
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14124  | https://doi.org/10.1038/s41598-020-70971-6

www.nature.com/scientificreports

Myotendinous junction adaptations 
to ladder‑based resistance training: 
identification of a new telocyte 
niche
Jurandyr pimentel neto 1*, Lara caetano Rocha1, Gabriela Klein Barbosa1,  
carolina dos Santos Jacob1, Walter Krause neto2, ii‑sei Watanabe3 & Adriano polican ciena1

The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to 
different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided 
into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained 
(LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the 
trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness 
of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also 
observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ 
and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes 
in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in 
the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous 
adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is 
causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. 
Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic 
location of telocytes.

The myotendinous junction (MTJ) consists of a highly specific anatomical region in which the sarcoplasmatic 
membranes connect to bundles of extracellular matrix (ECM) collagen  fibers1. Due to its functionality, MTJ 
represents the region with the highest transmission of  force2,3.

Morphologically, MTJ presents projections that penetrate the muscle tissue, parallel and directed to the myofi-
brils, forming sarcoplasmatic invaginations. Currently, we know that its development is mainly influenced by the 
interactions between myoblasts and ECM  elements4,5. The basal lamina of muscle fiber creates a supramolecular 
connection structure composed of different levels of proteins from the laminin and collagen polymers located 
in the  ECM6. This arrangement contributes structurally to the transmission of force, adapting, remodeling, and 
consequently affecting the macroscopic tendon structure to different  stimuli7,8.

Initially, telocytes were described as interstitial Cajal  cells9. Telocytes are interstitial cells of stromal origin 
with an oval shape, and a heterochromatic nucleus with moniliform projections denominated telopodes, which 
characterize its morphological classification according to the number of  projections9,10. They are founded in 
the interstitium of tissues such as the  testicle9, smooth and cardiac  muscle11, human  tongue10,  pancreas12, and 
 liver13. It can be identified by the electronic microscopy, immunohistochemistry, and CD34+/immunostaining14. 
Recently, telocytes have been found in proximity to and engaging in possible interactions with satellite  cells10. The 
telocytes projections have terminals (pods) with mitochondria that form junctions with adjacent cells, and they 
have caveolae that perform exocytosis through communicating vesicles (exosomes) to affect associated  tissues14.

The MTJ interface is dynamic and highly complex, being susceptible to ultrastructural adaptations to different 
 stimuli15,16. Trauma at the muscle–tendon interface leads to functional reductions in tissue properties, in addition 
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to contributing to future injuries associated with high demand for sports training or physical  inactivity8,17. The 
risk of trauma due to muscle tension is probably a confluence of numerous factors related to the MTJ’s ultrastruc-
tural architecture and its contact  surface18,19. Thus, physical training appears as an alternative to strengthen the 
muscle–tendon structure and ensure an effective transmission of force from the skeletal muscle to the  tendon20–23.

According to Curzi et al., MTJ plasticity seems to be related to exercise  intensity24. Jakobsen et al. showed that 
4 weeks of resistance training (RT) could stimulate protection against stress injuries in the  tendon20. Besides, 
Geremia et al. demonstrated that tendon hypertrophy induced by high RT intensity contributed to an additional 
increase in tendon  stiffness21. Also, the increase in tendon stiffness appears to be caused mainly by adaptations 
in the properties of tissues. However, understanding of the composition of MTJ and the ability to adapt to load-
ing is still weak.

Here, we reveal the presence of a support collagen layer (SCL) adjacent to MTJ Unexpectedly, we describe 
the existence and microanatomical location of telocytes in this region for the first time, considered the central 
area of force transmission, and susceptible to more severe mechanical damage.

Results
Plantaris muscle mass. In groups, C and R, the mass of the plantaris muscle was 13% (p < 0.05) and 20% 
(p < 0.005) greater than S, respectively (Fig. 1).

Myotendinous junction plasticity. In the experimental groups, the thickness of the basal lamina adja-
cent to the MTJ was measured, and the changes were related to the training of the groups (Fig. 2A–C). Group R 
showed a thickness of 22% thinner than S (p < 0.0001). Among the trained groups, the basal lamina thickness of 
group C was 18% thicker than R (p < 0.0001) (Fig. 2D).

In S, the region of interaction between the muscle cells and the connective tissue of the ECM revealed thin 
sarcoplasmatic invaginations in the intersection with the conical-shaped sarcoplasmatic evaginations, consisting 
of protein myofilament bundles, the distal sarcomeres (Fig. 2A).

In C, we observed long, and thick sarcoplasmatic invaginations composed of collagen fibers that were lon-
gitudinally arranged near the contact surface. At the end of the muscle cell, sarcoplasmatic evaginations that 
interacted with the tendon tissue were formed (Fig. 2B). The lengths of the sarcoplasmatic invaginations in C 
were 32% (p < 0.0001) longer than S (Fig. 2E). The invagination thickness of C relative to S was increased by 
36% (p < 0.0001, Fig. 2F).

In R, it was possible to highlight the longitudinal bundles of collagen fibrils that were coming from the ECM 
of the sarcoplasmatic invaginations and interacting with the evaginations, demonstrating the remodeling of the 
ECM and the great adaptations in the MTJ (Fig. 2C). In R, sarcoplasmatic invaginations and evaginations were 
29% (p < 0.0001) and 23% (p < 0.05) greater in length compared to S, respectively. In C group, invagination length 
was 2% greater than R (p < 0.05). Also, in R group, we showed that sarcoplasmatic evaginations length was 45% 
greater than C (p < 0.0001, Fig. 2E).

Regarding thickness, in R there was an increase of 20% (p < 0.005) in invaginations compared to S, and a 
reduction of 12% (p < 0.01) compared to C, while for sarcoplasmatic evaginations compared with S there was an 
increase of 31% (p < 0.0001), and compared to C, there was an increase of 37% (p < 0.0001) (Fig. 2F).

In all experimental groups, the SCL adjacent to the MTJ was identified, with its transversely arranged collagen 
fibrils and their alterations. The thickness of the collagen backing layer in R was 256% and 149% thicker compared 
to S and C, respectively (p < 0.0001, Fig. 2G). Regarding the diameter of the transverse collagen fibrils, C showed 
an increase of 18% relative to S (p > 0.05). In comparison, in R, the increase was 48% (p < 0.0001) relative to S. 
Between the trained groups, R showed a 25% greater diameter (p < 0.01, Fig. 2H).

Telocytes. At the MTJ of three experimental groups, telocytes were identified with intimate relationships at 
the interface through their telopodes. They had close relations with the sarcoplasmatic invaginations, the basal 
lamina, the blood capillaries, the satellite cells, and the pericytes.

Figure 1.  Means and standard deviations of the plantaris muscle mass of the Sedentary (S), Calisthenics (C), 
and Resistance-trained (R). Legend: S ≠ C **(p < 0.05); S ≠ R *(p < 0.005).
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In S, telocytes were found in the ECM adjacent to the MTJ region, and their telopodes were interacting with 
the sarcoplasmatic invaginations and the SCL surrounding the MTJ (Fig. 3A). Blood capillaries and telocytes 
adjacent to the MTJ were observed (Fig. 3D). In higher magnification, we can identify the possible paracrine 
activity of the pods and the release of vesicles in the MTJ region (Fig. 3G).

In C, telocytes were also observed adjacent to the MTJ and their extensions were associated with the sarco-
plasmatic invaginations (Fig. 3B). Also, in C, we found a telocyte and its telopodes related to the collagen layer 
between the tendon and the MTJ (Fig. 3E). In addition, we noted the subsarcolemmal mitochondrial grouping 
in proximity to the satellite cells and the nucleus of a muscle cell in the MTJ region (Fig. 3H). In the R Group, we 
discovered the presence of telocytes in proximity to the MTJ interface surrounded by transversal collagen fibrils 
(Fig. 3C), near the blood capillaries (Fig. 3F), associated with the pericytes. Also, we observed communications 
between telopodes, cytoplasm of the pericyte and sarcoplasmatic invaginations. Their visible vesicles revealed 
the paracrine function of telocytes in the MTJ (Fig. 3I).

Figure 2.  Transmission electron micrographs of the surface of the myotendinous junction reveal the 
sarcoplasmatic evaginations (arrows) interacting with the sarcoplasmatic invaginations (arrowheads) of the 
Sedentary (A), Calisthenic (B) and Resistance (C) groups. Scale Bar: 1 μm. Magnifications: 80,000× (A–C). 
(D) Means ± SD of basal lamina (*) thickness *(p < 0.0001). (E) Means ± SD of the lengths of the sarcoplasmatic 
invaginations and evaginations *(p < 0.0001), **(p < 0.001), ***(p < 0.01). (F) Means ± SD of invagination and 
sarcoplasmatic evagination thickness *(p < 0.0001), **(p < 0.001). Transmission micrograph identifying the 
light bar on the MTJ and highlighting the diameter representation of collagen fiber in this region (circle). (G) 
Means ± SD of the support collagen thickness *(p < 0.0001). (H) Means ± SD of the collagen fibril diameter in the 
MTJ *(p < 0.0001), ***(p < 0.01). Support collagen/collagen fibrils. The micrographs show the definition of the 
thickness of the support of the collagen fibrils layer adjacent to the MTJ and prominently positioned lengthwise 
in the layer of support where it was possible to measure its diameter.
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Figure 3.  (A) The transmission electron micrograph of S shows the telocyte (Tc) adjacent to the MTJ and the 
telopodes (Tp). (B) The C group shows the ultrastructural adaptations of the MTJ and the interactions of the 
telocytes (Tc) in this region. (C) In the R group, we can observe a telocyte (Tc) with your telopodes (Tp) in 
proximity with the MTJ interface and surrounded by transversal collagen fibrils. (D) In S, we found evidence 
of capillaries (Ca) associated with telocytes (Tc) adjacent to the myotendinous region. (E) In C, the interactions 
of the telopodes (Tp) and telocytes were observed in the support collagen region associated with the MTJ. (F) 
Telocytes (Tc) adjacent to the blood capillary (Ca) in the MTJ. (G) In the S group at higher magnification; it 
is possible to observe the activity and contact between the telopodes terminals (Pd) that possible perform a 
paracrine activity with the sarcoplasmatic invaginations of the MTJ (arrowhead) and the vesicles released in this 
region (square). (H) In the C group it was possible to visualize the nucleus of a muscle cell (N), mitochondrial 
clusters (M), and a satellite cell (SC) in the MTJ. (I) At higher magnification, the communication junction 
(arrow) between telopodes (Tp) and the pods with pericytes (Pc) (arrowhead) in group R. Scale Bar: 1 µm 
(A,B,D,F); 2 µm (C,E,H,I) 0.2 µm (G). Magnifications: 4,500× (E); 5,000× (C,D); 6,000× (F); 8,000× (B); 
10,000× (A); 15,000× (H,I), 40,000× (G).
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Immunofluorescence. The CD34+/immunostaining in the MTJ was possible to prove the relationship of 
telocytes and the MTJ. They are present in the interface of the muscle–tendon region and form a line to the MTJ 
supporting their structure, corroborating with the results found in the electronic microscopy (Fig. 4).

Discussion
The different LRT protocols elicited unprecedented results in the structure of MTJ, which showed adaptations 
in the plantaris and gastrocnemius muscles. Also, we reveal the presence of blood capillaries in the region of the 
tendon near to the MTJ, provide details on the adaptive responses of the SCL, and observe the first evidence of 
the existence and micro anatomical location of telocytes between muscle and tendon tissues.

Adaptations found in group C, such as increases in the thickness and length of invaginations and reductions 
in sarcoplasmatic evaginations, demonstrated that LRT without additional loading might represent an activity 
that induces MTJ adaptations. On the other side, the more extensive invagination lengths found in group R cor-
roborated the findings using progressive intensity treadmill  exercise24, indicating a higher adaptive response of 
muscle tissue in the MTJ, especially for the sarcoplasmatic evaginations.

Resistance exercise promotes morphological adaptations that contribute to alterations of the contact surface 
of the MTJ, correlating with increases in muscle  strength3,24. These adaptations corroborate recent  studies25 that 
associated such adjustments with the prevention of sports injuries and future traumas resulting from physical 
inactivity and aging, remodeling their structures in response to different stimuli.

The basal lamina that delimits the ECM in the MTJ exhibited a reduction in thickness in response to the 
training protocols. In the R group, there was a significant attenuation in thickness when compared to group C. 
These results differ from those found in studies of treadmill exercise that demonstrated an increase in the thick-
ness of this structure in trained  groups25. These findings may be associated with metalloproteinases action in 
this region since there are several levels of laminin and collagen type  IV26. These elements are responsible for 
the formation of the basal lamina and are associated with myogenic  activity27,28.

The observed morphological rearrangement of the basal lamina indicates the activity of the satellite cells 
that control the homeostatic balance in tissue  damage27 and promote changes in membrane proteins such as the 

Figure 4.  CD34+/Immunostaining is identifying the telocyte niche in the MTJ. A. It’s possible to observe 
the identification of the diversity of nucleus with 4′,6-diamidino-2-phenylindole (DAPI) in this region. B. We 
identified the telocyte niche in the MTJ and the tendon region with CD34+ immunostaining. C. With the 
immunostaining, the association is possible to determine the real niche of telocytes in the MTJ D. DIC image to 
demonstrate the muscle (M) and tendon (T) interaction and the MTJ line (*) between these tissues. Scale Bar: 
20 µm. Magnifications: 400× (A–D).
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various types of collagens in this region, which may influence their adaptations, and consequently, the adapta-
tions of adjacent  cells28.

Satellite cell activity in the MTJ of the trained groups may be associated with specific molecular and cellular 
adaptations. These results may determine a myoblastic proliferation niche of satellite cells near to the MTJ and 
the beginning of a post-inflammatory process arising from cell  damage29, mainly because in this region, the 
telocytes were also found, reinforcing the niche indication in the MTJ provided.

The adaptation of the supporting collagen layer and the transversely arranged fibrils corroborates the rela-
tionship between increased collagen deposition and muscle  hypertrophy30. Consequently, this fact can promote 
the remodeling of the ECM and the increase of collagen production in different regions of the MTJ and of the 
skeletal muscle involved in this type of  exercise31,32.

The increase in collagen promotes structural contributions and compensation of the ECM with the belly 
muscle, and based on the contractile transmission force required in this region, it supports a lower risk of injury 
and increased  resistance33,34.

The presence of capillaries close to the telocytes is an adjustment that can promote better delivery of nutri-
ents and exchange of gases in this region, allowing paracrine activity between the two structures and better 
 remodeling12,16,35. These data indicate one more factor linked to cell damage and, consequently, to muscle regen-
eration caused by hypertrophic, myogenic, and trophic factors that can act in the MTJ  region34. The close rela-
tionship between telocytes and collagen fibrils was found in MTJ and corroborates with some research in other 
tissues such as mouse  aorta36, turtle  pancreas37, goat rumen smooth muscle  layers12, and endocardial  muscle38. 
Also, such association and communication with the support for these ultrastructures in the interstitial region 
may be associated with the regeneration and repair of the associated  tissue39,40.

Also, the identification of a niche of telocytes and their telopodes in MTJ in all groups reveals yet another 
niche region of these cells and their involvement with other associated cellular structures.

conclusion
We concluded that different LRT promoted adaptations in the MTJ as exhibited by the sarcoplasmatic invagina-
tions and evaginations, contributing to an increased contact area in their interface. Still, we identified an SCL 
adjacent to the MTJ We revealed the first evidence of the existence and location of telocytes in the MTJ inside 
and adjacent to the SCL, in proximity to capillaries, pericytes, and collagen fibrils. Further studies are needed to 
investigate these associations and the functions of the telocytes in this central region.

Materials and methods
Animals. Thirty Wistar rats (90 days) were divided into three groups (n = 10 per group): sedentary (S): not 
subjected to training protocols; calisthenic (C): subject to ladder-based RT protocol without a load; and resist-
ance-trained (R): subject to ladder-based RT with a progressively increasing weight. The animals were kept in 
cages at a controlled temperature (23 ± 2 ºC with 12 h light/dark periods) and food and water available ad libi-
tum. All proceedings were approved by the Animal Use Ethics Committee (CEUA)—UNESP (No. 0080) and 
carried out following the National Council for Animal Experiment Control (CONCEA).

For the RT, a vertical ladder was used (110 cm height, 2 cm between the steps, and 80° inclination). Between 
climbs, rats remained in a housing chamber (20  cm3) at the top of the ladder.

Rats from the C group performed seven unloaded climbs with 1 min intervals between each climb. This 
protocol was repeated 3×/week for 8 weeks, with a total of 24 training sessions.

For the R group, the rats performed 4 to 9 progressive load climbs equivalent to 50%, 75%, 90%, and 100% of 
their body mass. From the 5th climb, rats were subjected to 100% load plus 30 g of extra weight by climb until 
the nine climbs were completed or exhaustion occurred. The protocol was repeated 3×/week for 8 weeks, for a 
total of 24 training  sessions41.

Plantaris muscle mass. The plantaris muscle mass was measured with a semi-analytical balance (Marte 
Científica AD330) at the end of experimental protocols. After obtaining the data of means ± SD, statistical analy-
sis was performed with Graph Pad Prism 8.0 Software with one-way ANOVA analysis and a Bonferroni post-test 
(p < 0.05).

Transmission electron microscopy. Rats (n = 5) were euthanized with an anesthetic overdose (ketamine 
at 100 mg/kg and xylazine at 5 mg/kg). MTJ samples of the plantaris muscle (3  mm3) were immersed in 0.1 M 
sodium cacodylate solution (pH 7.4) at 4 °C, post-fixed with 1% osmium tetroxide  solution42, washed with 0.9% 
saline, and fixed with 0.5% uranyl acetate solution. Then, the samples were dehydrated in a series of alcohols and 
propylene oxide (2×), followed by a mixture of resin (Spurr) and propylene oxide, and then placement in pure 
resin for 12 h. The samples were heated at 37 °C in rectangular silicone molds filled with pure resin and kept at 
60 °C. Ultrathin (60 nm) sections were collected on 200 mesh copper screens (Sigma-Aldrich, USA), stained 
with 4% uranyl acetate solution, and after washing, stained with aqueous 4% lead citrate solution 0.4%43. The 
screens were examined with a transmission electron microscope (Philips CM 100, JEOL 1010) at the Institute of 
Biomedical Sciences of the University of São Paulo, São Paulo-SP, Brazil.

Immunofluorescence. The MTJ of the gastrocnemius muscle of the experimental groups (n = 5) was dis-
sected and cryofixed in liquid nitrogen − 196 °C. The samples were sectioned longitudinally at 10 µm (Crio-
staty—HM 505 E, MICROM) and subjected to CD34 immunostaining assays for identifying the telocyte niche 
in MTJ. After that, the slides were washed in phosphate-buffered saline (PBS) for 5 min and incubated overnight 
at 4 °C with primary antibody CD34 (1:1,000, IgG polyclonal, Invitrogen, PA5-85917) diluted in PBS with 1% 
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bovine serum albumin (BSA). After two washes in PBS, the slides were incubated with goat anti-rabbit sec-
ondary antibody Alexa Fluor 594 (1:1,000, IgG, Invitrogen, A-11012) diluted in PBS with 1% BSA for 1 h at 
room temperature. Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, Eugene, 
P36935). Histological sections were analyzed with a fluorescence microscope (Olympus X61). Differential inter-
ference contrast image was captured with a magnification of 200× to visualize the muscle fiber disposition and 
interface muscle–tendon.

Morphometric analysis. We used the plantaris muscle to made all the measurements.
The evagination and invagination lengths measured at the basement of the MTJ to the apical point of ultras-

tructures (number of ultrastructures measured per group = 70). The thicknesses made from the MTJ ultrastruc-
tures (number of ultrastructures measured per group = 70). The basal lamina thickness measurement was at the 
MTJ interface at the final line of the basal lamina (number of ultrastructures measured per group = 50). The SCL 
thickness measurement was at the MTJ interface at the last line formed by multiples transverse collagen fibrils 
adjacent to the MTJ (number of ultrastructures measured per group = 50) represented in Fig. 2. The diameter of 
the collagen fibrils made in the fibrils that form the SCL adjacent to the MTJ (number of ultrastructures measured 
per group = 30) represented in Fig. 2. ImageJ software used to measure all the data. After obtaining the data of 
means ± SD, statistical analysis performed with Graph Pad Prism 8.0 Software with one-way ANOVA analysis 
and a Bonferroni post-test (p < 0.05).

Data availability
All relevant data are within the paper.
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