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In its first production phase, The ENCODE Project Consortium (ENCODE) has generated thousands of genome-scale data
sets, resulting in a genomic ‘‘parts list’’ that encompasses transcripts, sites of transcription factor binding, and other
functional features that now number in the millions of distinct elements. These data are reshaping many long-held beliefs
concerning the information content of the human and other complex genomes, including the very definition of the gene.
Here I discuss and place in context many of the leading findings of ENCODE, as well as trends that are shaping
the generation and interpretation of ENCODE data. Finally, I consider prospects for the future, including maximizing the
accuracy, completeness, and utility of ENCODE data for the community.

Almost exactly 10 years ago, a ‘‘Workshop on the Comprehensive

Extraction of Biological Information from Genomic Sequence’’

endorsed the formation of a public consortium to undertake

comprehensive annotation of all functional elements encoded in

the human genome, a logical encore to the production of the ge-

nome sequence itself. At that time, in spite of general optimism for

the cause, few things were clear. The task lacked precedent, ob-

scuring its true scope; the requisite technologies were either na-

scent or, at the time of the workshop, not yet imagined; and, on the

heels of the mouse genome sequence, the very role of experimental

approaches was challenged by the burgeoning promise of com-

parative genomics. What was not in doubt was the commitment of

NHGRI to build on the success of the Human Genome Project,

which had yet to announce its finished sequence.

In this environment, The ENCODE Project Consortium

(ENCODE) took form. A four-year pilot phase initiated in 2003

focused on a carefully selected 1% of the human genome and was

oriented chiefly toward the deployment at scale and assessment of

experimental and computational genomic technologies for local-

ization of functional elements. In 2007, the pilot project was suc-

ceeded by the scale-up to a production phase that saw the expan-

sion of ENCODE annotation efforts to the entire genomic sequence.

In a happy and fateful coincidence, the ENCODE scale-up com-

menced contemporaneously with the introduction of massively

parallel ‘‘next-generation’’ sequencing technologies—a develop-

ment that was rapidly exploited by ENCODE groups to replace

wholesale the assays that had been utilized during the pilot phase.

Indeed, ENCODE groups played leading roles in the genesis and

deployment of many staple genomic assays in wide use today,

including the first ChIP-plus-sequencing assays (ChIP-seq) for

transcription factors ( Johnson et al. 2007; Robertson et al. 2007)

and histone modifications (Barski et al. 2007; Mikkelsen et al.

2007), as well as pioneering RNA sequencing assays (RNA-seq)

(Mortazavi et al. 2008), among others.

The ENCODE production phase has produced thousands of

genome-wide data sets during the past five years, yielding deep

insights into genome function, and ENCODE is now poised for

a further multi-year expansion phase. As such, the present juncture

provides a useful vantage from which to reflect on the ENCODE’s

accomplishments, challenges, and prospects. Here, I first discuss

how ENCODE has influenced our conception of genome structure

and content, and the utility of function-driven versus purely se-

quence-based approaches to genome annotation. Second, I consider

major trends that are shaping both the nature of ENCODE data and

how those data are conceptualized and used. Finally, I discuss key

challenges confronting the next phase of the ENCODE endeavor.

Reading the living genome

Functional elements, then and now

Although the ENCODE project formally originated in the post-

genome era, its intellectual origins lie some 40 years earlier with

the concept that genomes contain discrete, linearly ordered units

that can be connected with specific functional features or pro-

cesses (Jacob and Monod 1961). A cornerstone of ENCODE has

been the use of biochemical signatures to identify functional ele-

ments specified by the genomic sequence. In part, this represents

a departure from the widely accepted reductionist approach to

genome function, in which iterative dissection by truncation or

editing of larger sequences that encompass a given functional ac-

tivity was coupled to an experimental read-out of that activity. The

reductionist approach provided a powerful experimental paradigm

and was widely applied to define and understand the signals that

direct transcription initiation, splicing, and other basic processes,

and to expose the transcription factor binding elements that

comprise the sequence ‘‘atoms’’ of gene regulation.

The biochemical signature strategy, which developed in

parallel with reductionism, was motivated by the recognition

of common biochemical or biophysical events that invariably

attended certain types of noncoding functional elements. This

strategy found its first expression in the discovery that active

promoters were marked by alterations in chromatin structure that

gave rise to nuclease hypersensitivity of the underlying DNA (Wu

et al. 1979; Wu 1980). This signature was subsequently sought over

entire genomic loci (Stalder et al. 1980) and resulted in definition

of the first cellular enhancers (Banerji et al. 1983) and other types

of transcriptional control elements (Forrester et al. 1986; Grosveld

et al. 1987; Chung et al. 1993). Reductionism was, in turn, applied

to the biochemically defined elements, revealing them to be

densely populated by recognition sequences for DNA-binding

proteins (Emerson et al. 1985; Strauss and Orkin 1992), motivating,

in turn, the development of site-specific factor occupancy assays

such as ChIP (Gilmour and Lis 1984; Solomon and Varshavsky

1985). Subsequently, the recognition that histone modification

patterns could suggest transcription factor occupancy patterns

(Lee et al. 1993) and functional characteristics of adjacent regula-
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tory regions (Bernstein et al. 2002, 2005) led to the identifica-

tion of biochemical signatures that could be exploited on a ge-

nomic scale across multiple cell types (The ENCODE Project

Consortium 2007; Heintzman et al. 2007; Mikkelsen et al. 2007).

In a similar vein, RNA transcripts were increasingly used to an-

notate both sites of transcript origination (both coding and non-

coding) as well as the nuances of processed transcript structure.

Eventually, the accumulation of large amounts of data connecting

biochemical signatures of specific DNA regions with particular

functional activities set the stage for the generic large-scale map-

ping of functional elements. Critically, this could now be un-

dertaken without detailed knowledge of downstream functions.

For example, genes could be annotated without knowledge of the

function of their protein products, and regulatory DNA regions could

be annotated without knowledge of their ultimate functional con-

sequences for a given gene—or even what their target gene might be.

At the outset of The ENCODE Pilot Project in 2003, the

number of transcriptional regulatory elements defined using tra-

ditional approaches, including the pre-genome application of

biochemical signatures such as DNase I hypersensitivity, stood at

perhaps a few hundred. At the conclusion of the first ENCODE

production phase, this total has increased nearly 10,000-fold.

However, the number of such elements for which we possess

classical experimental validation is still in the low hundreds.

Nonetheless, the information that can be extracted from this vast

cache of elements is breathtaking. By studying the trans-cellular

patterning of biochemical signatures, we gain telling insights into

elements responsible for cell-selective regulation of transcript ex-

pression (Arvey et al. 2012; Djebali et al. 2012a; Thurman et al.

2012), the combinatorial patterns of transcription factors (TFs)

that occupy them (Gerstein et al. 2012; J Wang et al. 2012b), and

their likely genic targets (Sanyal et al. 2012; Thurman et al. 2012).

Although ENCODE was conceived as a genome annotation project

fundamentally focused on the linear organization of sequence el-

ements, it is now becoming clear that connectivity between linear

elements is an intrinsic part of this annotation—from splicing, to

long-range chromatin interactions (de Wit and de Laat 2012), to

transcription factor networks (Gerstein et al. 2012; Neph et al.

2012a). How these insights will be systematically integrated into

ENCODE annotations remains a significant challenge. And just

how much functional validation using traditional approaches will

ultimately be required is unclear—a topic I consider further below.

The genus ‘gene’

The dual concept of the gene both as the agent of heredity and as

a physical, information-laden entity embodied in a specific DNA

sequence has dominated modern biology. Great emphasis has

been placed on the accurate and comprehensive annotation of

genes in the human genome and across the spectrum of sequenced

organisms. Over the last 10 years, ENCODE data have engendered

numerous fundamental observations concerning the organization

of transcription that have collectively provided deep insights into

genome function as well as continually reshaped our conception

of a gene. These include the recognition of pervasive transcription

(Cheng et al. 2005; Manak et al. 2006; The ENCODE Project

Consortium 2007; Kapranov et al. 2007; Efroni et al. 2008; Clark

et al. 2011), long-range splicing and chimeric transcripts (Djebali

et al. 2012b; Frenkel-Morgenstern et al. 2012), promoter-associated

small RNAs (Affymetrix/Cold Spring Harbor Laboratory ENCODE

Transcriptome Project 2009), and the splicing–chromatin con-

nection (Tilgner et al. 2009), among other findings.

Although the gene has conventionally been viewed as the

fundamental unit of genomic organization, on the basis of

ENCODE data it is now compellingly argued that this unit is not

the gene but rather the transcript (Washietl et al. 2007; Djebali

et al. 2012a). On this view, genes represent a higher-order frame-

work around which individual transcripts coalesce, creating a poly-

functional entity that assumes different forms under different

cellular states, guided by differential utilization of regulatory DNA.

This concept is implicit in the organization of the GENCODE effort

to annotate transcriptional units—protein-coding and noncoding,

alive and dead (pseudogenes)—by means of the careful compila-

tion, analysis, and validation of RNA transcripts from diverse sources

(Derrien et al. 2012; Djebali et al. 2012a; Harrow et al. 2012; Howald

et al. 2012). This effort has resulted in a new standard reference an-

notation covering everything from alternative transcriptional start

sites to antisense transcripts, and it has anchored and empowered

numerous integrative analyses. Indeed, the GENCODE annotation is

used in some form by every ENCODE paper in this issue, and those

contemporaneously published in other journals.

Intensive probing of the RNA compartment has further

deepened our appreciation of the extreme diversity and com-

plexity of transcriptional processes and the very nature of perva-

sive transcription. Sequencing of RNAs from nuclear subcom-

partments such as the nucleolus or chromatin has revealed that

even seemingly simple gene structures may be hiding an aston-

ishing variety of transcript forms (Djebali et al. 2012a). Moreover,

the systematic analysis of nuclear transcripts now clearly supports

cotranscriptional splicing as a frequent mechanism of transcript

processing (Tilgner et al. 2012). These studies and other recent

reports detailing deep probing of the RNA world (Mercer et al.

2011) affirm the centrality of the transcript in genomic organiza-

tion, while highlighting both the opportunity and the daunting

challenge of comprehensive transcriptome annotation.

The chromatin–transcription continuum

The interplay between transcription and chromatin has been a topic

of intense study for over 30 years, during which time our view of the

role of chromatin in modulating transcription has evolved dramat-

ically, from a static physical obstacle that must be negotiated during

transcription to a complex entity that dynamically exchanges infor-

mation with a transcribing polymerase to facilitate its transit across

the genic landscape. The past five years in particular have witnessed

a striking convergence of our views connecting chromatin and tran-

scription, spurred by observations grounded in ENCODE data.

Transcription originating from enhancer elements was first

described over 20 years ago (Tuan et al. 1992) and has recently re-

emerged through analysis of deep RNA-seq data (Kim et al. 2012).

This phenomenon has now been extensively documented by

ENCODE (Djebali et al. 2012a) and is detected predominantly at

distal DNase I hypersensitive sites that are flanked by H3K4me1,

H3K27ac, and H3K9ac histone modifications. Unlike promoters, the

enhancer-originated transcripts derive overwhelmingly from nu-

clear nonpolyadenylated RNA and are thus missing the large fraction

of polyadenylated transcripts characteristic of canonical promoters.

The rate of enhancer-originated transcription varies widely, and

generally occurs at a substantially lower level than promoters.

The association of trimethylation at histone H3 lysine 4

(H3K4me3) with transcription initiation at human genes is well

described (Wang et al. 2008; Ernst et al. 2011) and is a direct out-

growth of studies in yeast (Bernstein et al. 2002; Santos-Rosa et al.

2002). More striking and unexpected was the discovery that
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patterns of histone modification (H3K36me3) and nucleosome lo-

cation preference within gene bodies reflect organizational features

of mature transcript structure such as exons, as well as their splicing

frequency (Kolasinska-Zwierz et al. 2009; Tilgner et al. 2009). How-

ever, both the mechanism(s) giving rise to these phenomena and

their implications for global genome function remain largely ob-

scure. It is likely, however, that many more subtle connections be-

tween chromatin modification and transcript structure lie waiting to

be uncovered in ENCODE data, some of which may be brought to

light with the increasing cost effectiveness of deeper sequencing that

will, in turn, enable finer parsing of the chromatin landscape.

How the nuclear machinery executes a high-precision opera-

tion such as splicing over genomic distances that may exceed 1 Mb

is currently unknown. The most straightforward explanation is that,

analogous to enhancers and their target promoters, these transcript

components are physically approximated to one another through

direct chromatin interactions. Such hypotheses are now directly

testable by cross-analysis of long-range splicing data with ENCODE

5C (Sanyal et al. 2012) and ChIA-PET results (Li et al. 2012).

Viewed collectively, ENCODE data are increasingly pointing

to the conclusion that chromatin and transcription are not discrete

genomic forces that collide in the context of gene expression.

Rather, they represent a continuum of activities, from the in-

frequent generation of transcripts at distal regulatory DNA, to re-

gions of high transcriptional output that are marked by pervasive

alterations in chromatin state. It is certain that many additional

features of the transcription–chromatin connection remain to be

uncovered within extant ENCODE data. Going forward, deeper

probing of both the RNA and chromatin compartments through

advancing sequencing throughput will perhaps bring these fea-

tures to light more quickly.

Regulatory DNA: More than meets the eye

It is still widely believed that functional elements, from exons to

regulatory DNA, are relatively rare features of the genomic land-

scape. In the case of regulatory DNA, this is certainly true within

the context of an individual cell type, where DNase I hypersensi-

tive sites and associated transcription factor occupancy sites

mapped by ChIP-seq encompass on the order of 1%–2% of the

genome—a compartment roughly the size of the exome. However,

because the majority of regulatory DNA regions are highly cell

type-selective (The ENCODE Project Consortium 2012; Thurman

et al. 2012), the genomic landscape rapidly becomes crowded with

regulatory DNA as the number of cell types and states assayed in-

creases. Even after assaying more than 120 distinct cell types, this

trend shows little evidence of saturation (The ENCODE Project

Consortium 2012). It is thus not unreasonable to expect that 40%

and perhaps more of the genome sequence encodes regulatory

information—a number that would have been considered hereti-

cal at the outset of the ENCODE project. It is important to recog-

nize, however, that this figure encompasses regulatory regions

wherein only a subset of the individual nucleotides are under

strong evolutionary constraint, such as those at critical contact

positions for transcription factor recognition (Neph et al. 2012b).

It is also widely assumed that roughly half of the human ge-

nome sequence has been laid waste by transposable elements and

other classes of repetitive sequences, which have repeatedly and

haphazardly pummeled the genome at various evolutionary in-

tervals. These regions were all but invisible during the ENCODE

pilot phase, where they were intentionally masked from micro-

array designs. But this situation changed dramatically with se-

quence tag-based assays: Even modest read lengths (36–50 bp)

have the potential to align uniquely with over 85% of the genome

sequence, and thus to annotate a majority of transposable ele-

ments. In marked contrast to the prevailing wisdom, ENCODE

chromatin and transcription studies now suggest that a large

number of transposable elements encode highly cell type-selective

regulatory DNA that controls not only their own cell-selective

transcription, but also those of neighboring genes (Djebali et al.

2012a; Thurman et al. 2012). Far from an evolutionary dustbin,

transposable elements appear to be active and lively members of

the genomic regulatory community, deserving of the same level of

scrutiny applied to other genic or regulatory features.

Leaving the flat genome behind

Gene regulation is fundamentally a three-dimensional (3D) pro-

cess involving dynamic interactions between genomic DNA and

the nuclear protein machinery. And yet, common conceptions of

regulatory genomic processes are typically unidimensional, play-

ing out over linear genome distance versus physical nuclear dis-

tance. ENCODE has played a key role in shifting this paradigm by

providing key insights into the topology of gene regulation at two

levels—nuclear structure and organization, and physical connec-

tivity among cis-regulatory elements.

From our present vantage, it may seem remarkable that

the discovery of the connection between 3D nuclear chromatin

architecture and mammalian gene regulation (Weintraub and

Groudine 1976) predated many one-dimensional representations

that have populated the literature for the past three decades. En-

abled by serial innovations in the quantitative analysis of chro-

matin interactions by Dekker and colleagues (Dekker et al. 2002;

Dostie et al. 2006; Lieberman-Aiden et al. 2009; Nora et al. 2012),

the visionary conception of Weintraub and Groudine is system-

atically taking form within the context of ENCODE. HiC data

(Lieberman-Aiden et al. 2009) now provide global contact maps of

nuclear chromatin that are sufficiently detailed as to enable re-

construction of the folding pattern of chromosomes within the

confines of the nucleus, and to define major chromatin compart-

ments. A key challenge is resolution, which increases only slowly

with multiplicative increases in sequencing depth. However, re-

cent increases in sequencing throughput have enabled deeper

sampling, shedding further light on large-scale chromatin in-

teractions and chromosomal domain architectures (Dixon et al.

2012; Nora et al. 2012).

The discovery of long-range cis-regulatory elements such as

the immunoglobulin enhancer (Banerji et al. 1983) and the beta-

globin Locus Control Region (Forrester et al. 1986; Grosveld et al.

1987) immediately raised the question of how such distal regula-

tory regions communicate with their target gene(s) and, more

broadly, how genes and regulatory DNA are ‘‘wired’’ along a chro-

mosome. Specific physical interactions appear to be a general

property of long-range regulatory control, and are directly assay-

able with 3C (Dekker et al. 2002) or, at many elements in parallel,

by 5C (Dostie et al. 2006). Systematic application of 5C to assay all

mutual chromatin interactions over The ENCODE Pilot Project

regions comprising 1% of the genome has now enabled a com-

prehensive synthesis of interactions between promoters and distal

elements including likely enhancers and CTCF-occupied sites

(Sanyal et al. 2012). Composite interaction technologies de-

veloped within ENCODE such as ChIA-PET—essentially a combi-

nation of ChIP-seq with a chromosome conformation capture

assay—are further illuminating the 3D connectivity of human
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genes with one another and with their respective controlling ele-

ments (Li et al. 2012).

Together, the chromosome conformation capture-based ap-

proaches have probed local, domain, and global level interactions

across the mammalian genome (de Wit and de Laat 2012). Al-

though great progress in mapping genome connectivity has been

achieved in a few short years, significant challenges remain, both

technical and conceptual. The resolution of chromatin interaction

assays is generally limited by restriction fragments, and these as-

says have a ‘‘blind’’ spot around anchor regions or around highly

interacting elements such as promoters, where nonspecific local

interactions may obscure more specific connections.

One of the greatest technical challenges facing ENCODE is to

transform its linear genomic signals into nuclear space, without

sacrificing resolution. Such a transformation would dramatically

close the gap between cis-regulatory architecture and nuclear ar-

chitecture, bringing us full circle in the journey begun by the

pioneering experiments of Weintraub and Groudine more than

three decades ago.

From elements to networks

Transcription factors interact with one another at three basic

levels: direct protein–protein interactions; cooperative inter-

actions engendered by binding within the same cis-regulatory el-

ement; and cross-regulatory interactions resulting from the bind-

ing of one transcription factor within the regulatory DNA regions

controlling another factor. Extended across all transcription fac-

tors active within a given cell type, the last of these creates a tran-

scription factor regulatory network that functions as a coherent

system to process complex biological signals and confer robustness

(Neph et al. 2012a).

Transcription factor regulatory networks can now be mapped

systematically using two types of ENCODE data—ChIP-seq for

individual transcription factors (Gerstein et al. 2012) and genomic

DNase I footprinting (Neph et al. 2012a,b). The resulting networks

can be rendered either as a regulatory ‘‘cloud’’ or as a hierarchy of

interacting factors (Gerstein et al. 2012). However, for most users of

ENCODE data, the greatest interest will lie in specific subnetworks

that comprise the wiring of small cohorts of transcription factors,

such as those involved in pluripotency or hematopoietic differ-

entiation (Neph et al. 2012a). Deepening of ENCODE annotations

through the survey of increasing numbers of transcription factors

by ChIP-seq, and increasing numbers of DNase I footprints by

deeper sequencing and survey of additional cell types, will further

enrich our understanding of the human transcription factor net-

work and how it feeds back to the level of individual regulatory

DNA regions—and ultimately to other chromatin features and

transcript production.

Decoding disease

The ENCODE production phase was initiated at the height of ex-

citement over genome-wide association studies, nearly a thousand

of which have since been performed. At that time, the prospects for

convergence between the two initiatives seemed limited at best.

Five years on, building on initial observations (Gaulton et al. 2010;

Ernst et al. 2011), it is now apparent that a significant proportion of

strongly disease- or trait-associated variants emerging from ge-

nome-wide association studies (GWASs) localize within regulatory

DNA marked by DNase I hypersensitive sites and selected TFs (The

ENCODE Project Consortium 2012; Maurano et al. 2012a; Schaub

et al. 2012). Beyond simple enrichment, analysis of an expanded

range of cell and tissue types reveals systematic and deep con-

nections between the tissue and developmental stage selectivity

with which disease- and trait-associated variants localize within

regulatory DNA; the transcription factor recognition sequences

perturbed by these variants; and the networks formed by these

transcription factors (Maurano et al. 2012a). The ability to connect

distal DHSs systematically with their cognate genes (Thurman

et al. 2012) has now revealed many links between variants in

regulatory DNA and distant genes that plausibly explain the dis-

ease associations (Maurano et al. 2012a).

It is also clear that the modest (but highly significant) overall

degree of enrichment of disease- and trait-associated variants

within regulatory DNA is an inappropriate measure that in-

corporates both noise within the GWAS data and the heteroge-

neous mix of cell types examined, many of which are peripheral to

certain traits. In contrast, striking cell-selective enrichment of

GWAS variants may be observed in pathogenic cell types, for ex-

ample, the enrichment of variants associated with Crohn’s disease

in DHSs from Th1 T cells (The ENCODE Project Consortium 2012)

or, even more prominently, in Th17 T cells, which play a leading

role in Crohn’s pathogenesis (Maurano et al. 2012a). Significantly,

strong cell-selective enrichments are observed for hundreds of

variants that fall below the canonical genome-wide significance

threshold (P < 10�8), suggesting that GWAS signals may encom-

pass the collective quantitative contributions of large numbers of

regulatory variants. Of high priority is determining which specific

variants within regulatory DNA functionally impact DNA:protein

interactions, local chromatin architecture, and the regulation of

target genes (Maurano et al. 2012a). Going forward, ENCODE is

well-positioned to contribute substantially to this effort. However,

to achieve the highest utility for analysis of disease studies, three

challenges confront ENCODE. First, care and coordination must be

exercised in selecting cell and tissue types, ideally with close input

from the disease communities. Second, selection of transcription

factors should be well-matched to known aspects of disease physi-

ology or that of pathogenic cell types. Finally, continuously updated

maps of connections between distal regulatory DNA and its target

gene(s) must be made available in a format that facilitates in-

tegration with GWAS variants.

Another disease area in which ENCODE is poised to yield

important insights is cancer. Approximately 40 cancer lines of

varying origin have been studied using one or more ENCODE

methodologies. Three findings stand out: first, that cancer lines

harbor a large number of regulatory DNA regions that are not seen

in normal cells (Song et al. 2011; Akhtar-Zaidi et al. 2012; Thurman

et al. 2012; Vernot et al. 2012). Second, somatic variation in reg-

ulatory DNA of cancer cell lines is unequally distributed, with

certain neoplasms having significantly higher rates of somatic

regulatory variation (The ENCODE Project Consortium 2012).

Additionally, the regulatory DNA of immortal malignant cells (and

ES cells) harbors increased germline mutation rates (Thurman et al.

2012; Vernot et al. 2012). How or whether these two processes are

connected is unknown. Third, the occupancy landscape of

CTCF—and possibly other TFs—differs substantially between

normal and immortal cells, a proportion of which is linked to DNA

methylation patterns (H Wang et al. 2012). In general, many key

observations have been enabled by the concurrent availability of

cancer genome sequencing data from The Cancer Genome Atlas

(TCGA). To develop these observations further, it would seem

logical for ENCODE to align future cancer cell type selections as

closely as possible with TCGA.

What does our genome encode?
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Trends shaping ENCODE data
and their interpretation

From regions to bases

At a mechanistic level, most genomic processes operate with nu-

cleotide precision. Currently, however, most ENCODE annotations

define regions of tens to hundreds of bases. Closing this resolution

gap will be a major challenge going forward. Sites of RNA tran-

scription initiation and termination can generally be mapped at

nucleotide level using current approaches. Mapping of DNase I

hypersensitivity peaks is giving way to genomic DNase I foot-

printing (Neph et al. 2012b), which provides nucleotide resolution

mapping of protein occupancy sites. However, ChIP-based ap-

proaches still require inference. For example, conventional tran-

scription factor ChIP-seq data can only infer that a peak or region

contains the protein of interest, with the zone of inference typi-

cally spanning 200–300 bp. In cases in which a recognition se-

quence for the cognate factor is extant, it tends to underlie the peak

signal. However, roughly half of ENCODE ChIP-seq peaks lack

a cognate motif, and in the case of certain individual factors, the

proportion of motif-less peaks may exceed 90% ( J Wang et al.

2012b). Most of these cases are likely due to indirect occupancy

through protein–protein versus protein–DNA interactions. The

recently described ChIP-exo approach (Rhee and Pugh 2011) has

the potential to increase substantially the resolution with which

binding sites can be localized by ChIP-seq. However, its sample

requirements are high, and it is unclear whether it can be applied

to most TFs with the same success as seen with the high-occupancy

factor CTCF, for which a very high proportion of the occupancy

sites harbor clear recognition sequences. ChIP-exo also does not

address the direct versus indirect occupancy dilemma.

The case of histone modifications and variants is more com-

plicated. Because modifications or variants are typically distributed

across multiple sequential nucleosomes, resolution to nucleo-

some level is probably sufficient for most needs. This should be

straightforward for focally distributed modifications that typically

span a small number of nucleosomes (e.g., H3K4me3, H3K27ac,

H3K9ac) and lie immediately adjacent to regulatory DNA regions

such as promoters and enhancers. Nucleosomes are well-posi-

tioned in these regions (Fu et al. 2008), providing a good substrate

for single-nucleosome resolution. In more distal regions, where

positioning breaks down, it may not be possible to achieve this

resolution, nor is it necessarily required because many of the marks

found away from active regulatory DNA are widely distributed.

One solution to the resolution dilemma for both TF and his-

tone modification ChIP-seq is coupling them with chromatin ac-

cessibility. For example, coupling TF ChIP-seq and genomic foot-

printing data from the same cell type enables discrimination of

direct versus indirect occupancy sites (Neph et al. 2012b). It should

also be possible to couple chromatin accessibility with histone

modification data to increase the effective resolution of the latter,

at least in the vicinity of regulatory DNA.

Man versus machine

ENCODE data are a natural substrate for pattern discovery via

machine learning. In 2007, the application of machine learning

techniques to ENCODE Pilot Project data was still nascent, with

many approaches such as hidden Markov models adapted from

gene-finding applications, or coupled with basic segmentation

approaches to integrate across different data types (Thurman et al.

2007). In contrast, nearly every section of the ENCODE integrative

paper resulting from the production phase data was driven by

machine learning approaches, ranging from advanced segmenta-

tion algorithms capable of handling large numbers of diverse data

types simultaneously (Ernst and Kellis 2012; Hoffman et al. 2012),

to self-organizing maps (A Mortazavi, S Pepke, G Marinov, and

B Wold, in prep.), to other hybrid or specialized approaches (The

ENCODE Project Consortium 2012). A fundamental result from

these approaches was essentially an ab initio demonstration that

discrete classes of functional elements are, in fact, encoded by the

genome in a manner that matches our long-held perceptions, and

that they merely need the right combination of assays to expose

them. Different approaches to genomic segmentation essentially

converged on the same conclusions concerning specific classes of

genomic features including promoters, exons, 39 ends of genes,

CTCF-occupied sites, and even some classes of enhancers. A tacit

assumption has been that as more data sets become available, both

the power and the resolution of machine learning approaches will

increase, somewhat akin to adding more species in a comparative

genomic analysis.

A key point remains, however, that the recognition of bi-

ological meaning in the output states of machine learning appli-

cations is still almost entirely dependent on human-driven syn-

theses. It is perhaps instructive to observe that the field of gene

annotation—the birthplace of genome-directed machine learning—

has come to favor the manual curation-driven approach embodied

in GENCODE, in which automated algorithms play largely a sup-

porting role. An open question is whether, or to what degree, the

assignment of biological meaning to machine-learned states

can itself be automated through systematic incorporation of the

vast electronic literature.

Whereas ENCODE’s current efforts are focused on the in-

tegration of biochemical features, the sheer volume of data now

available may enable a renaissance in sequence-driven annotation.

It is currently unknown to what degree ENCODE-enabled anno-

tations can be derived directly from the primary genome sequence

itself (Noble et al. 2005). In parallel with ENCODE, a number of

efforts have focused on de novo annotation of enhancers or

transcription factor-bound regions by combining conservation,

transcription factor recognition motifs, and gene expression

(Pennacchio et al. 2007; Busser et al. 2012). The extensive avail-

ability of ENCODE-type data for both human and mouse (The

Mouse ENCODE Consortium 2012) now provides rich training sets

to enable a new generation of machine learning applications

(Arvey et al. 2012). Particularly promising is the ability not only to

discern complex features such as enhancers directly from sequence

data, but also to discriminate those active in different cellular en-

vironments (Lee et al. 2011). Aside from understanding the com-

plex and subtle combinations of sequence features underlying

ENCODE annotations, such approaches may extend ENCODE to

regions of the genome that specify functional elements active in

cell populations that are not feasible—either operationally or

economically—to address experimentally.

Seeing the big picture

For most genomic data, the interpretation of biological meaning is

closely linked with data visualization. Understanding how differ-

ent signals are distributed relative to well-studied genes, tran-

scripts, and regulatory DNA regions provides compelling insights

into the meaning of different data types, both alone and in com-

bination. In 2007, most ENCODE data tracks could be listed com-
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fortably within the center section of a small poster (The ENCODE

Project Consortium 2007). By 2009, it had become apparent that

simply calling up the data tracks generated by an individual data

production center—let alone the entire consortium—was no lon-

ger tenable. Data visualization thus emerged as a major challenge,

and yet one that attracted relatively few resources—under-

standably since major efforts were being directed simply to un-

derstand how any single ENCODE data type was to be processed

properly in the first place.

Data visualization presents challenges at multiple levels, from

logical organization to visual representation. Unfortunately, it is

difficult to escape the verdict that ENCODE has fallen short of

community expectations at both of these levels. ENCODE data sets

themselves are currently difficult to locate, and common tasks

aiming to represent large numbers of data tracks—such as visual-

izing the same data type across a range of cell types, or visualizing

many different data types such as TFs within the same cell

type—frequently overwhelm the current genome browser para-

digm. Compounding the problem, ENCODE data no longer exist

in isolation. Other large-scale data generation programs such as the

Roadmap Epigenomics Project (Roadmap) (Bernstein et al. 2010),

which began running in parallel with ENCODE in late 2008, are

producing large volumes of many of the same data types studied by

ENCODE, such as DNase I hypersensitivity and histone modifi-

cations for different cell and tissue types. More often than not, it is

desirable to examine the entire range of a given data type, which

requires close integration of ENCODE data with Roadmap and

other sources.

Some efforts to redress these issues are under way. To ad-

dress logical organization and integration with Roadmap data,

a combined ENCODE–Roadmap genome browser has been imple-

mented (http://www.epigenomebrowser.org). Beginning in 2010,

the Roadmap program invested targeted resources in a new genera-

tion of visualization tools designed to facilitate the display and

manipulation of large numbers of data tracks. As a result, a variety

of novel interfaces are now becoming available such as the epi-

genome visualization hub (Zhou et al. 2011). In addition, new

types of data exploration tools are being developed which will

enable pattern-based exploration of ENCODE or Roadmap data

sets. In many cases, tools have been tied to the UCSC Genome

Browser infrastructure. But it is only a matter of time before

ENCODE data become formatted for new ‘‘lightweight’’ genome

browsers such as JBrowse (Skinner et al. 2009) that permit smooth

scaling from bases to chromosomes, and dynamic reorganization

and condensation of large numbers of data tracks. Perhaps the

greatest visualization challenge is still imminent: As ENCODE

transitions from a one- to a three-dimensional view of genome

function, completely new tools and modes of representation will

be required. Presently, few appreciate the depth of this problem,

and thus little systematic effort is being devoted to visualization

apart from first-generation utilities developed by the leading data

producers (Lajoie et al. 2009).

Signal and noise

Virtually all data resulting from high-throughput assays have

a component of noise. The introduction of phred quality scores

(Ewing et al. 2008) for Sanger sequencing played a key role in the

human genome project, since they enabled both the monitoring of

data quality within a single production center and the direct

comparison of data generated by independent producers. Maxi-

mizing the signal-to-noise ratio of the genomic enrichment assays

used by ENCODE is of paramount importance in the context of

generating reference data that will be widely used by the com-

munity. ‘‘Clean,’’ high-quality data with high signal-to-noise ratios

enable both more accurate delineation of individual elements and

increased sensitivity (i.e., the recognition of weaker elements that

would otherwise be lost in the noise). High-quality data are par-

ticularly vital when deep sequencing can yield additional in-

formation such as TF footprints (Neph et al. 2012b).

To date, genomic enrichment assays have lacked quality

metrics analogous to the phred score. To address this deficit, both

ENCODE and Roadmap have active efforts devoted toward de-

velopment and application of data quality metrics, as well as the

formulation of end-to-end experimental standards for ChIP-seq

(Landt et al. 2012) and other data types. It is thus anticipated that

emerging quality scores for genomic enrichment assays will have

a positive impact on the overall quality of ENCODE data, their

utility for the community, and their interoperability with data

from diverse laboratories.

The evolution of conservation

At the outset of ENCODE in 2003, it was widely assumed that

evolutionary conservation would prove to be the ultimate arbiter

of functional elements in the human genome sequence—all that

was lacking was a sufficiently deep sampling of vertebrate ge-

nomes for comparative analysis. Correspondingly, highly conserved

noncoding sequences were frequently equated with regulatory

DNA. For a variety of reasons, both of these expectations missed

the mark widely. Following on studies of transcriptional regulation

in the RET locus (Fisher et al. 2006), The ENCODE Pilot Project

raised a general alarm: Most elements defined by biochemical

signatures lacked strong evolutionary conservation (The ENCODE

Project Consortium 2007). Conversely, most highly conserved el-

ements escaped annotation using biochemical or other functional

assays (Attanasio et al. 2008; McGaughey et al. 2008; Taher et al.

2011). These initial findings have been considerably amplified by

the vast volume of data accumulated during the current pro-

duction phase (The ENCODE Project Consortium 2012) and by

other functional studies (Blow et al. 2012). Using conventional

measures, most ENCODE-defined elements are poorly conserved,

or negligibly so. The number of highly conserved noncoding se-

quences with an overlapping biochemical function is considerably

higher (now roughly half vs. <10% [proportionally] after the pilot

phase)—although this increase is largely a byproduct of the ex-

panded genomic space annotated by ENCODE, without much

enrichment for conserved elements. Complicating this picture,

many elements lacking strong conventional signatures of purify-

ing evolutionary selection nonetheless appear to be under con-

straint in human populations (Vernot et al. 2012).

What conclusions should we draw? On a practical level, the

ability to measure function at scale has minimized the role of

conservation as a discovery tool. But it has also exposed our ig-

norance concerning the evolutionary forces shaping the genome,

particularly in noncoding regions. The fact that per-nucleotide

evolutionary conservation, in combination with nucleotide-level

DNA accessibility, can accurately trace a protein–DNA binding

interface (Neph et al. 2012b) suggests that the operation of puri-

fying selection is vastly more subtle and complexly structured than

had been previously assumed. Moreover, nucleotide-level evolu-

tionary conservation is by itself a poor predictor of functional

regulatory variation (Maurano et al. 2012b). However, engrained

habits of thought are difficult to escape, and highly conserved
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noncoding elements are still regularly conflated with regulatory

elements (Lowe et al. 2011). Clearly, new models of evolutionary

conservation are needed to explain the subtleties of regulatory

DNA, and the vast trove of ENCODE data provides an un-

precedented opportunity for novel and creative syntheses.

A new entry that promises to reshape the conservation con-

versation is The Mouse ENCODE Project, from which substantial

data are already becoming available (Kim et al. 2012; The Mouse

ENCODE Consortium 2012; Shen et al. 2012). These data, which

have been generated with the same core experimental pipelines

used for human ENCODE, will for the first time enable systematic,

genome-wide connections between both sequence and the diverse

functional modalities encoded within each species’ genome.

The road ahead
ENCODE has made many seminal contributions and is poised for

continued success. However, many challenges remain. Prominent

among them are two. First is the question of function itself: How

will ENCODE-defined elements be assigned a specific functional

property (or properties)? Second, how will ENCODE maximize its

utility for the broader scientific community?

Localization versus function

The pre-genome era provided a simple reductionist formula for

precisely localizing functional elements and their key internal

components: identify, truncate, test—repeat. We learned that op-

erationally defined functional elements such as enhancers and

promoters comprise linearly ordered collections of recognition

sequences for DNA-binding proteins—the atoms of the regulatory

DNA universe. The genomic scale-up of biochemical signature

mapping under ENCODE dramatically reshaped this formula, with

the ability to delineate likely functional elements greatly out-

stripping any capacity for defining their functional characteristics

through directed experimentation. The result has been a boon for

sequence-driven analyses, from regulatory motif derivation to

comparative and population genomics.

However, it has also given rise to a broad tendency to think of

all elements of a biochemically defined class as having the same

functional properties. For example, genomic occupancy by the

poly-zinc finger transcriptional regulator CTCF is a prominent

feature of experimentally defined enhancer blockers and chro-

matin boundary elements, as well as bifunctional elements

(Gaszner and Felsenfeld 2006). Yet it has now become common-

place to find any CTCF occupancy sites obtained by ChIP-seq re-

ferred to as ‘‘insulators’’ without any further specification—and

without regard to the well-documented involvement of promoter-

bound CTCF in transcriptional control (Klenova et al. 1993).

Compounding this complexity, ENCODE has now made available

data sets encompassing CTCF occupancy across large numbers of

cell types (The ENCODE Project Consortium 2012), revealing

substantial diversity in occupancy patterns that reflect important

differences in regulation and likely in function (H Wang et al.

2012). Both the sheer number and diversity of these elements ar-

gue strongly against ascribing a monolithic functional activity.

A similar situation obtains in the case of enhancers—classically,

elements that mediate transcriptional up-regulation, frequently

acting at considerable distance from their target gene(s) (Maston

et al. 2006). Analysis of ENCODE pilot project data revealed a high

ratio of mono- to trimethylated H3K4 at a subset of distal DNase I

hypersensitive sites (The ENCODE Project Consortium 2007) and

at sites of occupancy by the EP300 (also known as p300) acetyl-

transferase (Heintzman et al. 2007). In spite of the lack of rigorous

functional validation, it has now become de rigueur to refer to any

region of the genome that exhibits this combination of modifi-

cations as an ‘‘enhancer’’ (Heintzman et al. 2009), and further to

characterize ‘‘strong’’ and ‘‘weak’’ enhancers merely on the basis of

the intensity of the chromatin modification signal (Ernst et al.

2011), or to designate ‘‘poised enhancers’’ (Creyghton et al. 2010)

or other subcategorizations based purely on the fine parsing of

histone modification patterns (Zentner et al. 2011).

These examples illustrate a natural temptation to equate ac-

tivity with patterning of epigenomic features. However, such rea-

soning drifts progressively farther away from experimentally

grounded function or mechanistic understanding. The sheer di-

versity of cross-cell-type regulatory patterning evident in distal reg-

ulatory DNA uncovered by ENCODE (Song et al. 2011; Thurman

et al. 2012) suggests tremendous heterogeneity and functional

diversity. ENCODE is thus in a unique position to promote clearer

terminology that separates the identification of functional ele-

ments per se from the ascription of specific functional activities

using historical experimentally defined categories, and also to

dissuade the ascription of very specific functions based on a bio-

chemical signature in place of a deeper mechanistic understanding.

Functional validation: What, how, and how much?

The lack of extensive classical functional validation performed by

ENCODE to date is understandable, given the chasm between the

number of biochemically defined elements and the throughput of

traditional experimental approaches. But what kinds of elements

to validate, how to validate them, and how much of each will be

considered definitive? Certainly we cannot expect such an effort to

be comprehensive; there are too many elements defined in too

many cellular contexts ever to validate individually. A logical ap-

proach is class-based validation, with the aim to determine, with

statistical rigor, how many members of a given class with given

biochemically defined features have a specific functional property,

in order that a reliable statement may be made. However, it is

presently far from clear that we know how properly to categorize

the elements we have. Given their diversity, it is likely that a far

larger number will need to be examined than would be feasible

with conventional methods. In the case of transcriptional en-

hancer assay by transient transfection, newer high-throughput

approaches are emerging (Melnikov et al. 2012; Patwardhan et al.

2012). However, these impose significant size constraints that re-

strict their utility. Moreover, the drawbacks of conventional tran-

sient assays are well known, most notably the fact that many ele-

ments require a chromatin context to function, or a particular

primary cellular environment not amenable to transfection.

If significant time and effort is to be invested in high-

throughput functional validation, it should be definitive. An

emerging alternative that fits this requirement is reverse genetics

in an isogenic setting. Once unthinkable for the human genome,

knockout of ENCODE-defined regulatory elements is now readily

feasible given rapid advances in genome editing technology such

as zinc-finger and TAL effector-like nucleases (Doyon et al. 2011;

Miller et al. 2011; J Wang et al. 2012a). This technology is currently

at a scaling stage (Reyon et al. 2012); given the proper application

of resources, thousands of well-designed experiments could rea-

sonably be envisioned over the course of the next phase of

ENCODE. Genome editing is well-published in the ENCODE Tier 1

cell type K562 and has the additional advantage of creating a per-
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manent reagent (the knockout line) that can be used for more

detailed functional characterization by the community.

Completeness: What does it mean?

ENCODE was founded with the ultimate objective of amassing

a complete catalog of functional elements encoded by the human

genome. Nine years on, we are beginning to appreciate the true

scope of this lofty goal. More of the human genome sequence

appears to be used for some reproducible, biochemically defined

activity than was previously imagined. Contrary to the initial ex-

pectations of many, the overwhelming majority of these activities

appear to be state-specific—either restricted to specific cell types or

lineages, or evokable in response to a stimulus such as interferon.

As such, even if we were in possession of technologies with perfect

sensitivity in a given cellular context, the sheer diversity of cell

types and states is daunting.

It is becoming increasingly clear that functional annotation

of the genome entails understanding not only that a particular

stretch of DNA encodes a given type of element active in some cell

type, but how that encoding is interpreted in different cellular

environments. For example, it is widely acknowledged that the

same DNA element may be recognized by different (generally re-

lated) transcription factors in different cellular environments, with

alternative functional consequences. Additionally, we now know

that the biochemical signatures of many ENCODE-defined ele-

ments exhibit complex trans-cellular patterns of activity (The

ENCODE Project Consortium 2012; Thurman et al. 2012), which

may be accompanied by functional behaviors such as an enhancer

interacting with different target genes (Sanyal et al. 2012; Thurman

et al. 2012). Together, these observations suggest that the genome

may, in fact, be extensively multiply encoded—i.e., that the same

DNA element gives rise to different activities in different cell types.

This possibility challenges our current notions of annotation,

which are still rooted in a linear world, and cautions against for-

mulating definitions of completeness based on older models such

as the delineation of protein-coding genes.

Maximizing utility for the community

The transition from The ENCODE Pilot Project to the production

phase was dominated by technology. Based on many of the trends

discussed above, one may predict that the transition from the

current production phase to the next will be dominated by utility.

Given what we now know about the potential for ENCODE to il-

luminate not only the genome sequence itself, but also the find-

ings emerging from parallel efforts such as GWAS and TCGA, care

must be taken to maximize synergies through careful selection

of biological targets and highly coordinated action that maxi-

mizes the data generated for each cell or tissue. The high cell re-

quirements entailed by extensive transcription factor ChIP-seq

profiling or subcellular RNA fractionation experiments entailed an

initial focus on a common set of mainly immortal cells. This has

contributed to a perception that ENCODE is largely a cell line–

centered endeavor, with limited relevance for many widely studied

biological processes. However, overall ENCODE has sampled a vast

range of primary cell types—indeed, these outnumber immortal-

ized cell lines nearly 3-to-1 (The ENCODE Project Consortium

2012; Thurman et al. 2012). The potential of ENCODE to con-

tribute to diverse community endeavors is thus now very broad

and will be expanded further in the coming production phase as

more primary cells enter the experimental pipelines and additional

data types such as DNA methylation or maps of RNA-binding

proteins become widely available.

ENCODE must recognize and face its awareness problem

straight on. ENCODE publications have been cited thousands of

times. And yet, broad swathes of the community—even leading-

edge laboratories—are unaware of what the project has produced

or how to access and interpret the data. A remedy for this situation

will not appear spontaneously and will require the intimate in-

volvement of data producers as well as analysts and end users. The

only certainty is that if consistent emphasis is not placed on the

goal of increasing awareness, and clear milestones defined, little if

any progress will be made.

ENCODE is undergoing a transformation from a loosely

connected set of annotations to an integrated tool that collectively

provides a unique lens through which to view genome function. In

this sense, it is gradually transforming from a collection of data

into a new kind of tool—almost a type of software that can

‘‘operate’’ on other genomic data types. Indeed, new applications

that leverage ENCODE data in this way are already emerging from

within the Consortium (Boyle et al. 2012; Ward and Kellis 2012),

and one anticipates that many others from diverse community

sources are either on the way or will be stimulated as a result of the

current suite of ENCODE publications.
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