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In brief

Multiplex imaging of tissues allows the

simultaneous imaging of multiple

biomarkers on a tissue specimen of

interest and is a critical tool for clinical

cancer diagnosis and prognosis. A

common way to visualize and better

understand suchmultiplexed images is to

utilize dimensionality reduction (DR)

methods, where each image is abstracted

as a point in the reduced space. We

developed Mistic to enable the

simultaneous viewing of multiple 2D

multiplexed images by combining DR,

image processing, and GUI

programming.
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THE BIGGER PICTURE A crucial component of translational research is in exploiting tumor tissue for diag-
nostic or prognostic purposes. We believe this can best be achieved through a deeper understanding of the
complex ecology of a tumor tissue and the spatiotemporal relationships between its cellular and microen-
vironment components. Multiplexed images from patient samples facilitate this understanding. We present
Mistic, an open-source multiplexed image t-SNE viewer that enables the simultaneous viewing of multiple
2D multiplexed images to provide an overall visual preview of the entire dataset. This allows an exploratory
understanding of underlying patterns in the data such as the specific expression pattern of a given
biomarker across all images. Currently, there is no free tool to generate such image t-SNEs. Mistic aims
to fill this gap by providing an easy to implement tool with simple functionality to view multiple images at
once. Mistic supports images from Vectra, CyCIF, t-CyCIF, and CODEX.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Understanding the complex ecology of a tumor tissue and the spatiotemporal relationships between its
cellular and microenvironment components is becoming a key component of translational research, espe-
cially in immuno-oncology. The generation and analysis of multiplexed images from patient samples is of
paramount importance to facilitate this understanding. Here, we present Mistic, an open-source multiplexed
image t-SNE viewer that enables the simultaneous viewing of multiple 2D images rendered using multiple
layout options to provide an overall visual preview of the entire dataset. In particular, the positions of the im-
ages can be t-SNE or UMAP coordinates. This grouped view of all images allows an exploratory understand-
ing of the specific expression pattern of a given biomarker or collection of biomarkers across all images,
helps to identify images expressing a particular phenotype, and can help select images for subsequent
downstream analysis. Currently, there is no freely available tool to generate such image t-SNEs.
INTRODUCTION

Multiplex imaging of tissues, which allows the simultaneous

imaging of multiple biomarkers on a tissue specimen of inter-

est, is a critical tool for clinical cancer diagnosis and prog-

nosis. Historically, patient tissue samples stained with hema-

toxylin and eosin have been used as the gold standard for

tumor diagnosis by indicating the presence of tumors and
This is an open access article und
their grade.1–3 With the advent of immunohistochemical

(IHC)4 staining and the flourishing of multiplexed imaging ap-

proaches that leverage IHC, immunofluorescence (IF), fluores-

cence in situ hybridization (FISH),5,6 multiplexed ion beam im-

aging (MIBI),7 cyclic labeling such as co-detection by indexing

(CODEX),8 cyclic immunofluorescence (CyCIF),9 and imaging

mass cytometry (IMC),10 there is a wealth of potential data

to be gleaned from a single section of tissue. Biomarkers
Patterns 3, 100523, July 8, 2022 ª 2022 The Author(s). 1
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Table 1. Comparison of Mistic with commercial and open-source imaging software

# Software Image type

Multiple image

viewer (M)/stack

montage (S)a

Render images

using t-SNE

coordinates

Render images

randomly

Open

source

Image

zoom

Image

analysisb

1 Mistic 2D multiplexed

images

both U U U Uc 7

2 Imaris11 3D/4D

microscopy

images

M 7 7 7 U U

3 Amira12 2D-5D CT, MRI,

3D microscopy,

S 7 7 7 U U

4 Halo13,14 2D multiplexed

images

S 7 7 7 U U

5 Volocity29,30 3D microscopy

images

S 7 7 7 U U

6 ImageJ15 2D multiplexed

images

S 7 7 U U U

7 CellProfiler16 2D multiplexed

images

both 7 7 U U U

8 V3D17,31 3D microscopy

image stacks

S 7 7 U U U

9 BioImageXD18 microscopy

images

S 7 7 U U U

10 Icy19 2D-5D CT, MRI,

3D microscopy

S 7 7 U U U

11 FIJI20 2D multiplexed

images

S 7 7 U U U

12 QuPath21 2D multiplexed

images

S 7 7 U U U

13 ml4a32 2D images Mf U 7 U Uc 7

14 Mirador33 2D images Md,f 7 7 U U 7

15 OpenSeaDragon

(OSD)34
2D images Mf 7 U U U Ue

Currently available image analysis software that allow single multiplexed images to be viewed and analyzed, compared with Mistic that allows multiple

multiplexed images to be viewed simultaneously, either as an image t-SNE, grid view, or using random coordinates. Mistic has the potential to be in-

tegrated into these existing image analysis pipelines as a first step to generate an all-image preview.
aMultiple image viewer: if the images are multiplexed, wemean that each image is a multichannel image itself, unlike a single multichannel image being

visualized with its individual channels separate, which we refer to as stack montage. If the images are not multiplexed but just single 2D images, then

multiple image viewer would mean viewing multiple of these single 2D images. See footnote (f).
bWe refer to image filtering functionalities such as, but not limited to, adjusting brightness, luminosity, sharpness, or quantitative image analysis such

as detecting and measuring cells (segmentation).
cZooming in and out is possible over the entire canvas consisting of multiple images, although individual images cannot be zoomed in or out.
dLimited to two images placed side by side.
eOnly image filtering (https://pages.nist.gov/OpenSeadragonFiltering/).
fNote that here the multiple images consist of multiple single 2D images (not multiplexed).
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OPEN ACCESS Descriptor
can be observed and quantified with their tissue context

completely conserved. Due to the multidimensional nature of

the data from these multiplexed images, analysis requires

computational pipelines to both interrogate and study how

the tissue architecture, spatial distribution of multiple cell phe-

notypes, and co-expression of signaling and cell cycle

markers are related and what patterns might exist.

There are several commercial software platforms available for

quantifying and analyzing multiplex image data, for example,

Imaris (from Oxford Instruments),11 Amira (from Thermo Fisher

Scientific),12 and Halo (from Indica Labs).13,14 There are also

open-source software platforms, for instance, ImageJ,15
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CellProfiler,16 V3D,17 BioImageXD,18 Icy,19 FIJI,20 and QuPath21

for the analysis of two dimensional (2D) biological images. Most

of these platforms allow for a single 2D image to be examined at

any one time.

A common way to visualize and better understand multidi-

mensional data, such as that coming from multiplex images,

is to utilize dimensionality reduction methods such as uni-

form manifold approximation and projection (UMAP)22 or

t-distributed stochastic neighbor embedding (t-SNE),23 where

each image is abstracted as a dot in the reduced space.

These approaches are especially useful when combined with

clustering methods (e.g., Gaussian mixture models

https://pages.nist.gov/OpenSeadragonFiltering/


Figure 1. Viewing multiple NSCLC multiplexed images simultaneously

Response 1 and Response 2 patients have significantly different cellular compositions.

(A) 2D t-SNE plot showing three clusters annotated with the differentially expressed markers per cluster. Clusters are obtained using the tumor-immune cell

counts at the tumor border where the borders are estimated using convex hulls approximations.

(B) Same t-SNE as in (A) depicting the disease response spread.

(C) Image t-SNE using same t-SNE coordinates as in (A) illustrating the gradient of immune cells across images. A higher colocalization of immune cells (shown in

green) is seen for Response 1 patients.
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[GMM],24,25 Louvain,26 and Leiden27) that can highlight key

aspects of the data. While utilizing these approaches in our

own work dealing with multiplexed images of non-small cell

lung cancer (NSCLC) tumors, we realized that there could

be a significant benefit to visualizing the actual tissue samples

behind a UMAP or t-SNE scatter projection, thus giving rise to

an ‘‘image t-SNE.’’ In our specific application, inspection of

the images that constituted each spatially segregated cluster

revealed cluster-specific biomarker patterns that, along with

the tumor phenotypes, could be mapped succinctly to the

therapy response of each patient. Thus, the image t-SNE

rendering aided both our understanding and intuition that

there exist distinct tumor patterns that guide the clustering,

and that these patterns can potentially inform why a specific

therapeutic response emerged, leading to further biological

insights.

Motivated by the usefulness of the image t-SNE in our work

and in our recent analysis of endometrial cancer,28 which we

discuss in section tissue microarray cores for endometrial can-

cer, we have developed Mistic, an open-source multiplexed im-

age t-SNE viewer that enables the simultaneous viewing of

multiple 2D images rendered using multiple layout options to

provide an overall visual preview of the entire dataset. In partic-

ular, the positions of the images can be taken from t-SNE or

UMAP coordinates. This grouped view of the images further

aids an exploratory understanding of the biomarkers’ specific

expression pattern across all images, helping to identify images
expressing a particular phenotype or to select images for sub-

sequent downstream analysis. Currently there is no freely avail-

able tool to generate such image t-SNEs (see Table 1). Soft-

ware such as BioImageXD and Icy offer do offer a ‘‘gallery’’

or ‘‘stack montage’’ option, where a multichannel image is split

into its individual channels to be viewed at once. Mistic is

distinct in that multiple multichannel images can be processed

and rendered at once using either user-pre-defined coordinates

(e.g., from t-SNE or UMAP analysis), random coordinates, or

using a grid layout. Mistic is agnostic as to how the t-SNE/

UMAP 2D coordinates are generated by the user. Since

t-SNE/UMAP rendering of a dataset is closely aligned to the

specific research question, Mistic allows the user to utilize

either t-SNE or UMAP projections—or newer ones as they

emerge—based on the user’s specific question.

In section image t-SNE-based visualization of multiplexed im-

ages from a NSCLC cohort shows marker expression clustering

across different patient response groups, we illustrate the impor-

tance of visualizing multiplexed images using an image t-SNE in

the context of NSCLC. In section Mistic: an open-source multi-

plexed image t-SNE viewer, we describe Mistic and its features,

in more detail. We run Mistic on several datasets using different

data formats and describe these results in section generaliz-

ability and scalability experiments. In section discussion, we

compare Mistic to alternative approaches and conclude with

future work. Further details of the code and data can be found

in section data and code availability.
Patterns 3, 100523, July 8, 2022 3



Table 2. Summary of the different datasets Mistic is tested on

Dataset Format Dimensions Size per image

Number of

images

Thumbnail

size per TIFF

Image

generated

by

NSCLC FoVs 7-marker TIFF 7 3 1,344 3 1,008 10–50 MB 92 <100 kB Perkin Elmer

Vectra

Lung cancer lymph

node38–40
OME-TIFF 44 3 10,101 3 9,666 13 GB 70 <22 MB t-CyCIF

Lung cancer primary38–40 OME-TIFF 44 3 14,447.5 3

11,100.5

322 MB per

channel (21.22

GB total file size)

44 slides <10 MB t-CyCIF

Endometrial

cancer28
PNG (generated

from 7-marker TIFF)

950 3 1,200 250–1 MB 210 <300 kB Perkin Elmer

Vectra

Human FFPE tonsil41 OME_TIFF 32 3 6,720 3 5,040 67.7 MB per

channel (2.17

GB total file size)

32 slides <3.7MB CODEX

Human FFPE breast

adenocarcinoma41
OME_TIFF 64 3 5,040 3 9,408 6.07 GB 88 8.2 MB CODEX

Human FFPE tonsil

demo data

QPTIFF 16 3 2,760 3 2,070 2.45 GB 105 1.1 MB CODEX

Human colorectal

carcinoma42
OME_TIFF 4 3 1,344 3 1,792 7.4 MB 42 �600 KB CyCIF

Overview of different datasets Mistic has been tested on.
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RESULTS

Image t-SNE-based visualization of multiplexed images
from an NSCLC cohort shows marker expression clus-
tering across different patient response groups
We computationally analyzed 92 7-stain PerkinElmer Vectra im-

ages from nine patients with advanced/metastatic NSCLC with

progression.35 They were treated with an oral HDAC inhibitor

(vorinostat) combinedwith a PD-1 inhibitor (pembrolizumab). Tu-

mor biopsies were collected from all patients both pre- and on-

treatment. Of the nine patients, four qualified as ‘‘Response 1’’

and five as ‘‘Response 2,’’ where responses are based on how

the tumors have progressed per the RECIST classification.36

There are 34 images from patients having Response 1 and 58 im-

ages from patients classified as Response 2. Note that we have

labeled the clusters, markers, patients, and responses in a

generic fashion, since the biological conclusions arising from

these data are not the purpose of this work.

We extracted the cell segments per field of view (FoV), built a

count matrix with cells as rows and markers as columns, and

clustered the count matrix to identify heterogeneous cell types,

in particular tumor and immune cells. From these cell types,

we automatically demarcate tumor-rich regions, across images.

To further quantify the tumor-immune cell colocalization at the

tumor border, we cluster the tumor-immune cells at the tumor

border using a GMM.24,25 The input matrix to the GMM consists

of cells (as rows) and their marker distribution as features (col-

umns). The rows of the input matrix are ordered based on the

cluster assignments, and the Z score of the marker expression

(columns) is averaged over vectors per cluster representing a

cell type (rows). Those markers that have a higher Z score per

cluster are identified as the differentially expressed markers for

that cluster. The clusters are visualized using a standard 2D t-

SNE plot where each point represents an image (Figures 1A
4 Patterns 3, 100523, July 8, 2022
and 1B). The differentially expressed markers for each of the

three clusters are shown in Figure 1A, and the corresponding pa-

tient responses of either Response 1 or Response 2 categories,

which are known a priori, are depicted in Figure 1B. We see that

there is a higher colocalization of different sets of markers for

Response 1 and Response 2 patients, respectively (Figures 1A

and 1B), indicating underlying structural differences between

different patient response groups.

To better understand how these clusters relate to the actual

images, we generated an image t-SNE (Figure 1C) where each

dot in the t-SNE of Figures 1A and 1B is replaced with its corre-

sponding multiplexed image. This arrangement of images pro-

jected as an image t-SNE clearly highlights the difference in im-

mune cell abundance across Response 1 and Response 2

patient groups.

Mistic: An open-source multiplexed image t-SNE viewer
In order to facilitate the generation and manipulation of image t-

SNEs, we developed an image t-SNE viewer called Mistic (multi-

plexed image t-SNE viewer). Mistic allows the simultaneous

viewing of multiple multiplexed images, where images can be ar-

ranged using either pre-defined coordinates (e.g., t-SNE or

UMAP), randomly generated coordinates, or a grid view. Mistic

is written in Python and uses Bokeh,37 which is a Python library

for creating interactive visualizations for modern web browsers,

along with JavaScript. Mistic has the capability to load and

display multiple multiplexed images along with the metadata

for the images. In Table 2, we provide the different imaging for-

mats and number of images Mistic can be scaled to. It produces

publication-ready outputs that can be saved in PNG format.

Additionally, it can be used as the initial image viewer for explor-

atory image analysis before switching to more comprehensive

(but single-image) viewers such as ImageJ,15 Fiji,20 and

QuPath.21



Figure 2. Mistic GUI

(A) User-input panel where imaging technique choice, stack montage option, or markers can be selected, images borders can be added, new or pre-defined

image display coordinates can be chosen, and a theme for the canvases can be selected.

(B) Static canvas showing the image t-SNE colored and arranged per user inputs.

(C) Live canvas showing the corresponding t-SNE scatterplot where each image is represented as a dot. The live canvas has tabs for displaying additional

information per image. Metadata for each image can be obtained by hovering over each dot.

ll
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Mistic provides many of the standard image-viewing features

that users have come to rely on and expect, through a user-

input panel and two canvases. The user-input panel (Figure 2A)
Figure 3. Image layout in Mistic’s static canvas
(A–C) Based on user-defined t-SNE coordinates; (B) vertical rows; (C) randomly
allows the user to select between (1) the stack montage view

where all the markers of a single multiplexed image can be

viewed simultaneously or (2) the multiple image view. For the
placed.

Patterns 3, 100523, July 8, 2022 5



Figure 4. Shuffle option provided by Mistic

(A and B) Mistic can shuffle the order in which im-

ages are rendered on the static canvas. Examples of

images being shuffled between two renderings

(A) and (B) are marked in dotted circles.

ll
OPEN ACCESS Descriptor
latter, user can choose markers for rendering the multiplexed

images, optional image borders, the arrangement of the images

by coordinates or grid, and the option to shuffle the order of im-

age rendering for overlapping images. An overall color theme

for Mistic can be chosen from black, blue, and gray. The user

can also choose the imaging technique used to generate the

images such as Vectra, CyCIF, t-CyCIF, or CODEX

(PhenoCycler). Mistic further provides two canvases for image
6 Patterns 3, 100523, July 8, 2022
t-SNE rendering: a static canvas showing

the image t-SNE with all the multiplexed

images (Figure 2B), which is generated

based on user preferences, and a live

canvas depicting the corresponding t-

SNE scatterplot that uses the metadata

from the images, where each image is

represented as a dot (Figure 2C). We

explain the two canvases in detail in the
following subsections (image t-SNE rendered through the static

canvas and metadata rendered through the live canvas).

Image t-SNE rendered through the static canvas

To view the multiplexed images simultaneously, Mistic offers the

user the ability to choose from three different image layouts (see

Figure 3): (1) t-SNE layout based on user-pre-defined coordinates;

(2) vertical grid arrangement of all images; (3) random layout based

on coordinates that Mistic generates. Depending on the specific
Figure 5. Live canvas of Mistic rendering the

t-SNE scatterplot with different image meta-

data for our NSCLC example

(A–D) The metadata consists of response category

(A), treatment phase (B), cluster annotations based

on marker expression (C), and patient IDs (D).



Figure 6. Hover window

An example hover window that opens with the hover tool while mousing over a

t-SNE dot on any of the live canvases (here shown for ‘‘Cluster annotations’’).

This live canvas is for the stack montage option discussed in section t-CyCIF

image of primary lung squamous cell carcinoma.

ll
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layout chosen, the live canvas will be updated accordingly (see

next section metadata rendered through the live canvas). The

user can also opt to shuffle the front-to-back order in which im-

ages are rendered, as shown in Figure 4; this is particularly useful

when there are many overlapping images. These options can be

chosen from the user-input panel (Figure 2A).

Additional options available to users include (1) choosing the

canvas color theme (black, gray, or dark blue) and (2) applying

borders around images to highlight specific metadata about

the images. In Figure 2B, for the example from our NSCLC

cohort, the borders indicate images belonging to either

Response 1 (yellow border) or Response 2 (red border) patients.

In Figure S1, we show image borders colored based on other

metadata provided by the user such as treatment, cluster anno-

tations, or patient IDs.

The user has access to the overall image being rendered in the

static canvas at code/image_tSNE_GUI/static as .png files.

Metadata rendered through the live canvas

The live canvas of Mistic offers different metadata renderings of

the multiplexed images through t-SNE scatterplots where every

multiplexed image is a dot on the scatterplot (Figure 5). In our

NSCLC example, Mistic renders the t-SNE scatterplot based

on one of the following:

(1) response category of the patients (e.g., based on RECIST

classification)

(2) treatment phase (such as pre-treatment or during

treatment)
(3) cluster annotations that are based on the differential-

expression analysis of the markers

(4) patient distribution

This metadata information may be provided by the user, using

appropriate folders provided in Mistic’s code repository, avail-

able here: https://github.com/MathOnco/Mistic. If no metadata

is provided, the t-SNE scatterplot without any color coding will

be rendered.

Hover tool for image identification. In order to identify each im-

age in the static canvas, we have a hover functionality built into the

live canvases. Hovering over each image provides information

such as nameof the image, nameof the corresponding thumbnail,

image coordinates, and all metadata per image (Figure 6).

Processing user inputs from Mistic GUI

Image processing based on markers selected. Each user-

selected marker channel of the multiplexed image is denoised

separately. We use the scikit-image43 and SciPy44 libraries for

Python.

1. We usemedian filtering, which is a nonlinear digital filtering

technique, often used to preserve edges while removing

noise and improving morphology detection. Function

used is scipy.ndimage.median_filter().

2. Next, we perform Otsu thresholding, which is an adaptive

thresholding for image binarization. This calculates a dis-

tribution for the pixel levels on each side of the threshold,

i.e., to demarcate pixels that either fall in foreground or

background. The aim is to automatically find the threshold

value where the sum of foreground and background distri-

bution is at its minimum. Function used is threshold_otsu()

from scikit-image.

3. Based on the threshold, we close the gaps in the image to

refine morphological boundaries. Function used is clos-

ing() from scikit-image.

4. To sharpen the morphological boundaries, we clear the

boundaries using clear_border() from scikit-image.

5. The pixel intensities in each channel are then upweighted

to preserve morphology.

The cleaned channels are then combined to form the cleaned

multichannel image. The denoised image is stored as an array in

the unsigned byte format (‘‘uint8’’) to enable easy format

conversion.

These are performed in generate_image_tSNE() in main.py in

Mistic’s code repository.

Inbuilt dimensionality reduction and Bayesian clustering. Mistic

will generate both 2D t-SNE coordinates and cluster the images,

if the t-SNE coordinates or cluster labels are not provided by

the user. Each multiplexed image is abstracted to a vector of

length 6 where the entries of the vector are the means of the initial

six channels. These vectors are stacked to create a matrix that

is input to a t-SNE generation function (sklearn.manifold’s

tSNE()) and subsequently clustered using sklearn.mixture’s

BayesianGaussianMixture().

Border option. An imagewith a border is created by pasting the

cleaned image onto a rectangle with a slightly larger height and

width than the cleaned image. The rectangle is filled with a color

based on the metadata provided by the user. These are per-

formed in generate_image_tSNE() in main.py.
Patterns 3, 100523, July 8, 2022 7
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Figure 7. Stack montage from Mistic for the primary lung t-CyCIF data38–40 with 44 markers

(A) The static canvas shows all 44 markers, and the live canvas shows the t-SNE scatterplot. We identify the keratin channel using the live canvas (shown with

hover tool details) and highlight the keratin thumbnail in yellow in the static canvas.

(B) The zoomed-in keratin thumbnail (file name obtained from the hover tool) and (C) the t-CyCIF image for keratin as viewed using Minerva.47 Minerva provides

the single marker views for 12 markers, whereas with Mistic, we can view all 44 channels as a montage.

ll
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Thumbnail generation. A thumbnail is a concise representation

of the original multiplexed image rendered based on user selec-

tions. Thumbnails are created for all multiplexed images by

downscaling and resizing the height andwidth of the cleaned im-

age; these are also saved in the code/output_tiles folder as .png

files. These are performed in generate_image_tSNE() in main.py.

There is a provision within the code to generate weighted thumb-

nails, if required, where weights can be added for each marker

channel to differentiate between, for instance, immune markers

and tumor markers.

Random co-ordinate creation. To generate a set of non-clus-

tered random sample of 2D points, we use a modified version

of the ‘‘Poisson disc sampling’’ approach.45,46 These are per-

formed in get_cell_coords(), get_neighbors(), point_valid(), and

get_point() in main.py.

Finally, the thumbnails are pasted onto a larger 2D image that

gets rendered onto Mistic’s static canvas where the thumbnails

are positioned based on pre-defined coordinates (e.g., t-SNE or

UMAP), randomly generated coordinates, or as vertical grids.

Stack montage

For a single multiplexed image, Mistic provides the user with a

stackmontage viewmade up of the individual markers (Figure 7).

The user can opt for this to visualize and compare the individual

marker channels, explore markers that are visually similar, and

detect any potential anomalies when imaging certain marker

channels. Note that software such as ImageJ and FIJI provide
8 Patterns 3, 100523, July 8, 2022
this option via a plugin along with further image-adjusting func-

tionalities (e.g., brightness, sharpness).

Bokeh plot tools

Each Mistic canvas uses the interactive Bokeh toolbar to save

plots, select regions, and change plot parameters such as

zoom level, reset, pan, etc. Figure 8 shows the set of plot tools

used. Further documentation of the Bokeh toolbar and how to

use it can be found here: https://docs.bokeh.org/en/latest/

docs/user_guide/tools.html.

Generalizability and scalability experiments
t-CyCIF image of lung adenocarcinoma metastasis to

lymph node

To show the generalizability of Mistic, we use t-CyCIF data

from lung adenocarcinoma metastasized to the lymph

node.38–40 The image is in OME-TIFF format,48 13 GB in size

with dimensions 10,101 3 9,666, and it has 44 marker chan-

nels. To simultaneously test Mistic for scalability, we created

duplicates of this image. Figure 9A shows the Mistic static

canvas where 40 duplicate t-CyCIF images with six markers

(CD45, keratin, a-SMA, FoxP3, PD-1, PD-L1) are rendered in

rows. The zoomed-in composite image thumbnail is shown in

Figure 9B with the corresponding composite image as seen

in Minerva47 for five markers (CD45, IBA1, keratin, a-SMA,

DNA) (Figure 9C). Mistic allows the user to choose any number

of markers for simultaneous viewing, while Minerva allows up to

https://docs.bokeh.org/en/latest/docs/user_guide/tools.html
https://docs.bokeh.org/en/latest/docs/user_guide/tools.html


Figure 8. Interactive Bokeh plot tools used in Mistic
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five markers. In Figures S2–S4, Mistic is shown on 50, 60, and

70 image repeats, respectively, where images are either

rendered in rows or randomly.

t-CyCIF image of primary lung squamous cell carcinoma

For a single multiplexed image, Mistic provides the user a stack

montage view made up of the individual markers. In Figure 7A,

we show this option for the t-CyCIF image on primary lung squa-

mous cell carcinoma38–40 in OME-TIFF format for all 44 marker

channels. We highlight the keratin channel in Figure 7B and

show the corresponding channel using Minerva47 (Figure 7C).

Minerva provides single marker views for 12 markers, whereas

Mistic renders all 44 channels as a montage.

Tissue microarray cores for endometrial cancer

A recent study on endometrial cancer28 explored the effects of co-

ordinated humoral response (from plasma cells) and cellular im-

mune responses (from T and B cells) in the progression of four

different human endometrial cancer subtypes: clear cell carci-

noma, serous, endometrioid type high grade, and endometrioid

type low grade. These effects were studied by investigating the

spatial colocalization and co-expression of polymeric immuno-

globulin receptor (pIgR) by tumor cells with immunoglobulins A

andG (IgA, IgG) secreted byB cells. The imaging data in this study

consisted of 210 tissue microarray (TMA) cores from endometrial

tumor samples stained for plasma cells, B cells, IgA, IgG, and
pIgR. Each TMA core was available as a 7-marker TIFF file from

which we quantify the number of cells coexpressing pIgR (blue),

IgA (black), and IgG (pink) over tumor beds and produce a .png

file for each core depicting cells with colocalized markers. We

use Mistic to visualize these TMA cores arranged in rows (Fig-

ure 10). Next, we construct a 210 3 5 count matrix where each

row is a core and eachcolumnentry in a rowconsists of the counts

for eachmarker per core. Thismatrix is clustered using a GMM. In

Figure 11A, we see the clusters and corresponding t-SNE scatter-

plot on the live canvas and the image t-SNE rendered usingMistic.

We also show representative cores fromeach of the three clusters

that are high in pIgR, IgA, and IgG. The image t-SNE clearly dis-

plays the presence of marker variations across the clusters. For

example, it is evident that cores present at the extremities of the

t-SNE branches highly express one of pIgR, IgA, or IgG. This

was additionally confirmed by plotting the marker distribution

spread on the t-SNE scatterplot (Figure 11B). Further, by visual in-

spection of the image t-SNE, we note that pIgR (blue) was more

abundant than IgG (pink) followed by IgA (black). Comparing and

visualizing the relevant cores throughMistic in thismannerempha-

sized that the cells colocalizing pIgR and IgA were sparser than

cellswithpIgRand IgG,and thisguided furtherdownstreamspatial

analysis to take the phenotypic sparsity into account. It was also

evident that the four cancer types expressed these marker coloc-

alization patterns similarly (Figures S5A and S5B). These insights

derived from Mistic combined with detailed statistical analysis

helped reinforce the findings in the study that IgA was a key player

in predicting survival and that immuneprotection, leading to better

survival, was associated with tumors with pIgR + IgA and, to a

lesser extent, pIgR + IgG.

CODEX (PhenoCycler) tumor images

We generate a stack montage of all 32 channels of the CODEX

(PhenoCycler) Human FFPE Tonsil data41 (Figure S6). We also

use 88 duplicate images of the 64-channel CODEX Human

FFPE breast adenocarcinoma and test Mistic on seven chan-

nels: Keratin14, FoxP3, CD34, CD8, CD3e, CD68, and perlecan

(Figure S7). Further we testedMistic on 105 copies of the unpub-

lished CODEX 16-channel multiplex pyramidal tiff (QPTIFF) tonsil

dataset that was provided by Akoya Biosciences (Figure S8).

QPTIFF is a Vectra-compatible format.49

CyCIF images of colorectal carcinoma

We use three CyCIF images from colorectal carcinoma.42 The

images are in OME-TIFF format,48 7 GB in size with dimensions

1,344 3 1,792, and have four marker channels. Figure S9A

shows the Mistic static canvas where 14 duplicates of each of

the three CyCIF images (DAPI, CD3, CD4, CD8, CD20, CD68,

FoxP3) are rendered randomly, and Figures S9B–S9D are the

composite thumbnails generated by Mistic for the three CyCIF

images.

In Table 2, we summarize the different datasets, the data for-

mats, and dimensions used in this section to test Mistic for

generalizability and scalability.

DISCUSSION

Understanding the complex ecology of a tumor tissue and the

spatiotemporal relationships between its cellular and microenvi-

ronment components is becoming a key component of transla-

tional research, especially in immuno-oncology. The generation
Patterns 3, 100523, July 8, 2022 9



Figure 9. Mistic tested on the 44-channel lung adenocarcinoma lymph t-CyCIF data38–40

(A) The static canvas shows 40 repeats of the lung t-CyCIF image, arranged in rows.

(B) The zoomed-in composite image thumbnail and (C) the t-CyCIF image as viewed using Minerva.47 Minerva provides the composite image with five markers

(CD45, IBA1, keratin, a-SMA, DNA), whereas Mistic gives the composite image using six markers (CD45, keratin, a-SMA, FoxP3, PD-1, PD-L1).
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and analysis of multiplexed images from patient samples is of

paramount importance to facilitate this understanding. In Table 1,

we highlight different image viewers currently available as open-

source or commercial software. While most software can handle

the visualizing and processing of a single multiplex or microscopy

image, to our knowledge, there exists no current image viewer al-

lowing the simultaneous preview of multiple multiplexed images,

rendered using t-SNE coordinates or random coordinates. Mistic

does not provide additional image processing capabilities such as

adjusting images for brightness, sharpness, etc., or detecting ob-

jects (segmentation), since Mistic was built with the motivation of

providing a preliminary all-image view to aid in better informing

quantitative downstream analysis such as identifying spatial pat-

terns across the tumor-immune environment (sections image t-

SNE-based visualization of multiplexed images from a NSCLC

cohort shows marker expression clustering across different pa-

tient response groups and tissuemicroarray cores for endometrial

cancer) and in visualizing specific marker channels (section t-Cy-

CIF image of primary lung squamous cell carcinoma). Using the vi-

suals from Mistic, selected single multiplexed images can be

further analyzed using established software in Table 1. Software

such as ml4A,32 Mirador,33 and OpenSeadragon34 currently do

not cater to 2D multiplexed images. Mistic aims to fill this gap

by providing this simple functionality to view multiple images at

once, while also giving users the option to view images based

on a set of user choices. In our test runs using 92 images (with

dimension 1,024 x 1,024 pixels), Mistic takes under a minute to

process and render the images according to the user options

available (for user options, see section image t-SNE rendered

through the static canvas and Figure 2A).
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As part of future work, a few potential improvements will be

introduced to Mistic. Once a set of images are identified using

Mistic, we would like to render those images separately in the

live panel. This gives the user an additional perspective to refine

the selected images for further analysis. We also hope to inte-

grate Mistic into one of the open-source software viewers listed

in Table 1. This would require the development of an additional

framework in React JavaScript,50 which is the single largest

user interface framework.

Through our generalized examples of NSCLC (consisting of 92

7-marker Vectra TIFF images from nine patients), lung adenocar-

cinoma (70 44-marker t-CyCIF OME-TIFF images), colorectal

carcinoma (42 4-marker CyCIF OME-TIFF images), breast

adenocarcinoma (88 64-marker CODEX OME-TIFF images),

tonsil data (105 16-marker CODEX QPTIFF images), and endo-

metrial cancer (210 PNG images from 107 patients), we have

demonstrated the functionality and practicality of Mistic. Our

aim is that Mistic will be used as a first step to viewing multi-

plexed images simultaneously. This all-image visual preview

should facilitate preliminary insights into possible marker

expression patterns, aiding downstream image analysis for pre-

dicting disease progression and identifying clinical biomarkers.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, Alexander R. A. Anderson (alexander.

anderson@moffitt.org).

mailto:alexander.anderson@moffitt.org
mailto:alexander.anderson@moffitt.org


Figure 10. Mistic renders 210 tissue microarray (TMA) cores of endometrial cancer28 arranged in rows

Each core depicts pIgR on tumor cells (blue), IgA (black), IgG (pink), plasma cells (red), additional B cells (green), and unstained cells (gray). Each core has a border

that matches the cluster it belongs to (see the Cluster Annotations live panel).
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Materials availability

This study did not generate new samples.

Data and code availability

Section 1: Data

d The t-CyCIF lung data are publicly available.38–40

d The CODEX (PhenoCycler) data are publicly available.41

d The Akoya 16-plex multiplex file format (QPTIFF) tonsil demo dataset for

CODEX was provided to us by Akoya Biosciences.

d The NSCLC images reported in this study cannot be deposited in a pub-

lic repository because they are unpublished and shall be made available

upon reasonable user request. To request access, contact lead contact,

Alexander R. A. Anderson (alexander.anderson@moffitt.org).

d As an example dataset, we have deposited an anonymized subset of 10

FoVs from the NSCLC dataset here: https://doi.org/10.5281/zenodo.

6131933.

d The endometrial cancer images reported in this work can bemade avail-

able by contacting the lead author of the study.28

d The human colorectal cancer is publicly available.42

Section 2: Code

All original code has been deposited at Zenodo: https://doi.org/10.5281/

zenodo.5912169 and is publicly available as of the date of publication.

Mistic is also downloadable at https://github.com/MathOnco/Mistic. Instruc-

tions regarding installation, setup, and code deployment can be found at

https://mistic-rtd.readthedocs.io. The code is written in Python 3.6 and uses
Bokeh,which isaPython library for creating interactive visualizations formod-

ernwebbrowsers.Mistic is indexedonPyPI and requiresPythonR3.6.Code

is available under theMIT license.MinimumCPU/memory specifications that

Mistic has been tested on are as follows: CPU: Intel Core i9; CPU speed: 2.4

GHz; number of CPUs: 1; total number of cores: 8; RAM: 32 GB.

Section 3:

Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100523.
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Figure 11. Mistic for 210 TMA cores of endometrial cancer28

(A) Image t-SNE rendering using Mistic for 210 TMA cores of endometrial cancer.41 Each core depicts pIgR on tumor cells (blue), IgA (black), IgG (pink), plasma

cells (red), additional B cells (green), and unstained cells (gray). Each core has a border that matches the cluster it belongs to (see the Cluster Annotations live

panel). Representative cores from each of the clusters dominated by pIgR, IgA, and IgG are shown.

(B) t-SNE scatterplot showing the marker spread computed from the 210 x 5 count matrix prior to clustering.
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