogenous GLP-1 might have the ability to reduce BP.
Notably, multiple clinical experiments show that systolic blood
pressure (SBP) is decreased by GLP-1R agonists in T2DM
hypertensive patients while DBP is less affected (92, 97, 98).
Furthermore, numerous research studies have shown that long-
term blockade of GLP-1R signaling by GLP-1R antagonist
exenatide- (9–39) enhances SBP but doesn’t affect DBP in
normotensive and hypertensive rats, suggesting the relatively
weak correlation between GLP-1 and DBP (99). Additionally,
further investigations proved that a blockade of GLP-1R could
result in the GFR reduction and NHE3-mediated sodium
reabsorption enhancement in the proximal tubule (100).
Frontiers in Endocrinology | www.frontiersin.org 6
Previous studies have also demonstrated that GLP-1R agonists
exendin-4 (Ex4) induced diuresis and natriuresis by increasing
GFR and inhibiting the main renal proximal tubule sodium
reabsorption in normotensive rats (101, 102). As mentioned
above, GLP-1R signaling plays a natriuretic role to modulate Na+

balance and prevents volume expansion (95). It is also worth
noting that GLP-1’s cardioprotective effects act independently of
weight loss with a higher expression level of cardio-protective
genes, including Akt, GSK3b, PPARD and so on (103). After
intravenous administration of native GLP-1 in healthy adults, the
cardiac output increased (104). Furthermore, Ex4 treatment of
isolated mouse cardiomyocytes increases the phosphorylation of
AKT and ERK (105) and has positive effects on cardiomyocytes
growth and survival (106). Opposite results were also found in
isolated adult rat cardiomyocytes that contraction was not be
accelerated after treated with GLP-1 (107), accompanied with a
decreased left ventricular contractility (108). At the same time,
GLP-1 enhanced the heart recovery after ischemia and improved
left ventricular functions in the same study, suggesting that its
effects on BP may depend on different physiological conditions.
Moreover, decreased HR and cardiac contractility, increased
thickness of the left ventricular wall and left ventricular
developed pressure (LVDP) were also seen in GLP-1-/- mice
(109, 110). Given this, the performance and output of the heart
were improved by GLP-1 in the post-ischemic heart while
cardiac output was decreased by GLP-1 in non-pathological
conditions (111). In this way, it can be seen that BP fluctuates
due to different physiological states, which could exert an
influence on the functions of GLP-1.

Furthermore, in most studies concerning the chronic effects
of GLP-1 on BP, BP is not the primary or pre-established
endpoint and most data comes from studies in T2DM. In
several studies, consistent decrease of SBP and BP-lowering
occurred in the early period independent of weight loss (112–
114). At the same time, when GLP-1 is used in conjunction with
other antihypertensive agents, its antihypertensive effect appears
to be adjunctive and independent of the effects of other
antihypertensive agents (115). Presently, a large number of
experimental animals have been used to elucidate its
mechanisms, but the pathways aren’t detailed enough to be
clearly illuminated in humans (91). More specifically, it is
ambiguous whether this same pathway works in humans. That
is to say, it may be beneficial for better application of GLP-1
drugs with a comprehensive understanding of their capacity to
selectively lower BP. GLP-1 drugs are promising treatment
option in cardiovascular diseases which is often a co-morbidity
in T2DM.

Correlation Between GLP-1 and
Non-Alcoholic Steatohepatitis
There is currently a significant increase in the rate of patients
with non-alcoholic fatty liver disease (NAFLD) with its
prevalence rate reaching up to 40%. It has now surpassed viral
liver disease to become the world’s most common liver disease,
increasing the imminence of more basic and clinical research. A
large number of studies have shown that the longer the disease
lasts for, the more other serious diseases will develop such as liver
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cancer and liver failure. NAFLD, divided into two categories:
non-alcoholic fatty liver (NAFL) and non-alcoholic
steatohepatitis (NASH), is a group of diseases with different
clinical manifestations and progression rates in individuals (116).
With the overload supply of metabolic substrates, excessive fat
accumulates in the hepatocytes, accompanied by gradual
generation of potential toxic lipid species and the progressive
increase in de novo lipogenesis (DNL) in NAFLD (117).
Characterized by cell injury and inflammatory cell infiltration,
NASH is regarded as a more aggressive form of NAFLD possibly
progressing to cirrhosis and hepatocellular carcinoma with
limited treatment options (18). Obesity and T2DM represent
two of the major risk factors for NASH (118) and with a history
of NASH, the possibility of suffering liver and cardiovascular
diseases is greatly increased (119). Furthermore, IR in the liver
and adipose tissue has been regarded as a crucial driver of NASH
morbidity and mortality (48), while GLP-1 analogues have the
ability to improve glycaemic control, lowering weight and
activating liver enzymes in patients with T2DM. All these
functions help promote GLP-1 an appealing therapy of NASH
(120). Through promoting lipolysis in adipose tissue, IR is
believed to exacerbate lipotoxicity, which is positive feedback
further aggravating the imbalance of metabolism (121). Besides,
macrophages (Mj) in adipose tissue are also involved in IR and
lead to the impairment of adipose tissue functions (122).
Numerous studies have demonstrated that elevated fatty acid
levels activate the TLR-4 signaling in adipose tissue, urging the
polarization of Mj to polarize from the anti-inflammatory M2
Mj into the pro-inflammatory M1 Mj (123). Furthermore,
Frontiers in Endocrinology | www.frontiersin.org 7
tumor necrosis factor-a (TNF-a) and IL-6 are produced by
M1 Mj, which are relevant components in the occurrence of IR
(124). Besides, oxygen provision is deficient on account of
hypertrophic adipose tissue and hypoxia is associated with
fatty infiltration caused by M1 Mj, which may be a potential
mechanism of IR (122, 124). In the meantime, mitochondrial
dysfunction is induced by hepatic IR and lipid accumulation and
the lipid peroxidation mediated by cytochrome p450 2E1 boost
the production of reactive oxygen and promote the degradation
of mitochondria (125), which could further lead to the lack of
cellular energy and metabolic intermediates accumulation, all
these may lead to the secretion of pro-inflammatory cytokines,
hepatocellular apoptosis and hepatic fibrogenesis, finally
resulting in cirrhosis of the liver (125) (Figure 3).

To date, NASH is considered as a progressive form of NAFLD.
Due to the complexity of NASH, no current treatment is
approved for it (126) and most therapies remain to be
traditional and focus on lifestyle intervention, which is difficult
to maintain (127). Abundant evidence revealed that liver fibrosis
is a key factor determining clinical outcomes in NASH patients
(128). Pioglitazone and vitamin E are considered as possible
treatment options while they have no effects on liver fibrosis
(116). LG and semaglutide are proven to have beneficial effects on
the histologic resolution of the disease (129, 130). Besides, the
GLP-1R/GGCR dual agonist, Cotadutide, was shown to relieve
steatosis, inflammation and fibrosis in both Ob/Ob NASH mice
model and C57BI/6J NASH mice model (131). Several lines of
evidence suggest that the potential roles of LG directly act on
human liver cells in vitro to reduce steatosis by decreasing the
FIGURE 3 | Illustration of the complex pathologic processes of NASH. T2DM and obesity increase the risk of NASH. IR in the adipose tissue and liver is a key
driver, which leads to the imbalance of metabolism. Mitochondrial damage leads to less cellular energy production and adipose tissue hypertrophy, resulting in Mj
changing from the anti-inflammatory M2 Mj state into the pro-inflammatory M1 Mj. The process of all these changes will lead to enhance secretion of TNF-a, IL-6
and lipid accumulation in the hepatocyte, which eventually develop into fibrosis and cirrhosis.
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level of DNL and increasing the fatty acid oxidation (132–134).
Notably, after receiving LG, most patients showed improvements
in steatosis and hepatocyte ballooning. Exciting experimental
evidence available in patients with NASH suggests the potential
of LG to reduce lipotoxicity by improving adipose tissue’s insulin
sensitivities (49). After receiving LG, only a tiny portion of
patients with NASH showed progression (129). Semaglutide,
which is similar to LG, has been reported to reduce levels of
alanine aminotransferase and markers of inflammation (135)
with the levels of inflammation biomarkers being significantly
lower after it treatment. Given the lack of liver GLP-1R expression
(136), the potential mechanism of actions of GLP-1R agonists in
NASH may be related to the indirect beneficial effects on body
weight, IR and reduction in metabolic dysfunction, lipotoxic
effects and inflammation (49, 137). LG and semaglutide
treatment of NASH may be multifactorial, probably resulting
from the accruing effects on losing weight and better control of
glycaemic index (129). Moreover, Cotadutide was demonstrated
to decrease fat accumulation in the liver and retard hepatic
fibrogenesis developing in high-fat diet (HFD) and HFD/CCl4
mouse models (138, 139). Other studies show that Cotaduide
could intervene and reverse NASH through improving
metabolism in the liver including lipid and glucose metabolism
via GCGR in mice, suggesting that Cotaduide may be a potential
and viable therapeutic as a targeted drug intervention to reverse
disease progression of NASH (131).
CONCLUSIONS

To sum up, GLP-1 has extensive effects based on its biological
characteristics through binding to GLP-1R. Apart from being
used for treating T2DM, GLP-1 has a close relationship with AD
and BP. Correspondingly, it is confirmed that GLP-1 analogues
have neuroprotective and anti-inflammatory effects, which could
Frontiers in Endocrinology | www.frontiersin.org 8
alleviate learning and memory dysfunctions in the AD brain.
GLP-1 is related to BP which depends on species, administration
methods and physiological conditions. However, the principle of
GLP-1 regulating BP is still not fully understood. Due to the
ability to ameliorate IR and lipotoxicity in the pathogenesis of
NASH, GLP-1R is a potential therapeutic target for NASH. In
conclusion, GLP-1 provides a novel approach for treating AD,
hypertension and NASH.
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