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Abstract The primary cilium is an immotile, solitary, and

microtubule-based structure that projects from cell surfaces

into the extracellular environment. The primary cilium func-

tions as a dual sensor, as mechanosensors and chemosensors.

The primary cilia coordinate several essential cell signaling

pathways that are mainly involved in cell division and dif-

ferentiation. A primary cilium malfunction can result in

several human diseases. Mechanical loading is sense by

mechanosensitive cells in nearly all tissues and organs. With

this sensation, the mechanical signal is further transduced into

biochemical signals involving pathways such as Akt, PKA,

FAK, ERK, and MAPK. In this review, we focus on the fun-

damental functional and structural features of primary cilia in

chondrocytes and chondrogenic cells.
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Abbreviations

OA Osteoarthritis

ECM Extracellular matrix

FAK Focal adhesion kinase

MAPK Mitogen-activated protein kinase

CPCs Chondorgenic progenitor cells

ERK Extracellular signal-regulated kinase

MSC Mesenchymal stem cell

PKA Protein kinase A

Hh Hedgehog

IFT Intraflagellar transport

Wnt Wingless

EvC Ellis–van Creveld syndrome

PKD Polycystic kidney disease

Ihh Indian Hedgehog

Introduction

The morphological, structural, and material features of the

cartilage are genetically programmed but can also be

modified by epigenetic factors, such as local tissue stress

and strain states [1, 2]. Mechanical stimulation resulting

from weight loading, mobilization, and muscle contraction

has an important role in bone formation and normal joint

cavitation [3, 4]. Paralysis of the skeletal musculature is

known to inhibit chondrogenesis in developing limbs [5],

which thereby influences the length, mass, and mechanical

properties of the forming bone [6–9]. The growth plate and

articular cartilage are subjected to massive repeated

mechanical forces, and they have a limited capacity for

repair. Thus, understanding how articular cartilage is

maintained and how mechanical loads are sensed by the

chondrocytes is of primary importance.

Sensing of mechanical signals

Mechanosensitivity starts with external or internal mechan-

ical responses, and the mechanical stimuli are transduced by
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the cell into a biochemical outcome. More precisely, this

phenomenon is known as mechanochemical signaling or

mechanotransduction. Multiple activation mechanisms are

simultaneously at play, including the release of autocrine

growth factors [10–17] activation of mechanically sensitive

kinases, such as Src [18–22] focal adhesion kinase (FAK)

[23–25] and extracellular-signal regulated kinase (ERK)

[26–32] and initiation of second messenger signaling [33,

34]. Mechanical forces drive many cellular events, including

proliferation, differentiation, and gene expression in adult

differentiated cells and stem cells [35]. When trying to

understand how cells can receive a variety of inputs and

translate them into a response, we think of a system, or a cell

organelle, that can perform these tasks. Interest in a spe-

cialized cell projection organ called the primary cilium has

recently emerged. This organ was shown to have the ability

to receive and transduce numerous cell signals [36]. Thus,

the primary cilium is a good candidate to act as the cell’s

‘‘control device’’ for mechanical stimulation because it

projects as an ‘‘antenna’’ from the cell into the ECM, and it

incorporates integrins, G protein receptors, and calcium

channels into the cell membrane.

Mechanosignaling in chondrocytes

Ultrastructural studies have shown that each chondrocyte

has such an immotile primary cilium. On chondrocytes, the

primary cilia are oriented into the pericellular matrix

environment of the chondron, and they interact with col-

lagen types II and IV via receptors [37–42]. A physical and

chemical deficiency in the chondroblastic and chondrocytic

primary cilia results in skeletal and growth plate abnor-

malities due to improper ECM secretion [43–49]. Integrins,

G proteins, and calcium channels on the primary cilium

have all been implicated as mechanoreceptors [19, 50–53].

Numerous genes and pathways have been shown to be

differentially regulated as a result of mechanical stimuli;

for example, the phosphoinositide 3-kinase/Akt, protein

kinase A (PKA) and Mitogen-activated protein kinase

(MAPK) pathways [54–56]. It is reasonable to assume that

mechanotransduction is a complex multi-component sys-

tem that allows cells to integrate mechanical stimulations

differing in intensity, frequency, duration, and orientation

to generate appropriate biological responses, including

cartilage formation and regeneration [57] and, especially,

growth-plate formation [37, 58]. Mice and humans with

mutations in ciliary genes often present with defects in

skeletal development. Two human syndromes that include

defects in endochondral bone formation were shown to be

associated with mutations in ciliary genes. Asphyxiating

thoracic dystrophy (Jeune’s syndrome) is associated with a

missense mutation in IFT80 (part of IFT complex B), and it

presents with skeletal defects resembling those seen in

sonic hedgehog homolog depletion. Furthermore, Ptc1 (hh

receptor) expression is downregulated in the IFT80 mutant,

suggesting that alterations in Hh signaling and Ellis–van

Creveld syndrome (EvC) are characterized by numerous

skeletal and craniofacial abnormalities. The mutated pro-

tein in EvC has been localized to the base of the cilia

expressed in chondrocytes and is required for normal Hh

signaling. The disruption of EvC in mice resulted in a

variety of skeletal abnormalities associated with dimin-

ished Ihh signaling [48].

Mice mutated in other ciliary genes also demonstrate

alterations in endochondral ossification, resulting in a

shortening of the long bones. Conditional deletion of

IFT88 or KIF3a produces defects in embryonic endo-

chondral bone formation, observed as early as 15.5 days

from gestation [59]. These phenotypes resembled those

seen in mice with germline mutations in Ihh [60]. When

either Ift88 or KIF3a was deleted at later stages of

development using the col2a-Cre promoter, the mice

demonstrated a progressive loss of the cartilaginous growth

plate, resulting in postnatal dwarfism that resembled the

phenotype of mice with a conditional deletion of Ihh

induced in postnatal cartilage. KIF3a and primary cilia are

essential for coordination of chondrocytes maturation and

condylar growth. The Ihh signaling pathway is one of the

major regulatory pathways that lead to chondrocyte divi-

sion and differentiation in the growth plate. Hydrostatic

compression of the chondrocytic primary cilium upregu-

lates Ihh gene expression [49, 61, 62].

Using electron microscopy, it has been shown that the

chondrocyte cilium projects into the ECM and is tightly

associated with the Golgi apparatus [39, 63]. Integrins have

been shown to be present on the chondrocyte cilium, and

integrin-dependent signaling cascades have been described

in chondrocyte mechanotransduction [42, 64], suggesting a

possible role for the chondrocytic cilia in mechanosensing.

Chondrocytes in articular cartilage differ from those in the

growth plate in that they are maintained as mature resting

cells. Mechanical load is a critical factor in maintaining

articular cartilage, but how the load is sensed is not known.

Recently, the fate of the primary cilia on articular chon-

drocytes during the progression of bovine OA has been

investigated [47, 65]. Primary cilia were present during all

examined stages of OA; however, the proportion of ciliated

cells increased and their orientation towards the surface

was altered; the significance of this orientation remains

unclear [37, 63, 65]. Recently published cyclic compres-

sion experiments proved that mechanical loading

modulates chondrocyte primary cilia incidence and length.

This observation has been made independent from the

well-known reduction of cilia appearance during cell

division. Axonemal orientation in the cilia of articular
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chondrocytes is more pronounced in weight-bearing areas

compared to of the cartilage tissue [66, 67].

We have studied the effect of loading on growth plate

chondrocytes in vivo. Chondrocyte proliferation, differen-

tiation, organization, and the major signaling pathways

were found to be modified by loading in a chick model

[68]. This demonstrated that the mechanical load affected

chondrocytes in the growth plate [69], especially the

expression of matrix metalloproteases [70].

The primary cilium

Primary cilia are non-motile sensory organelles that project

from cells in many tissues and types of cells, such as

kidney tubules, the bile duct, neurons, the endocrine pan-

creas, the thyroid, smooth muscle cells, and fibroblasts.

The complete list of the cells and tissues containing pri-

mary cilia can be found at http://www.bowserlab.org/

primarycilia/cilialist.html. In recent years, cilia have

emerged as a hot topic in research, resulting in the creation

of numerous databases, including those containing geno-

mic and proteomic data on cilium composition (http://

www.ciliaproteome.org, http://www.ciliome.com) [71–74].

Cilia can be seen as specialized cellular compartments or

organelles [36, 75]. They are microtubule-based structures

that originate at the basal body and extend into the extra-

cellular space. The basal body is a modified form of the

centriole, an organelle well known for its role as a

microtubule organizing center of mitotic spindles. The

basal body/centriole migrates toward the cell membrane

and acts as a template for ciliogenesis and an anchor for the

primary cilium. The centriole only moves towards the cell

membrane when it is not involved in mitosis; thus, cilium

generation occurs during the interphase of the cell. The

intraflagellar transport (IFT) system plays a key role in

primary cilium formation and maintenance. The IFT sys-

tem is bidirectional and directs movement along the ciliary

axoneme. Because no proteins are synthesized in the pri-

mary cilium itself, ciliary proteins are targeted to the basal

body and transported to the distal tip through the IFT

complex. IFT complexes are trafficked along the axoneme

by molecular motor proteins; they are transported by

kinesin II in the anterograde direction and by dynein II in

the retrograde direction.

Motile and non-motile, primary cilia have microtubule

axoneme cores made up of nine sets of microtubule dou-

blets that provide structure and rigidity. However, primary

cilia lack the central pair of microtubules (thus are desig-

nated 9?0), while other motile machinery includes the

inner and outer dynein arms, radial spokes, and central pair

projections (designated 9?2). Unlike the motile cilia, of

which there can be many per cell, there is only one primary

cilium per cell [76–78].

The function of the primary cilium

To date, there are three hypotheses regarding the functional

importance of the primary cilium: first, the primary cilium

is a vestigial organ on the cell; second, that it inhibits cell

division because it sequesters the centriole; and third, that

it is a cellular sensory structure. The first hypothesis has

been proven to be incorrect by several experiments. For

instance, analyses of mutants, such as the Tg737orpk Rpw

mouse, have indicated that a functioning primary cilium is

essential for normal development and function, not only of

the kidney, but also of many other tissues and organs.

Hence, ciliary dysfunction might lead to a series of

developmental abnormalities and diseases collectively

called ciliopathies, including cystic diseases, obesity, and

blindness, as well as behavioral, cognitive, and skeletal

defects. The second hypothesis seems reasonable because

the majority of cells possess primary cilia when they are

not undergoing mitosis. Additionally, recent studies have

demonstrated the accuracy of the third hypothesis: primary

cilia have been shown to be highly involved in cell sig-

naling processes because a number of ion channels,

transporter proteins, and downstream effector proteins are

associated with the cilium [79–81].

The primary cilium is a few micrometers in length, and it

detects and interprets signals from the environment, such as

odorants, fluid flow, and protein signaling between cells.

Thus, they are spectacularly complex sensors. In ciliary

signaling, the receptor protein and the protein that transmits

the message into the cell are localized in the cilia. Protein

association or dissociation from the cilia controls the sig-

naling pathways, which ultimately trigger responses such as

cell division and differentiation [82]. Several independent

lines of evidence have demonstrated a role for the primary

cilium in Hh signaling [83]. Hh is the master regulator of

endochondral ossification in the growth plate, and it deter-

mines chondrocyte activity and subsequent bone length

[84–86]. Upon Hh stimulation, both Hh receptors, Smo and

ptch1, are recruited to the cilium in vitro and in vivo; Gli2

and Gli3, downstream effectors of Hh, also localize to the

cilium in the developing limbs [45, 87]. Other pathways that

have been shown to regulate chondrocyte activity but have

not yet been linked to the cilium are as follows: bone

morphogenic proteins, wingless (Wnts), fibroblast growth

factors, and insulin-like growth factors, all of which are

essential for normal cartilage formation.
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Cilia function in mesenchymal stem cells

and chondrogenic progenitor cells (CPCs)

The effects of mechanical forces on mesenchymal stem cell

(MSC) differentiation were examined in a fundamental

study of the concept of environmental cell sensing. The

study showed that differentiation of MSCs is directed by

the stiffness of the culture matrix. On soft collagen gels

that mimic the elasticity of brain tissue (0.1–1 kPa), MSCs

tend to adhere, spread, and exhibit a neurogenic phenotype.

MSCs cultured on tenfold stiffer matrices that mimic

muscle elasticity (8–17 kPa) become spindle-shaped, sim-

ilar to myoblasts. When cultured on matrices that mimic

the stiffness of bone osteoid (25–40 kPa), the MSC phe-

notype becomes osteoblast-like with greater expression of

osteogenic genes [88]. This work, along with similar

studies, implies that a cell is able to sense its mechanical

environment and that mechanical signaling itself can reg-

ulate the differentiation of MSCs into different tissues.

More recently, Padmaja Tummala et al. identified the

presence of primary cilia on MSCs and determined their

role in MSC differentiation. MSCs require primary cilia not

only during their differentiation but also to maintain the

phenotypes of differentiated cells [89]. In addition, there is

evidence that MSC differentiation into chondrocytes and

osteocytes is regulated by mechanical signals [90]. Our

research group is working on tissue regeneration to eluci-

date repair mechanisms, especially in OA (Fig. 1) and

rheumatoid arthritis. OA is a chronic degenerative disease

characterized by articular cartilage degeneration, and it is

multifactorial in origin [89]. Primary cilia are present on

chondrocytes, and the percentage of ciliated cells and the

lengths of the cilia within OA tissue are higher compared to

the normal tissue [65], although the implications of these

facts have yet to be elucidated.

We have isolated CPCs from subjects in late-stage OA

and characterized their role in the repair of diseased

articular cartilage. CPCs have tremendous chondrogenic

and regenerative potential. These cells are positive for stem

cell markers and exhibit stem cell properties such as clo-

nogenicity, multipotency, and migratory activity. Recently,

we identified primary cilia projecting from the surfaces of

CPCs using antibodies against acetylated alpha tubulin.

Our laboratory is focused on using mechanobiological

approaches to investigate the role of primary cilia in dif-

ferentiation of CPCs into chondrocytes [91, 92].

Fig. 1 a Electron micrograph

of the primary cilium (Ax), the

distal (Dc), and proximal (Pc)

centriole. Bar 500 nm. b Cross

section of the proximal

centriole. Bar 100 nm.

Reprinted from Jensen et al.

(1979) with permission.

c Schematic presentation of the

primary cilium with membrane

signaling molecules that were

described in it. d Human

articular chondrocytes and

f CPCs stained with acetylated

a-tubulin (tb, green) Abs to

detect primary cilia (arrows),

phalloidin (ph, red) and DAPI

(DAPI, blue). e Tissue from the

late stage of human OA exhibits

surface fissures and cell clusters

(the arrow indicates the

tidemark). Breaks in the

tidemark are filled with blood

vessels, and the bone marrow is

visible underneath the OA

tissue. Reprinted from Koelling

et al. [92] with permission from

the publisher
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Conclusions and perspectives

Owing to the involvement of primary cilia in fundamental

cellular processes, mutations in primary ciliary proteins

result in diverse diseases such as cystic kidney diseases,

obesity, and retinal degeneration. Recent studies have

presented a comprehensive concept that primary cilia are

acting as dual sensors for physical and chemical cues.

Therefore, over the past few years, many researchers have

been paying attention to primary cilia to understand their

role in development and diseases. Here, we have reviewed

the basic role of primary cilia in mechanotransduction and

their possible impact on cartilaginous tissues. Additionally,

our results show that primary cilia project not only from the

surface of human osteoarthritic chondrocytes but also from

the surface of chondrogenic progenitor cells. One future

line of research should be to elucidate the role of the pri-

mary cilia in chondrogenic differentiation to enhance the

potential of cartilage repair.
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