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Chemotherapy resistance in breast cancer is an important factor affecting the prognosis of
breast cancer patients. We computationally analyzed the differences in gene expression
before and after chemotherapy in breast cancer patients, drug-sensitive groups, and
drug-resistant groups. Through funct ional enr ichment analysis, immune
microenvironment analysis, and other computational analysis methods, we identified
PRC1, GGTLC1, and IRS1 as genes that may mediate breast cancer chemoresistance
through the immune pathway. After validation of certain other clinical datasets and in vitro
cellular assays, we found that the above three genes influenced drug resistance in breast
cancer patients and were closely related to the tumor immune microenvironment. Our
finding that chemoresistance in breast cancer could be influenced by the mediation of
tumor immunity expanded our knowledge of how to address this problem and could
guide future research involving chemoresistance.
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INTRODUCTION

Breast cancer surpassed lung cancer as the most common type of malignancy worldwide in 2020 (1),
while it remains the leading cause of cancer death among women. There have been many advances
in treating it in the past decades, such as surgery, radiation therapy, chemotherapy, endocrine
therapy, and targeted therapy (2). Chemotherapy is important and effective in the treatment of
treatment. Consequent chemotherapy resistance is an important obstacle in the successful
treatment of breast cancer, especially in metastatic breast cancer where the vast majority of
treatment failures are due to chemotherapy resistance (3). Therefore, chemotherapy resistance
occurs in a significant fraction of patients (4) leading to disease progression and ultimately death. It
has been thought that chemotherapy resistance is the result of intrinsic cell genetic changes,
including upregulation of drug efflux pumps, activation of detoxifying enzymes, or apoptotic defects
(5). However, over the past 10 years, increasing evidence has shown that chemotherapy resistance is
also related to tumor microenvironment (6).
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Tumor immune microenvironment (TIME) refers to the
biological interactions between tumor, stroma, and immune
cells, and a deep understanding of the TIME contributes to the
success of clinical treatment (7). As important parts of the TIME,
disrupted balance of growth factors, chemokines, cytokines,
immune cells, and stromal cells have been recognized as some
of the important mechanisms of chemotherapy resistance (6).

Chemotherapy resistance mediated by the TIME is a complex
process that requires the involvement of not only immune cells,
but also protein molecules and cytokines on the tumor surface.
Even differences in the expression levels of genes in tumor cells
and immune cells can result in differential responsiveness to
chemotherapeutic agents. These genes were previously thought
to be intrinsic to chemoresistance, and a growing number of
studies have suggested that they may mediate chemotherapy
resistance by affecting the immune microenvironment. For
example, overexpression of CD137 in osteosarcoma is associated
with chemosensitivity (8), possibly because CD137 can induce
immune clearance of the tumor by the microenvironment. In
addition, overexpression of PDGFD (9, 10), a provascular growth
factor in ovarian and colon cancers, predicts chemoresistance, and
exosomes secreted by Mesenchymal Stem Cells(MSCs) can affect
S100 Calcium Binding Protein A6(S100A6)expression to mediate
chemotherapy resistance in breast cancer (11).

In addition, the TIME affects the response of tumor cells to
chemotherapeutic agents in several ways: 1) Various immune factors
can cause cellular autophagy, which can affect the anti-tumor
response of natural killer cells (12). 2) Multiple factors can lead to
changes in the ratio of Treg cells, CD8+ T cells, cytotoxic T
lymphocytes (CTL cells), myeloid-derived suppressor cells
(MDSCs), and macrophages, as well as changes in the expression
of cell surface proteinmolecules such as programmed death ligand 1
(PD-L1), CTLA-4, and CD47, ultimately leading to the development
of an immunosuppressive microenvironment (13–15). 3) The
immune microenvironment leads to activation of intracellular
signaling pathways that can generate chemoresistance, for instance,
activationof theAKT/ERKsignalingpathwayscan induceexpression
of anti-apoptotic genes (16). 4) Two immune microenvironment
cytokines, IL-6 and tissue inhibitor of metalloproteinase 1 (Timp-1),
can protect tumor cells from cell death induced by genotoxic
chemotherapy. IL-6 and Timp-1 can generate chemoresistance by
affecting the immune microenvironment, a situation that has been
demonstrated in lymphoma and hepatocellular carcinoma (6).

Researchers recently constructed a signature associated with
FOLFIRI resistant and Microenvironment (SFM) of colon cancer
chemotherapy-associated features by computational statistical
analysis of data from multiple pools of colon cancer patients
receiving chemotherapy (17). The composition of the immune
microenvironment varied in the different SFM classifications, for
example, SFM-D exhibited enrichment with activated naive CD4 T
and B cells, plasma cells, CD8 T cells, and Tregs. SFM-E showed
increases of follicular helper T cells, M0/1 macrophages, and
neutrophils. Ultimately, these classifications correlated closely with
clinical survival in colon cancer patients receiving chemotherapy,
demonstrating that the immune microenvironment may also be an
important cause of chemoresistance in colon cancer patients.
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There are few studies on the influence of the immune
microenvironment on chemoresistance in breast cancer
patients. Most of them have focused on establishing the
corresponding genetic profiles without any in-depth studies on
why these genetic differences caused the varied responses of
breast cancer cells to chemotherapeutic drugs and with little
research on the analysis of immune mechanisms. In the present
study, we used computational analysis and machine learning
methods to find genes that may contribute to chemotherapy
resistance by the immune pathway, and we provided our
perspective on immune-mediated chemotherapy resistance in
breast cancer.
MATERIALS AND METHODS

The flow chart showing the overall research design and methods
used for this study is shown in Supplementary Figure 1.

Data Download and Preliminary Data
The GSE28694 (Miller and Payne grades 4 and 5) and GSE28826
(Miller and Payne grades 1 and 2) chip data were downloaded
from the GEO database containing a total of 41 samples. Among
them, 28 samples were grades 1 and 2 of the Miller-Payne
classification system, and 13 samples were grades 4 and 5.
Miller-Payne grades 1 and 2 (Grades12) were defined as drug
resistance groups, and Miller-Payne grades 4 and 5 (Grades45)
were defined as drug-sensitive groups. These data were used as
training sets.

We standardized the chip data according to the Robust
Multichip averaging method (18). The expression value of each
gene was calculated based on the correspondence between the
probe and the gene. For the case where a gene corresponded to
multiple probes, we chose the average of these probes as the
expression value of the gene.

Screening Differentially Expressed Genes
The gene expression data was analyzed for differential expression
using the R package limma, and the genes that expressed
differences in the samples were screened according to the
difference multiple (|logFC| > 0.585) and the significance level
(P value < 0.05). The sample grouping was based on
the following:

a) Compare samples before chemotherapy in Grades12 and
Grades45

b) Compare the samples after chemotherapy in Grades12 and
Grades45

c) Compare samples before and after chemotherapy in Grades12

d) Compare samples before and after chemotherapy in Grades45
Functional Enrichment Analysis
ClusterProfiler was used to perform enrichment analysis and
visualization of GO function and KEGG pathway.
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Establishing a Protein Interaction Network
of Differential Genes
According to STRING 11.0, we established a protein interaction
network of differential genes and performed network enrichment
analysis (Cytoscape string application). We then assessed the
aggregation level of the differential protein interaction network
by constructing a zero distribution of the network aggregation
level. Specifically, the same number of genes as the differential
genes were randomly selected from the protein-interaction
network and the number of connected edges of these genes
was calculated. We randomly generated (x1000) a distribution of
the number of edges in a random partition to determine whether
the edges in the differential protein interaction network were
significant. High-functional enrichment analysis uses similar and
random comparison methods for identification involving GO,
KEGG Pathways, and the Reactome Pathways database. Among
them, GO functional enrichment only focuses on biological
processes (BP).

Optimizing the Identification of Potential
Related Genes
Using drug resistance-related genes, cancer stem cell markers,
and the ABC transport family genes as seed samples, we used the
random walk method to evaluate the association of differential
genes with the above-mentioned gene set for screening. A
random network was generated repeatedly through the
interference dynamics network, and the calculation was
repeated (x1000) to generate a random distribution of gene
scores, thereby calculating the significance P value. Genes with
P < 0.01 were extracted as genes with significant association.

The recognized related pathways were retrieved from the
KEGG database, including four correct related pathways, namely
platinum resistance (hsa01524), antifolate resistance (hsa01523),
endocrine resistance (hsa01522), and the ABC transporter
(hsa02010) chemical. If a gene was significant in more than
two random walk results, we extracted the gene to replace the
related gene set, and finally we extracted GGTLC1, IRS1, and
PRC1 by calculation.

Tumour Immune Microenvironment
Immune Signature
According to the standardized expression profile data, the
geometric average method was used to calculate the TIME
characteristics of the sample, including “adhesion molecule,”
“chemokine,” “cell decomposition activity,” “IFN-g signature,”
“Immune costimulator,” “Immunosuppressant,” and “MHC
Class I.”

Cancer Immune Cycle
Based on the standardized expression profile data, the ssGESA
method was used to calculate the cancer immune loop, including
“Step 1: Cancer cell antigen release,” “Step 2: Cancer antigen
presentation,” “Step 3: Activation and activation,” “Step 4:
Immune cell trafficking,” “To the tumor,” “Step 5: Immune
cells infiltrate the tumor,” “Step 6: T cells recognize cancer
cells,” and “Step 7: Kill cancer cells.” The cancer immune cycle
Frontiers in Oncology | www.frontiersin.org 3
score calculated by ssGSEA was not comparable among samples,
so we normalized the immune cycle score of each sample based
on random background. Specifically, the random disturbance
expression matrix used the same calculation method to calculate
the random cancer immune cycle score. This was repeated
(x100) to generate a random cancer immune cycle score
distribution. We then integrated the real sample and random
data and used the zscore method to calculate the score of the real
sample relative to random.

Immune Cell Infiltration
According to the standardized expression profile data, the
CIBERSORT method was used to analyze the proportion of 22
immune cell infiltrations in tumor samples, including B cell
naive, B cell memory, plasma cells, T cell CD8, T cell CD4 naive,
T cell CD4 memory quiescent, T cell CD4 memory activation, T
cell follicular assist, T cell regulation (Treg), T cell gamma d,
resting NK cells, activated NK cells, monocytes, macrophages
M0, macrophages M1, macrophages M2, Dendritic cells are
stationary, dendritic cells are activated, mast cells are resting,
mast cells are activated, eosinophils, and neutrophils.

Using the consistent clustering method (R package
Consensus ClusterPlus), the patients were divided into
multiple immune subtypes. This was repeated (x1000) in the
consistent clustering method. Considering the two indicators of
CDF and Delta regions at the same time, we determined the
optimal clustering diversity (cancer immune cycle, category 3;
immune cell infiltration, category 4).

Wilcox grades and tests were used for comparative analysis
between Grade 12 and Grade 45 pre-chemotherapy samples.

Creating a Correct Machine Learning
Model for Patients
For each patient, we constructed 15-dimensional features. We
calculated the transformation path score of the sample using the
geometric mean method and identified the relevant gene score
and the immune signature score. A random forest classifier
consisting of 1000 trees was formed using random forests.
Each tree was reconstructed by randomly selecting the same
number of negative pairs as the positive set, using the R
package randomForest.

Verifying the Characteristics of the Three
Genes In Vitro
Cell Lines and Cell Culture
The human breast cancer cell line MDA-MB-468 was used for all
experiments, which was obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). The cells were
cultured in RPMI 1640 (Bioss) supplemented with 10% FBS
(Biological Industries), 1% penicillin, and 1% streptomycin
(Biosharp) at 37°C in a 5% CO2-humified atmosphere.

Cell Transfection
For siRNA-mediated knockdown, cells were seeded at 1.5 × 105

per well in 6-well plates 24 h before use. According to the
manufacturer’s recommendations, when the cells reached 70%
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to 90% confluence, we transfected the cells with Lipofectamine
3000 (Invitrogen, Waltham, MA, USA) in a serum-free medium
for 6 h. After that, the siRNA was removed, and the cells were
cultured for 48 h in a regular medium. The following siRNAs
were obtained from Shanghai GenePharma Co. Ltd: IRS1 (IRS1-
Homo-2025), PRC1 (PRC-Homo-1047), and GGTLC1
(GGTLC1-Homo-504). For control knockdown, Negative
Control (GenePharma, Shanghai, China) was used. All the
above RNA ol igo sequences are presented in the
Supplementary material.

Quantitative Real-Time Polymerase Chain Reaction
The TRIzol reagent (Invitrogen, China) was used for extraction
of total RNA from the cells according to the manufacturer’s
instructions. The First-strand cDNA was synthesized from 1 mg
of total RNA using HiScript III RT SuperMix for qPCR (+gDNA
wiper) (Vazyme, China). qRT-PCR was performed using
ChamQ Universal SYBR qPCR Master Mix (Vazyme, China)
with an Applied Biosystems (USA) instrument. Sequences of the
primers used for qRT-PCR are listed in the Supplementary
material. GAPDH was used for normalizing the DDCt values of
the studied genes.

Cell Counting Kit-8 Assay
MDA-MB-468 cells were seeded into 96-well plates at 8000 cells
per well and incubated overnight. After 48 h of transient
transfection according to the above method, the cells were
treated with different concentrations of epirubicin (Macklin,
China) for 48 h, or the cells were treated with different
concentrations of paclitaxel (Macklin, China) for 36 h and
then were assessed for viability using a CCK-8 reagent
(APExBIO, USA) as per the manufacturer’s manual. Briefly, 10
mL of the CCK-8 reagent was added to each well of the 96-well
plates, which were incubated for 2 h at 37°C. The optical density
(OD) value at 450 nm was measured using a SpectraMax
Absorbance Reader (Molecular Devices, CMax Plus, USA).
RESULTS

Differential Gene Screening
We downloaded the GSE28694 (Miller & Payne grades 4 and 5,
Grade45), GSE28826 (Miller & Payne grades 1 and 2, Grade12)
chip data from the GEO database, which contained 61 samples.
Among them, Grade12 contained 14 samples before and after
chemotherapy; Grade45 contained 8 samples before and 5
samples after chemotherapy.

By comparing Grade12 and Grade45 samples before
chemotherapy, we identified 255 differentially expressed genes,
including 155 upregulated genes and 100 downregulated genes
(Figures 1A, C, D: Table 1 and Table S1). Since Grade45 was the
drug-sensitive group and Grade12 was the drug-resistant group,
it is reasonable to believe that the differentially expressed genes
identified in these two groups of samples before chemotherapy
could represent the difference in their response to drugs;
therefore, we defined these differentially expressed genes as
Frontiers in Oncology | www.frontiersin.org 4
potential drug-resistance genes (PDRGs). By comparing the
samples before and after chemotherapy, we found 61
differentially expressed genes in Grade45, but no differentially
expressed genes in the Grade12 samples (Figures 1B–D; Table 1
and Table S2). These 61 genes could be considered as potential
drug-induced genes (PDIGs).

Functional Enrichment Analysis
Through GO enrichment analysis of the PDRGs, we identified 60
significantly related GO terms (FDR < 0.05, Figure 2A),
including cell cycle, antigen presentation, and glutathione
metabolism. It is worth noting that 33% (20/60) of the GO
term was related to tumor immune response, and 18% (11/60) of
the GO term was related to cell cycle. KEGG pathway
enrichment analysis showed that drug response-related genes
were significantly correlated with the drug metabolism-other
enzymes pathway (FDR < 0.05, Figure 2A). In addition, the
PDIGs intensively enriched cell cycle-related GO functions, as
well as the p53 signaling pathway (Figure 2A). Both the PDRGs
and PDIGs showed a strong enrichment of immune-related
functions, and this result demonstrated the underlying
mechanisms of breast cancer resistance to chemotherapy.

To optimize the identification of potential resistance-related
genes, the random walk method was used to calculate the
correlation between the dysregulated genes and the collection of
known resistance-related genes. Genes that were significantly related
in twoormore setswere extracted as drug resistance-related gene sets
(Potential Set, GGTLC1, IRS1, PRC1) (Figures 2B, C).

Exploring Breast Cancer Chemotherapy
Resistance From the Perspective of the
Immune Microenvironment
Based on the above results, we used the cancer immune cycle and
immune cell infiltration to assess the TIME of the patients
(Figures 3A, B) and the results showed that cancer immune
cycle and immune cell infiltration did not show a significant
difference between the two groups (Figures 3C, D).

Based on the collection of known immune-related genes, the
differences in the TIME characteristics of Grade12 and Grade45
samples were further evaluated. It was found that the MHC Class
I, cytolytic activity, and immuno-costimulators of the Grade12
samples were significantly lower than those in the Grade45
samples. Their reduction was related to the decrease of tumor
antigen presentation and immune cell killing, which may have
contributed to breast cancer chemotherapy resistance.

Building a Predictive Model of Breast
Cancer Chemotherapy Resistance
For each patient, we calculated the resistance-related pathways,
immune characteristics, ABC transporter, cancer stemness, and
optimized resistance-related gene signature scores to construct a
15-dimensional feature matrix (Table 2). A random forest was
used to build a predictive model of breast cancer chemotherapy
resistance. The five-fold cross-validation results showed that the
model could effectively identify patients with drug resistance
(Figure 4A). The results of the feature importance indicated that
March 2022 | Volume 12 | Article 772723
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three of the top 30 features were immune-related features
(Figure 4B), highlighting the potential role of the immune
microenvironment in breast cancer chemotherapy resistance.

External Data Verification of Candidate
Biomarkers Related to Drug Resistance
Three candidate resistance-related genes were identified based
on the discovery data set, including IRS1, PRC1, and GGTLC1.

IRS1 is an important signaling protein that participates in the
regulation of important cancer-related pathways, such as the PI3K/
AKT signaling pathway. Studies have shown that silencing IRS1
could enhance chemotherapy sensitivity in patients with breast and
pancreatic cancer (19, 20). PRC1 is a microtubule-associated
protein that plays an important role in cell mitosis and cell cycle
Frontiers in Oncology | www.frontiersin.org 5
regulation. In liver cancer, PRC1 has been found to be abnormally
associatedwith chemotherapy resistance (21). GGTLC1has not yet
been studied to confirm its association with chemotherapy.

By searching the GEO database and extracting TCGA BRCA
data, a total of five independent verification data sets were
obtained (Table 3). For the TCGA BRCA data, only samples
in which the treatment method was chemotherapy and had data
on drug evaluation were extracted.

In the four GEO independent verification sets, IRS1 was
significantly increased in the drug resistance group, and PRC1
was significantly decreased in the drug resistance group (Figure 5A,
Wilcoxon rank-sum test, P value < 0.05). Although there were no
significant differences in the TCGA data, the trend of expression
change was consistent.
TABLE 1 | Statistics of the number of differentially expressed genes.

Pre-treatment vs. Post-treatment

Group Up Down Total
Grade 12 0 0 0
Grade 45 49 12 61
Grade 12 vs. Grade 45
Group Up Down Total
Pre-treatment 155 100 255
Post-treatment 948 982 1930
March 2022 | Volume 12 | Article 77
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FIGURE 1 | (A) Differentially expressed genes in Grade12 versus Grade45 before chemotherapy. (B) Grade45 differentially expressed genes before and after
chemotherapy. (C) A Venn diagram of each group of samples comparing differentially expressed genes. (D) Comparison of Zscore for differential gene expression,
Grade12 vs. Grade45 on the left and before and after treatment on the right.
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FIGURE 3 | (A, B) Using Cancer Immune Cycle and Immune Cell Infiltration to evaluate the tumor immune microenvironment. (C) CIBERSORT method is used to
analyze the proportion of 22 immune cells infiltration in tumor samples. (D) The ssGESA method is used to calculate the cancer immune circle. ns, no significance.
A B

C

FIGURE 2 | (A) Functional enrichment of genes with potential functions in drug response. (B) Protein interactive networks of differentially expressed genes. (C) Top
50 genes using random walk algorithm (yellow nodes are seed nodes).
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Using the same data processing and calculation methods, the
15-dimensional features of the independent verification set were
calculated and compared for analysis. The results showed that
MHC Class-I (antigen presentation) was downregulated in four
independent verification sets, while the cytolytic marker (T cell
killing) was downregulated in three independent verification sets
(Table 4, Figure 4C and Figures S2–S6).

We then used these data to verify the effectiveness of the model.
Unfortunately, the size of the training sample was limited, and the
performance of the current model was poor (Table 5). In addition,
modeling based on large sample data sets (TCGA, GSE20271, and
GSE25055)didnot improve themodel’s effectiveness,whichmaybe
due to the extreme imbalance between negative and positive
samples (data not shown). TCGA data is based on RNA-seq,
while the data from GEO sources are based on HGU133 chip
data, due to platform differences, and cannot be integrated.
Frontiers in Oncology | www.frontiersin.org 7
Finally, based on the results of five validation data sets and the
support of existing literature, we hypothesized that IRS1 and PRC1
may play an important role in breast cancer resistance. In addition,
all the data showed the important role of the immune
microenvironment in drug resistance, and this phenomenon has
also beenobserved in cancers such as lung cancer and gastric cancer
(22, 23). Moreover, recent clinical studies have shown that
combined immunotherapy and chemotherapy could greatly
improve the overall survival of patients and support the potential
role of immune microenvironment and chemotherapy (24, 25).

In Vitro Cell Experiments Verify That the
Three Genes Are Associated With Breast
Cancer Drug Resistance
SiRNA can significantly knockdown the expression of the
corresponding gene (Figure 5B). Decreased expression of IRS1
C
A

B

FIGURE 4 | (A) The five-fold cross-validation results showed that the model could effectively identify patients with drug resistance. (B) The feature importance results
show that three of the top 30 features are immune-related features (C) Comparison of immune characteristics between Grade 12 and Grade 45. ns, no significance.
TABLE 2 | Features used in random forest.

Category Name Gene Number

Drug Resistance Pathway KEGG_Platinum_drug_resistance 73
KEGG_Antifolate_resistance 31
KEGG_Endocrine_resistance 98
KEGG_ABC_transporters 45
KEGG_Chemical_carcinogenesis 82

Immune Signature MHC Class-I 7
Adhesion Molecules 6
Chemokines 5
Cytolytic Marker 4
IFNg Signature 6
Immuno-costimulators 17
Immuno-inhibitors 12

Other ABC_Transporters 4
Cancer_Stemness 13
Potential_Set 3
March 2022 | Volume 12
 | Article 772723
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increased the resistance of MDA-MB-468 cells to epirubicin and
paclitaxel. In contrast, the decreased expression of GGTLC1 and
PRC1 increased the sensitivity of MDA-MB-468 cells to
epirubicin and paclitaxel (Figure 5C). The cell experiment
results of GGTLC1 and PRC1 were consistent with the
calculation analysis, while the cell experiment results of IRS1
were different from the calculation analysis.
DISCUSSION

We identified 255 differentially expressed genes by comparing
breast cancer chemotherapy-resistant samples with breast cancer
sensitive samples and identified 61 differentially expressed genes
by comparing breast cancer sensitive samples before and after
chemotherapy. Through functional enrichment analysis, we
found most of the differentially expressed genes were related to
tumor immune response. Through the random walk method, we
finally identified that GGTLC1, PRC1, and IRS1 may have
produced breast cancer drug-resistant phenotypes through
immune-mediated pathways. Subsequently, the above results
were also verified through external data sets. We hypothesized
that immune pathways could indeed affect the chemotherapy
resistance of breast cancer.

GGTLC1 is a member of the glutamyl transferase family,
encoding the light chain part of GGT, which is the catalytically
Frontiers in Oncology | www.frontiersin.org 8
active part of the GGT1 protein. It was called GGTL6, GGTLA4
before being named GGTLC1 in 2008 (26). Ovarian cancers
overexpressing GGT1 showed greater resistance to
chemotherapy, especially cisplatin (27) and 5-fluorouracil
(28). Inhibiting the function of GGT1 can significantly inhibit
the metastasis of renal clear cell carcinoma and improve the
sensitivity to chemotherapy (29). Kawakami et al. (30) found
that GGT1 could also be used as a biomarker to distinguish
prostate cancer from benign prostate tumors (30). The
prognosis of breast cancer patients with negative GGT1
expression was better than that of breast cancer patients with
positive GGT1 expression. GGT1 may promote drug efflux,
affect glutathione metabolism and cellular redox status, and
regulate the cell cycle to produce chemotherapy resistance.
Additionally, in lung cancer models, GGT1 promoted the
metabolism of LTC4 to LTD4, which could promote lung
inflammation and tumorigenesis (31).

In hepatocellular carcinoma, GGT1 expression has been
positively correlated with the level of infiltration of CD4+ T
cells, macrophages, and dendritic cells (32). In addition, GGT1
was linked to the T cell receptor signaling pathway. Abnormal
expression of GGT family proteins, including GGT1, could cause
increased oxidative stress within tumor cells, which affects the
TIME and influences the response to chemotherapeutic agents.
Recently, Li (33) found that increased expression of GGT1 in
triple negative breast cancer caused cisplatin resistance by
affecting the hepatic leukemia factor (HLF), a process that may
be closely linked to IL-6 levels in the immune microenvironment
(33). In this complex process, GGT1 interacted with components
of the immune microenvironment to influence TNBC
proliferation, invasion, and platinum resistance.

Protein regulator of cytokinesis 1 (PRC1) encodes a protein
involved in cytokinesis. This protein is expressed at high levels
during the S and G2/M phases of mitosis, but its level drops
sharply when the cell enters the G1 phase. PRC1 has been
A B

C

FIGURE 5 | (A) Comparison of GGTLC1, PRC1, and IRS1 gene expressions in each data set. (B) Knockdown efficiency for GGTLC1, IRS1, and PRC1 were identified by
qRT-PCR analysis. qRT-PCR, quantitative real-time polymerase chain reaction; *P < 0.05, **P < 0.01, ***P < 0.001. (C) Evaluate the cellular sensitivity to chemotherapeutics
of decreased expression of IRS 1, PRC1, and TLC1 by the method of CCK-8. CCK-8: Cell Counting Kit-8, *P < 0.05, **P < 0.01, ***P < 0.001. ns, no significance.
TABLE 3 | Distribution about validation data sample.

Dataset Sensitive Resistant Total

TCGA 166 21 187
GSE20271 26 152 178
GSE25055 57 249 306
GSE22093 28 69 97
GSE23988 20 41 61
March 2022 | Volume 12 | Article 772723
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shown to be a substrate for several cyclin-dependent kinases
(CDK) (34, 35). Wang et al. (21) found that the high expression
of PRC1 in hepatocellular carcinoma mediated 5-fluorouracil
resistance by affecting the cell cycle (21). PRC1 plays an
important role in the carcinogenesis of bladder cancer. The
study results of Kanehira et al. (36) showed that knockdown of
PRC1 expression with specific small interfering RNAs caused a
significant increase of multinuclear cells and subsequent cell
death of bladder cancer cells (36). PRC1 gene knockdown can
reduce the proliferation, metastasis, and multidrug resistance of
ovarian cancer cel ls (37). In previous studies , the
overexpression of PRC1 mediated the early recurrence of
hepatocellular carcinoma through the Wnt/b-catenin
signaling pathway and increased the resistance of HCC to
paclitaxel (38, 39). Additionally, in gastric and lung cancers,
the high expression of PRC1 has often been associated with
early lymph node metastasis and poor prognosis (40, 41).
Previous bioinformatics analyses have revealed that PRC1
was associated with immune invasion of hepatocellular
carcinoma (42).

Insulin receptor substrate 1 (IRS-1) is the first member of the
insulin receptor substrate (IRS) protein family to be identified. It
is located in the cytoplasm and can integrate a variety of cell
biological functions. It is now clearly known that IRS1 is the
main substrate of insulin-like grow factor 1 receptor (IGF-1R)
(43, 44). IRS1 itself has no kinase activity; however, after
stimulation by upstream signals, multiple tyrosine kinase sites
are phosphorylated, which in turn affect multiple downstream
signaling pathways. The two most studied are the PI3K/Akt/
mTOR and the MAPK pathways, which can ultimately affect the
invasion and metastasis of tumors (45).

Our computational analysis found that increased expression
of IRS1 may lead to breast cancer resistance, which is
inconsistent with the results of previous cell experiments. In
fact, the results of research on the effect of IRS1 on drug
resistance were not consistent, and most studies showed that
Frontiers in Oncology | www.frontiersin.org 9
the decline in IRS1 expression promoted the development of
breast cancer drug resistance. In addition, the upregulation of
IRS1 expression promoted the activation and proliferation of
CD4+ T cells and the secretion of IFN-g (46). The expression of
IRS1 in breast cancer cells varies with tumor invasiveness.
Differential expression may affect the prognosis of breast
cancer patients. Further, IRS1 sensitized BC cells to specific
chemotherapeutic drugs, and decreased expression of IRS1
enhanced the resistance of BC cells to paclitaxel, etoposide,
and vincristine, but did not change the sensitivity of BC cells
to doxorubicin, camptothecin, and daunoblastina (47). This may
be one of the reasons why the results of our cell experiments were
inconsistent with the results of the computational analysis.
Another reason is the computational analysis of data from
clinical samples of patients was affected by many factors, not
just the expression levels of the genes, which also reflects the
limitations of bioinformatics analysis.

Synthetically, both GGTLC1 and IRS1 can affect the levels of
cel lular components and cytokines in the immune
microenvironment. GGTLC1 affected IL-6 levels and
influenced changes in the proportion of various cells, including
CD4+ T cells and macrophages in the TIME. In addition,
GGTLC1 was also closely related to oxidative stress, ROS
production, and tumor cell proliferation. Abnormal expression
of PRC1, a protein molecule that plays a key role in cell division,
has been linked to the proliferation of tumor cells and even
normal cells, and was also thought to affect the process of
oxidative stress and participate in the Wnt/b-catenin signaling
pathway. IRS1 is closely related to the immune microenvironment
and can affect CD4+ T cells and IFN-g levels, and IRS1 was
associated with resistance to multiple chemotherapeutic agents in
breast cancer cells. We therefore hypothesized that the roles of
these three may be interlinked, with GGTLC1 and PRC1 sharing a
common role for cellular oxidative stress and cell proliferation and
division. GGTLC1 and IRS1 could jointly influence changes in
components of the immune microenvironment, with all three
associated with a survival benefit for patients. One of the possible
reasons for this is through the influence of chemotherapy
resistance, an aspect that requires more in-depth research.
CONCLUSION

We discovered three genes: PRC1, GGTLC1, and IRS1 that may
mediate breast cancer chemotherapy resistance through
immune pathways and found that immune regulation
TABLE 5 | Comparing the resistant group and the sensitive group, the immune-
related characteristics are downregulated.

Dataset AUC_ROC AUC_PR

TCGA 0.6757028 0.2521503
GSE20271 0.6690283 0.9203683
GSE25055 0.6144986 0.8562434
GSE22093 0.5523349 0.7536336
GSE23988 0.5792683 0.6485242
TABLE 4 | Comparing the resistant group and the sensitive group, the immune-related characteristics are downregulated.

Features Discovery Set TCGA GSE20271 GSE22093 GSE25055

MHC_Class-I Down Down Down Down Down
Adhesion Molecules Down
Chemokines Down Down Down
Cytolytic Marker Down Down Down
IFNg Signature Down Down Down
Immuno- costimulators Down
Immuno- inhibitors Down Down
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disorders may be some of the key factors in the survival of
breast cancer patients.
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