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A B S T R A C T   

Yeasts are a widespread group of microorganisms that are receiving increasing attention from 
scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity 
make them promising candidates for application, especially in postharvest biocontrol of fruits and 
vegetables and food biopreservation. The present review focuses on recent knowledge of the 
mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The 
main mechanisms of action of bioprotective yeasts include competition for nutrients and space, 
synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic 
enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as 
the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold 
acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts 
and thus more effectively play biocontrol roles under a wider range of environmental conditions, 
thereby reducing economic losses. Combined application with other antimicrobial substances can 
effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as 
substitute for chemical additives in various food fields, but their commercialization is still limited. 
Hence, additional investigation is required to explore the prospective advancements of yeasts in 
the field of biopreservation for food.   

1. Introduction 

The confluence of postharvest decay, attributed to fungal pathogens, along with the presence of pathogenic and food-spoiling 
bacteria, represents a formidable obstacle in the realm of global food security [1,2]. The use of synthetic fungicides remains the 
predominant strategy to control postharvest microbial spoilage [3]. However, their use is being increasingly questioned due to 
environmental and food safety concerns, highlighting the need for alternative management strategies. In this context, the utilization of 
wild species and strains of antagonistic yeast species presents a promising option to minimize postharvest losses, offering a sustainable 
and safe solution for the increasing worldwide demand for food [4,5]. Yeasts are ubiquitous microorganisms found in diverse envi-
ronments, such as terrestrial, aquatic, and aerial habitats. They have been utilized in various fields, including agriculture, biotech-
nology, food industry, veterinary medicine, environmental protection, and medical applications. One of the key advantages of yeasts is 
their potent antifungal and antagonistic activities, making them ideal candidates for controlling fungal pathogens. Additionally, their 
ability to grow under various conditions, exhibit stress resistance, and ease of cultivation have further increased their significance in 
diverse applications [6–9]. More recently, some yeasts have been delineated as efficacious antagonists against a diverse array of plant 
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pathogens, particularly recommended for the prevention and control of pre- and post-harvest diseases afflicting fruits and vegetables 
attributable to mold proliferation. 

Yeasts are attractive candidates for biological control due to their broad-spectrum antimicrobial activity, genetic stability, low 
nutritional requirements, and ability to thrive at low temperatures. Furthermore, yeasts can withstand adverse pH and oxidative stress 
conditions. These properties support the possibility of using yeast as a biological antagonist. In recent years, several antagonistic yeasts 
belonging to the genera Pichia [10], Rhodosporidium [11], Debaryomyces [12], Candida [13], Metschnikowia [14], Pseudozyma [15], and 
Hanseniaspora [16] have been utilized as effective biological control agents against postharvest diseases in fruits and vegetables. 
Understanding the mechanisms of yeast antagonistic properties paves the way for the development of more sustainable and efficient 
post-harvest biocontrol with deeper indispensable. 

Fungal genera like Aspergillus, Penicillium, Alternaria, and Fusarium contribute to postharvest spoilage and reduce the quality of 
processed foods. These fungi produce mycotoxins, which are toxic secondary metabolites that can withstand various food processing 
steps and pose a significant threat to human and animal health [17]. The economic losses resulting from these food safety concerns 
affect both producers and consumers and highlight the need for effective management strategies. The process of utilizing natural or 
added microorganisms, or their metabolites to increase the safety and extend the shelf-life of food is known as biopreservation, 
biocontrol and biological control [18]. This involves using microorganisms to prevent the growth of spoilage or pathogenic micro-
organisms. Yeasts has been proposed based on its GRAS status granted by the Food and Drug Administration (FDA). Certain yeast types 
are recommended in the list of qualified presumption of safety (QSP) for intentional addition to food or feed notified by the European 
Food Safety Authority (EFSA) [19]. While the antagonistic activity of yeasts has been extensively researched and utilized in the 
biological control of postharvest diseases in fruits and the management of unwanted yeasts in the brewing and wine industries, there is 
relatively little research on using yeasts as biocontrol agents in processed foods such as coffee, juices, cheese, dry-cured meat products, 
and fermented products. This represents a potential area for further investigation and development in the field of biopreservation [20, 
21]. 

The current review provides a concise summary of the research that has contributed to a better understanding of postharvest 
biocontrol systems. Several yeast genera that have demonstrated promising results are highlighted. This review also outlines the 
mechanisms by which yeasts can antagonize pathogenic and spoilage fungi and bacteria, as well as strategies to enhance the per-
formance and effectiveness of yeasts as biocontrol agents. Finally, some information on the good application of yeasts in processed 
foods is provided. 

2. Biocontrol of yeasts in agricultural products 

There have been numerous reports on the applications of antagonistic yeasts in postharvest biological control of various fruits 
including apple [22], pear [23], banana [24], kiwifruit [25], citrus [14], grape [26], papaya [27], as well as strawberry [28], and 
pineapple [29]. Additionally, the use of antagonist yeasts for the biocontrol of vegetables such as potatoes [30], tomatoes [31] and 
chilies [32] has been extensively documented. Moreover, antagonist yeasts have also been employed in controlling mold in grains, 

Fig. 1. Diagram of potential interactions between the fruit hosts, pathogens, and antagonistic yeasts within their respective environments.  
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which are prone to mycotoxin contamination [33]. 
The postharvest biological control system is a complex network comprising of antagonistic yeasts, pathogens, and fruit hosts, and 

their interactions with environmental constraints must be considered (Fig. 1). These complex interactions are key factors in deter-
mining the success of biocontrol strategies for postharvest diseases. Effective postharvest biocontrol relies on selecting appropriate 
microbial antagonists, understanding the mechanisms underlying their interactions with pathogens and hosts, and optimizing envi-
ronmental conditions to promote their efficacy. In this context, Kusstatscher et al. [34] proposed that microbiome approaches will 
provide the key to biologically control postharvest pathogens and storability of fruits and vegetables, based on the observations that (i) 
high-throughput sequencing-based techniques including advanced microscopy reveal fruits and vegetables as holobionts and (ii) that 
the indigenous microbiome of fruits and vegetables is affected by field and postharvest handling which influence the storability of 
fruits and vegetables. Ongoing research efforts are thus focused on improving our understanding of the factors that influence these 
interactions, with the ultimate goal of developing more sustainable and efficient postharvest biocontrol strategies. 

The antagonistic activity of yeasts against deleterious microorganisms encompasses processes of spatial and oxygenic competition, 
as well as the synthesis and exudation of antifungal secondary metabolites, including toxins, enzymes, and volatile compounds [35]. 
Additionally, it entails the elicitation of systemic resistance within host plant organisms [36]. In addition, numerous studies have 
demonstrated that some yeast strains possess detoxification functions, converting toxins produced by fungi into non-toxic or low-toxic 
substances to defend against fungal attack [37]. Various attempts have been made to improve the effectiveness of antagonistic yeasts 
against harmful microorganisms by increasing their viability or by combining them with other physical or chemical means. In this 
section of the review, yeasts from different yeast genera as biocontrol agents are listed to provide a more comprehensive understanding 
of postharvest biocontrol systems. Additionally, we discuss the mechanisms by which these yeasts could inhibit the growth of path-
ogenic and spoilage microorganisms, thereby highlighting their potential as protective agents for processed foods. Table 1 lists the 
antagonistic yeasts that have been extensively investigated in recent years for their use in postharvest disease management. 

2.1. Antagonistic yeasts 

2.1.1. 1. Candida spp. 
The genus Candida is routinely recovered from environmental samples. Interestingly many Candida isolates strongly inhibit plant 

pathogens. Representatives are, for example, Candida sake CPA-1 [67], Candida pseudolambica W16 [13], Candida albicans [68,69], 
Candida oleophila [70], Candida pyralidae Y63 [71], Candida tropicalis [72], Candida subhashii [73], which are envisaged as biological 

Table 1 
Antagonistic yeasts used for post-harvest disease management.  

Yeast Genera Species Pathogen Host fruit Reference 

Candida C. membranifaciens B. cinerea Grape [38] 
C. oleophila B. cinerea and Alternaria alternata Kiwifruit [39] 
C.sake 41E P. expansum Apple [40] 
C. orthopsilosis A. flavus and Aspergillus niger Citrus [41] 

Pichia P. kudriavzevii P. glabrum Grape [42] 
P. guilliermondii R. stolonifera, and P. expansum Peach [43] 
P. kudriavzeviii CMIAT171 Lasiodiplodia theobromae and Neofusicoccum parvum Mango [44] 
P. galeiformis (BAF03) P. digitatum Citrus [45] 
P. anomala Kh6 B. cinerea Apple [46] 

Metschnikowia M. pulcherrima 
M. guilliermondii 

B. cinerea 
B. cinerea 

Apple 
Grape 

[47] 
[38] 

M. guilliermondii green and blue molds Citrus [48] 
M. pulcherrima GP8 B. cinerea Grape [49] 
M. aff. Fructicola 
M. caribbica 

Penicillium 
C. gloeosporioides 

Lemon 
Mango 

[50] 
[51] 

Debaryomyces D. hansenii Penicillium citrinum Persian lime [52] 
Debaryomyces nepalensis C. gloeosporioides Mango [53] 
D. hansenii F9D P. expansum Apple and pear [54] 
D. hansenii B. cinerea and A. alternata Kiwifruit [55] 

Hanseniaspora H. osmophila B. cinerea Grape [56] 
H. guilliermondii YBB3 Aspergillus spp. Grape [57] 
H. uvarum and H. clermontiae B. cinerea Grape [58] 
H. opuntiae (CCMA 0760) B. cinerea Grape [59] 

Cryptococcus C. podzolicus blue mold Pear [60] 
C. podzolicus P. expansum Apple [61] 
C. laurentii 
C. laurentii 

B. cinerea 
P. italicum 

Cherry and tomato 
Citrus 

[62] 
[63] 

Aureobasidium A. pullulans A. flavus and A. niger Citrus [41]   
B. cinerea Grape [56] 

Kluyveromyces K. marxianus gray mold strawberry [64] 
Rhodotorula R. mucilaginosa P. expansum and R. stolonifera Peach [65] 
Sporidiobolus S. pararoseus Y16 A. niger Grape [66] 
Wickerhamomyces W. anomalus B. cinerea Tomato [31]  
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control agents to control mold and postharvest diseases in pome, stone fruits as well as citrus fruits. Its antagonistic effect has been 
tested to be effective in most fruits, including apple [74], mango [75], orange [41], grape [76], banana [77], tomato [78], citrus [79], 
litchi [80], peach [13], etc. One study showed that C. sake was effective in controlling Penicillium digitatum, a common post-harvest 
pathogen in pome fruits [40]. Another study found that C. oleophila, when applied as a post-harvest treatment on grape, elicited 
systemic resistance against P. digitatum, the main postharvest pathogen of citrus fruit [81]. 

Demonstrating its efficacy as a biocontrol agent, Candida exhibited enhanced colonization in wounded fruit tissues, particularly 
when treated with caffeic acid, resulting in superior biocontrol performance against gray and blue mold in kiwifruit. This aligns with 
previous findings on the biocontrol capabilities of C. oleophila, underscoring the significance of its population dynamics and stress 
tolerance, notably observed within the initial 48 h, in contributing to effective postharvest disease management [82,83]. Nonetheless, 
certain challenges associated with the use of Candida as a biocontrol agent for post-harvest disease management remain, such as 
variation in effectiveness dependent on the species and strain employed, the inoculum concentration, and environmental conditions. 

2.1.2. Pichia spp. 
Several species within the Pichia genus, such as Pichia guilliermondii [84], Pichia caribbica [85], Pichia membranifaciens NPCC 1250 

[86], Penicillium italicum [87], Pichia anomala [46], have been identified as effective biocontrol agents against various postharvest 
pathogens. These pathogens include Colletotrichum acutatum, Penicillium glabrum, Penicillium expansum, P. digitatum, Botrytis cinerea, 
Alternaria solani and Rhizopus stolonifer, on a variety of fruits [42,45,87]. In particular, Pichia treatment has been effective in con-
trolling apple blue mold [85], citrus green mold [45], loquat anthracnose rot [88], and postharvest anthracnose pathogen of banana 
[77]. The findings underscore the substantial promise of Pichia strains as viable, environmentally sustainable alternatives to chemical 
fungicides for mitigating postharvest diseases in fruits and vegetables. The biological control activity of yeasts has been evaluated for 
the control of various plant diseases and mold growth in agricultural products. For example, Campanella and Miceli [89] studied the 
efficacy of yeasts in controlling Fusarium wilt of lentil, while Druvefors et al. [33] investigated their potential in suppressing mold 
growth in wheat. Yeasts have also been explored as a biocontrol agent against Fusarium fujikuroi in rice [90]. These findings highlight 
the potential of yeasts as a natural and sustainable alternative to chemical pesticides for plant disease management. 

2.1.3. Metschnikowia spp. 
The genus Metschnikowia includes globally distributed phylloyeasts and nectar yeasts, which have great potential as natural and 

successful biological control tools. Metschnikowia sp. can produce an antibacterial pigment called pulcherrimin and has been studied 
extensively for its use in biological control [50,73]. Among these, Metschnikowia fructicola and Metschnikowia pulcherrima have been 
subject to the most comprehensive investigations regarding biological control, exhibiting the capacity to impede a diverse array of 
postharvest and plant rot diseases [50,91]. Some strains from Metschnikowia spp. have been proved available against P. digitatum [48], 
gray spot rot (Pestalotiopsis vismiae) [92], P. italicum, and Geotrichum citri-aurantii [14], brown rot of peaches [93]. The use of 
Metschnikowia as a biocontrol agent has several advantages, including its non-toxicity to humans and the environment, its low cost, and 
its ability to colonize plant surfaces, leading to long-lasting protection against plant pathogens. Some species of Metschnikowia have 
been studied for their potential use in food and beverage production [94]. For instance, M. pulcherrima is recognized for its proficiency 
in generating diverse flavor and aroma compounds, rendering it a favored yeast strain within the non-Saccharomyces species, 
particularly in the context of winemaking applications [95]. 

2.1.4. Debaryomyces spp. 
“Killer strains” are specific yeast variants adept at producing a proteinaceous killer toxin, lethal to susceptible strains lacking 

immunity. This phenomenon, termed the killer phenomenon, spans yeast genera: Debaryomyces, Hanseniaspora, Kluyveromyces, Pichia, 
Saccharomyces and Candida [96]. Within these, certain strains are identified as “killer strains” due to their toxin-producing capacity. 
Debaryomyces has exhibited efficacy in mitigating postharvest diseases in horticultural crops, such as apple and pear [54,97], 
muskmelon [98], jujube [99], persian lime [52], kiwifruit [100], mango [53], etc. Among antagonistic yeasts, D. hansenii exhibits 
remarkable resilience in withstanding severe environmental stressors, encompassing low pH levels, suboptimal temperatures, and 
heightened osmotic pressures [101]. The potential inhibitory effect of D. hansenii as an effective biocontrol agent against some 
post-harvest plant pathogens such as B. cinerea [102], P. digitatum on Tarocco orange fruits [103], blue mold caused by P. italicum on 
lime [104], Colletotrichum gloeosporioides, causing anthracnose on papaya fruits [12] has been demonstrated in several studies. 

2.1.5. Hanseniaspora spp. 
Hanseniaspora genus was formerly known as Kloeckera but was renamed to Hanseniaspora in 2003. Hanseniaspora species are found 

in a variety of habitats, including soil, fruit, flowers, and wine. They are known for their ability to produce fruity and floral aromas and 
flavors in fermented beverages, such as wine, beer, and cider [105]. Glucose and other sugars can be fermented by some Hanseniaspora 
species, and ethanol and other volatile compounds are produced during the fermentation process. Hanseniaspora species have been 
found to play a role in spontaneous wine fermentations, where they may be present in the early stages of fermentation before being 
outcompeted by other yeast species [106]. One significant advantage of using Hanseniaspora as a biocontrol agent is their natural 
presence on fruits and in the environment, as well as their generally recognized as safe (GRAS) status. Some species of Hanseniaspora 
have been investigated their potential as biocontrol agents against fungal pathogens that can infect crops. For example, Delgado et al. 
[16] noticed that the yeast strain Hanseniaspora osmophila (strain 337) was tested in vitro as a good biocontrol agent against Botrytis 
bunch rot and summer bunch rot in table grapes. H. osmophila (strain 337) demonstrated a mycelial inhibition effect of B. cinerea, 
Aspergillus spp., P. expansum, and R. stolonifera by their volatile organic compounds (VOCs) [16]. Similarly, Hanseniaspora opuntiae 
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(CCMA 0760) showed an antagonistic effect against gray mold in grapes caused by B. cinerea [59]. The mechanisms by which Han-
seniaspora species exert their biocontrol activity are not yet fully understood, but they may involve the production of antimicrobial 
compounds, competition for nutrients and space with the pathogen, and as previously mentioned the production of VOCs. Tejero et al. 
[107] showed that two antagonistic strains of Hanseniaspora, H. opuntiae L479 and Hanseniaspora uvarum L793, produced VOCs that 
inhibited the growth and mycotoxin production of Aspergillus flavus, a fungal pathogen that produces carcinogenic aflatoxins. These 
authors also observed that the Hanseniaspora strains influenced the expression of the regulatory gene of the aflatoxin pathway (aflR), 
which is essential for the production of aflatoxins by A. flavus [107]. This suggests that Hanseniaspora species may interfere with the 
regulation of toxin biosynthesis in the fungal pathogen. In another study, Cordero-Bueso et al. [58] substantiated that H. uvarum and 
Hanseniaspora clermontiae exhibited inhibitory effects on the proliferation of B. cinerea, a fungal pathogen known to induce gray mold 
disease in a diverse array of crops. The authors ascribed the biocontrol efficacy of these yeasts to their capacity for synthesizing cell 
wall-degrading enzymes and emitting VOCs that hindered the growth. 

2.1.6. Cryptococcus spp. 
Cryptococcus species have garnered attention for their potential use as biological control agents against postharvest diseases in 

peach, pear, apple [61]. These species include Cryptococcus laurentii, Cryptococcus flavescens, and Cryptococcus albidus strains [63,108, 
109]. Among them, C. albidus strain achieved registration as a biological control agent in 1997 [110] and has been demonstrated as an 
efficacious antagonistic yeast capable of notably eliciting resistance in a diverse array of fruits [109]. A large number of studies have 
reported the antagonistic effect of C. albidus on pathogenic fungi, such as gray mold and blue mold on apple, Botrytis of strawberries, 
and postharvest pears disease [86,111]. Research has centered on mechanisms contributing to enhanced disease resistance in 
antagonistic C. albidus yeast, encompassing assessments of enzyme activity, gene expression, secondary metabolites, and plant hor-
mones. Tang et al. [62] elucidated the correlation between ethylene and the resistance elicited by the biocontrol yeast C. laurentii 
against gray mold of B. cinerea infection in cherry tomato. Transcriptome sequencing of cherry tomato fruits pre-induced with 
C. laurentii revealed a significant up-regulation in the expression of several key genes involved in ethylene signal transduction 
pathways, including SlCHI9, SlGlub, SlPAL3, SlPR1, and SlPR5. In addition, the mechanism by which C. laurentii antagonist yeasts to 
enhance host fruit disease resistance also includes key enzyme activities and accumulation of antimicrobial secondary metabolites. The 
combined application of C. laurentii FRUC DJ1 and carboxymethylcellulose elicited the activities of defense enzymes, including chi-
tinase, β-1,3-glucanase, peroxidase, polyphenol oxidase, and phenylalanine ammonialyase [109]. This response served to fortify the 
fruits’ resistance against the green mold of postharvest grapefruit by the germination of P. digitatum conidia. 

2.1.7. Other antagonistic yeasts 
Aureobasidium is a genus of fungi that has been studied for its potential as a biocontrol agent for pre- and postharvest disease 

management. The most commonly studied species in this genus as biocontrol agents are Aureobasidium pullulans [41,112]. Research 
has shown that A. pullulans can be effective in controlling various post-harvest diseases, including gray mold, blue mold, and green 
mold on fruits and vegetables. The mechanism of action is thought to be through the production of antibiotics and competition with 
fungi for nutrients and space. Aureobasidin A is a natural product produced by A. pullulans that has been shown to have antifungal 
activity against a variety of plant pathogenic fungi [113]. In addition to this, A. pullulans also produces a range of enzymes that can help 
to break down plant cell walls and make nutrients more accessible. This can be particularly useful in the context of postharvest fruits 
and vegetables, where the presence of these enzymes can help to prevent spoilage and extend shelf life [42]. Overall, the use of 
A. pullulans as a biocontrol agent is a promising approach for reducing the use of synthetic fungicides and improving the quality of 
produce. 

Kluyveromyces yeasts are used in the production of fermented foods and beverages, such as bread, beer, and wine. Some species of 
Kluyveromyces have also been studied for their potential as probiotics and for their antimicrobial properties. Alasmar et al. [114] 
evaluated the in vivo application of Kluyveromyces marxianus QKM-4 strain in tomato and grape. VOCs produced by QKM-4 strain were 
able to significantly limit the fungal growth of 17 fungal species belonging to Aspergillus, Penicillium, and Fusarium genera. It was also 
observed that the QKM-4 strain had the ability to remove two mycotoxins, ochratoxin A (OTA) and deoxynivalenol (DON), which are 
produced by some of the key toxigenic fungi [114]. This was demonstrated through in vitro testing, which showed that the strain was 
able to significantly reduce the levels of these mycotoxins. In addition, Kluyveromyces lactis is a well-known producer of killer toxins, 
which have been shown to be effective against a wide range of fungal species, including those that are responsible for food spoilage and 
plant diseases. Killer yeasts are of interest to researchers and industry because they have potential applications in controlling spoilage 
and pathogenic yeasts in food and beverage production. By using killer yeasts, it may be possible to control the growth of undesired 
yeast strains and improve the quality and safety of fermented foods and beverages. Some strains of Saccharomyces strains are killer 
strains. Saccharomyces is a genus of yeasts that includes many species commonly used in the production of bread, beer, wine, and other 
fermented foods. One of the most well-known species is Saccharomyces cerevisiae, which have been proved to be effective in controlling 
apple blue mold disease and grape gray mold [115,116]. Certain species of Rhodotorula species, including Rhodotorula glutinis and 
Rhodotorula mucilaginosa, have been shown to be effective for the biocontrol of post-harvest pathogens such as B. cinerea and 
P. digitatum [117,118]. In addition, certain species from Sporidiobolus and Wickerhamomyces have been investigated for its potential use 
in post-harvest disease management. Several studies have shown promising results regarding the efficacy of Sporidiobolus in controlling 
post-harvest diseases in various crops such as strawberries, grapes, and tomatoes [66,119,120]. Sporidiobolus is generally considered 
safe for human consumption, and there are no reported cases of adverse effects associated with its use in post-harvest disease man-
agement. Wickerhamomyces anomalus WRL-076 is a yeast strain that has been studied for its biocontrol properties against A. flavus, a 
fungus known to produce the carcinogenic toxin aflatoxin [121]. The biocontrol efficacy of W. anomalus WRL-076 against A. flavus and 

Y. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e24929

6

its ability to decrease the expression of genes involved in aflatoxin biosynthesis make it a promising candidate for further research and 
potential use in agricultural applications to reduce the risk of aflatoxin contamination in crops. 

Identification of organisms at the species level is a critical aspect of categorization, and molecular techniques are important for 
achieving this goal. In a recent study, the effective yeast isolate H. guilliermondii YBB3 was identified as H. guilliermondii using 26S 
rDNA sequencing [57]. This methodology has also been used in previous studies, such as Cordero-Bueso et al. [58], to identify yeast 
species. Molecular analysis using 16S RNA also adapted to examine the biocontrol efficacy of some yeast isolates [122]. Ongoing 
investigations are presently delving into the prospective utilities of antagonistic yeasts across diverse domains. These pursuits are 
closely linked with concurrent inquiries scrutinizing the modalities by which they impede the proliferation of other microorganisms. 

2.2. Mechanisms of control of unwanted microorganisms by yeasts 

The use of antagonistic yeasts as biological control agents in crop protection, particularly in fruit and vegetable products, is 
considered a promising alternative to chemical fungicides, as they are effective in controlling pre- and post-harvest fungal diseases 
with less environmental impact. Modulation of interactions of antagonistic yeasts with the environment and host through, for example, 
spatial and nutrient distribution, synthesis and secretion of antifungal substances (VOCS, toxins, enzymes, antibiotics, etc.), myco-
parasitism, induction of plant immune responses to pathogens, are among the mechanisms of action of antagonistic yeasts which will 
be described briefly below. The reactive oxygen species (ROS) production, biofilm formation and quorum sensing are also responsible 
for their antagonistic activity suppressing postharvest fungal pathogens on fruits. 

2.2.1. Competition for nutrients and space 
The most prevalent and crucial mode of action involves competing for nutrients, space, and oxygen. Postharvest fruits are 

vulnerable to physical damage that can provide entry points for putrefactive pathogens. During the first 24 h of postharvest storage, 
yeast antagonists can exert their most critical modes of action in limiting the growth and spread of postharvest fungal diseases [82]. 
Living plants secrete organic acids, vitamins, minerals, and other easily utilized compounds, which serve as their primary nutrient 
source. Further, yeasts can use most of the carbohydrate and nitrogen sources for cell growth. By competing for nutrients and niche 
exclusion, yeast antagonists can outcompete pathogenic fungi for available resources, physically occupy wound spaces, and reduce 
nutrient availability at the wound site, thus limiting fungal spore germination, growth, and infection [82]. The attachment of 
antagonistic yeast to pathogenic mycelia also increases nutrient competition opportunities and impedes the pathogen infection pro-
cess. Therefore, utilizing yeast antagonists as biocontrol agents during postharvest storage can be highly effective in preserving the 
quality and safety of harvested fruits and vegetables. 

The colonization of fruit wounds by antagonists and effective competition with pathogenic fungi and bacteria are also influenced by 
other factors, including natural non-pathogenic microorganisms at the wound, antagonist concentration, the amount of available 
nutrients, temperature and humidity [123–125]. Bencheqroun et al. [126] observed that antagonist (A. pullulans strain Ach1-1) could 
reduce germination percentages of P. expansum conidia at lower apple juice concentration (0–5%). But the addition of juice to a final 
concentration of 5 % resulted in a decrease in the inhibitory potency of strain Ach1-1. Ach1-1 was effective in protecting postharvest 
wounded apples against P. expansum. However, the protective effect was significantly reduced when high concentrations of exogenous 
sugars, vitamins, and amino acids were applied, particularly when apple amino acids were applied at the wound site [126]. The 
requirement for physical contact between pathogen and antagonist is a key determinant of effective antagonist-mediated control. The 
germination of Penicillium digitatum and Penicillium italicum is clearly decreased without competition for space, however, when 
P. agglomerans (antagonistic bacteria) is in close contact with pathogen, germination of Penicillium conidia is almost completely 
inhibited [127]. These findings underscore the importance of direct pathogen-antagonist interaction for effective biocontrol. 

2.2.2. Secretion and synthesis of antibacterial compounds 
A number of antifungal VOCs produced by biocontrol yeasts have been associated with fungal inhibition, i.e., several alcohols and 

esters (ethyl acetate, isoamyl acetate, phenylethyl acetate, isobutyl acetate and ethyl propionate) [128]. Some VOCs have been shown 
to be very effective in inhibiting the growth of postharvest fungi in vivo. VOCs, produced by Sporidiobolus pararoseus, C. sake, Han-
seniaspora, W. anomalus, M. pulcherrima, A. pullulans and S. cerevisiae have been proven to significantly inhibit the growth of such 
pathogens as B. cinerea, C. acutatum, P. expansum, P. digitatum and P. italicum [129]. It has also been found that some killer toxins 
secreted by yeasts are active not only against sensitive yeasts but also against molds [130]. In addition, some antagonistic yeasts like 
Pichia membranaefaciens and Kloeckera apiculata have an ability to secrete hydrolytic enzymes, such as chitinase and β-1, 3-glucanase, 
which can damage the fungal cell wall after induction [131]. 

Some antagonistic yeasts produce natural antibiotics that can be used as an alternative to synthetic antibiotics. M. pulcherrima, 
exhibiting strong antagonistic activity against B. cinerea growth, synthesizes 35 metabolites such as piperideine and protoemetine 
(alkaloids), p-coumaroyl quinic acid (phenylpropanoid), β-rhodomycin (antibiotic), hexadecanedioic acid (long chain fatty acid) or 
taurocholic acid (bile acid) [91]. Aureobasidium strains with the ability to produce non-volatile metabolites such as polysaccharides, 
lytic enzymes, siderophores and antibiotics, are used as antagonistic agent against gray mold of tomato [132]. Another way in which 
Aureobasidium strains can suppress gray mold is by inhibiting the activity of xylanase, an enzyme produced by B. cinerea that is 
involved in the degradation of plant cell walls and contributes to the virulence of the pathogen. By producing compounds that inhibit 
xylanase activity, Aureobasidium strains can reduce the ability of B. cinerea to cause disease. 

Antagonistic yeasts are also capable of producing substances with antimicrobial properties including organic acids [133], hydrogen 
peroxide [134], and extracellular proteases [135]. These compounds can effectively restrict the growth of harmful microorganisms and 
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thereby prevent infections. 

2.2.3. Mycoparasitism and the secretion of lytic enzymes 
Mycoparasitism is considered a major contributor to fungus-fungus antagonism. Mycoparasitism is a type of antagonistic inter-

action between two fungi where one fungus, called the mycoparasite, feeds on another fungus, called the host or prey, through direct 
attachment and secretion of lytic enzymes. The mycoparasite can derive nutrition from the host, which can lead to the death of the 
host. 

Mycoparasites can be a potential tool for biocontrol of fungal diseases in crops and can also play a role in the natural regulation of 
fungal populations in the environment. Some examples of mycoparasites include Trichoderma species, which are commonly used as 
biocontrol agents against various plant pathogens, and S. cerevisiae, which has been shown to parasitize on filamentous fungi in certain 
conditions [136,137]. During mycoparasitism, the yeasts secrete a variety of enzymes to degrade the fungal pathogen cell wall, and 
these enzymes play a crucial role in biocontrol. β-1,3-glucanase (GLU) breaks down the β-1,3-glucan component of the fungal cell wall, 
which is an important structural component that provides rigidity to the cell wall. Chitinases hydrolyze chitin, another important 
component of the fungal cell wall. Proteases also play an important role in breaking down proteins [138]. For example, the MfChi 
chitinase of Metschnikowia fructicola AP47 has been reported to play a primary role in its antagonistic activity against Monilinia 
fructicola and Monilinia laxa in vitro and on peaches [93]. 

Overall, mycoparasites and their enzymatic activities hold promise for the control of fungal pathogens in agriculture and other 
settings. However, mycoparasitism in yeasts has been poorly studied. Further research is needed to fully understand the mechanisms of 
mycoparasitism. 

2.2.4. The role of biofilm formation and quorum sensing 
The ability of antagonistic yeasts to effectively adhere, colonize, and multiply on both intact and injured fruit surfaces has been 

attributed to their capacity for biofilm formation, which involves the creation of microcolonies embedded in a matrix of hydrated 
proteins, nucleic acids, and polysaccharides. Quorum sensing (QS) is a mechanism by which bacteria, fungi, and other microorganisms 
can communicate and coordinate their activities to achieve certain goals such as the colonization of a host, sporulation, the formation 
of biofilms, or the expression of virulence factors. QS is frequently noted in yeasts’ biofilm formation. It constitutes an intricate 
intercellular signaling system facilitated by small diffusible molecules. These molecules, known as quorum sensing molecules (QSMs), 
accumulate in the environment as microbial populations grow, triggering specific gene expression upon reaching a threshold con-
centration [139]. QS has demonstrated effective control of postharvest pathogens in biocontrol systems by facilitating cell-to-cell 
communication, enabling individual cells to regulate their phenotype in response to the concentration of extracellular 
quorum-sensing molecules [140]. For example, phenylethanol, which acts as a QS molecule, induces the adherence and biofilm 
formation of K. apiculata on citrus fruit, leading to the development of an extracellular matrix that creates a mechanical barrier be-
tween the pathogen and the wound surface [141]. Some antagonistic yeasts used for biocontrol against fruit diseases were suggested to 
utilize biofilm formation as an important mode of action [142]. The biocontrol efficacy of a biofilm-forming Pichia kudriavzevii strain is 
tightly correlated with the morphological change of yeast cells. P. kudriavzevii in the biofilm form exhibits significantly increased 
tolerance to heat and oxidative stresses, as well as improved biocontrol efficacy against postharvest diseases on pear fruit compared to 
the yeast-like form [143]. Cordero-Bueso et al. [58] isolated 26 yeast species from grape, 20 of which were found to have antagonistic 
action against all molds through several mechanisms of action, including nutrient and space competition, cell wall degrading enzymes, 
and biofilm formation. However, in some instances, the formation of biofilm can result in an unforeseen pathogenic response. 
Although biofilm-forming strain of Pichia fermentans effectively controls brown rot when inoculated into apple surfaces and within 
apple wounds, its colonization of peach fruit tissue results in rapid decay of the fruit tissues through a transition from budding growth 
to pseudohyphal growth, even in the absence of a phytopathogenic strain of M. fructicola [144]. The association of unexpected 
pathogenic behaviors with unique biofilm structures that promote virulence factor production remains unclear. However, these 
findings emphasize the significance of studying biofilms to better comprehend their role in infection. 

2.2.5. Induced systemic resistance of fruit host 
The existence of adaptive defense mechanisms in plants allows pathogens that manage to break through the physical barriers of 

plant tissue, such as wax, cuticle, and thick cell walls, to be recognized by the plant host and thus trigger and activate innate plant 
immunity [145]. This latent defense mechanism, known as induced systemic resistance (ISR), is affected by biological or abiotic 
agents, such as microorganisms and chemicals [146]. A variety of biochemical defense responses are induced by antagonistic yeasts on 
fruit and vegetable wound surfaces, in addition to nutritional and spatial competition. In several studies, it was proven that antago-
nistic yeasts, such as C. oleophila, P. membranefaciens, Rhodosporidium paludigenum, and M. fructicola may induce systemic resistance in 
plants [81]. For instance, P. guilliermondii-treated peach fruit gained improved disease resistance against R. stolonifer and P. expansum 
infection by increasing the activities of defense-related enzymes and the content of salicylic acid [147]. C. oleophila application to 
surface wounds or to intact ‘Marsh Seedless’ grapefruit elicited systemic resistance against P. digitatum, the main postharvest pathogen 
of citrus fruit [81]. Despite these findings, the capacity of different yeasts to induce ISR in plants has not been systematically inves-
tigated, and the underlying mechanisms are not well understood. 

2.2.6. Other mechanisms 
Yeasts can also enhance the production of ROS as a means of inhibiting the growth of postharvest pathogens [91]. By withstanding 

oxidative stress, antagonistic yeasts can maintain their viability and continue to exert their inhibitory effects on postharvest pathogens 
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[148]. Yeasts also gained importance in prevention and decontamination of mycotoxin [149]. Yeasts possess immense potential as 
biocontrol agents in postharvest systems due to their ability to offer multiple modes of action and their reputation for being safe and 
eco-friendly. Table 2 presents the actions carried out within a tritrophic interaction system involving an antagonistic microbe, a fungal 
pathogen, and a host fruit, which are aimed at controlling postharvest diseases. 

2.3. Enhancing biocontrol efficacy and viability 

Biocontrol yeasts used to control postharvest diseases encounter a variety of environmental conditions that affect their ability to 
survive and thus their efficacy. In some cases, biocontrol agents are applied in the field before harvest, which exposes them to a wide 
range of environmental stresses, such as extreme temperature, oxidative stress, freeze/spray drying for their preparation, solute stress, 
and extreme pH in biological control systems. Survival and proliferation in injured tissue contribute to postharvest biological control 
effectiveness [157]. Nonetheless, the surplus of ROS in fruit tissues during the injury process could impact the efficacy of yeast [158]. 
The pH value of medium and fruit tissue can also affect the growth and the vitality of biocontrol yeasts. Therefore, enhancing the 
tolerance to unfriendly environment is a strategy to improve the survival ability and biological antagonism of yeasts. A diagram of 
promising strategies to improve the efficacy of antagonistic yeasts is shown in Fig. 2. 

Previous studies have shown that cold adaptation regulates yeast membrane fluidity in response to dry environments, while mild 
heat shock enhances tolerance to subsequent lethal heat stimulation and oxidative stress, suggesting that mild stress enhances the 
tolerance of biocontrol agents to subsequent lethal stress [159]. Sublethal oxidative stress has also been reported to enhance the ability 
of yeast to tolerate subsequent adverse environmental conditions [160]. In addition, the salt adapted R. paludigenum showed better 
viability than the un-adapted cells in low water activity medium and in frozen environment. Wang et al. [161] have conducted 
research to enhance the acid tolerance of R. paludigenum, by modifying it with malic and lactic acid. Therefore, yeast preadaptation to 
abiotic stress may have positive implications for improving the effectiveness of antagonistic yeasts, which will be more effective in 
controlling postharvest spoilage in fruits and vegetables under a wider range of environmental conditions, thereby reducing economic 
losses. 

The combination with other antimicrobial compounds is also one of the effective ways to improve the performance of biological 
control. The synergistic effects of methyl jasmonate and salicylic acid, the plant growth regulator and defense activator respectively, 
which have been observed to produce a synergistic effect with antagonistic yeasts for safeguarding various fruits such as apple, pear, 
peach, and loquat [162]. The combined application with biomacromolecules with good compatibility, such as, chitosan, alginate, gum, 
starch, or cellulose is also a good choice to improve the biological control ability of yeasts [163]. There are also studies about the 
function of metal ions (magnesium, ferrous, and zinc), from which addition enhanced the antagonistic activity and biomass production 
ability of yeast [164]. Glucose is also widely used as a protectant for biological control agents to withstand various stresses [165]. 

Table 2 
Representative modes of action by antagonistic yeasts in postharvest biocontrol systems involving pathogen-fruit host-yeast interactions.  

Modes of action Antagonistic yeasts Target pathogens Host fruits References 

Competition for nutrients 
and space 

P. anomala, D. hansenii, H. guilliermondii P. Digitatum Citrus [150]  

A. pullulans GE17, Meyerozyma guilliermondii KL3 P. expansum DSM62841, 
P. digitatum DSM2750 

Apple, lemon [151]  

W. anomalus P. expansum Apple [152] 
Synthesis of antifungal 

compounds 
M. pulcherrima B. cinerea Tomato, grape, 

apple 
[91]  

A. pullulans, A. subglaciale, A. melanogenum B.cinerea Tomato [132]  
P. membranaefaciens, Kloeckera apiculate M. fructicola Plum [131]  
P. kudriavzevii L18 P. glabrum Grape [42] 

Mycoparasitism W. anomalus, M. guilliermondii C. gloeosporioides Papaya [130]  
D. hansenii Fusarium proliferatum Muskmelon [98] 

The secretion of lytic 
enzymes 

A. pullulans PL5 M. laxa, B. cinerea, P. expansum N/A [135]  

P. membranaefaciens, K. apiculate M. fructicola Plum [131] 
Biofilm formation and 

quorum sensing 
Zygoascus meyerae L29 P. glabrum Grape [42]  

K. apiculata 34-9 strain P. italicum Citrus [141]  
Torulaspora indica DMKU-RP31, T. indica DMKU-RP35, 
Pseudozyma hubeiensis YE-21 

L. theobromae, C. gloeosporioides Mango [153]  

D. nepalensis A. alternate Jujube [99] 
Induced systemic resistance 

of host 
K. apiculate P. Expansum Apple [22]  

P. membranefaciens R. stolonifera Peach [154]  
D. hansenii R. Stolonifera Strawberry [155]  
P. membranefaciens P. italicum, P. digitatum Citrus [156] 

Enhanced production of ROS M. fructicola, C. oleophila N/A Citrus, apple [134]  
M. pulcherrima B. cinerea Tomato, grape, 

apple 
[91]  
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Fig. 2. Diagram of promising strategies to improve the efficacy of antagonistic yeasts.  

Table 3 
Examples of biopreservation of processed food by antagonist yeasts.  

Food types Antagonistic yeasts Mode of action Targeted pathogens References 

Wine M. pulcherrima Secretion of lytic enzymes, VOCs Mucor, Botrytis, 
Aspergillu, Penicillium 

[166] 

Cheese D. hansenii B9010 Secretion of mycin, competition for nutrients and 
space, Production of aromatic compounds with 
antifungal activity 

Aspergillus sp., B. fulva, 
B. nivea, Cladosporium sp., Eurotium 
chevalieri, Penicillium candidum, Penicillium 
roqueforti 

[167] 

Red grape 
juice 

C. pyralidae The killer toxins CpKT1 and CpKT2 killer toxins Brettanomyces bruxellensis [168] 

Apple juice R. mucilaginosa Degradation of the mycotoxin patulin, competition for 
nutrients 

Penicillium [20] 

Coffee S. cerevisiae UFLA 
YCN727, 
S. cerevisiae UFLA 
YCN724, 
Candida parapsilosis 
UFLA YCN448, 
P. guilliermondii UFLA 
YCN731 

Production of organic acids, volatile compounds, 
Secretion of hydrolytic enzymes 

Spoilage bacteria and fungi [169] 

Coffee S.cerevisiae CCMA 
1302 

Volatile organic compounds production, biofilm 
formation 

Aspergillus carbonarius [170] 

Dry-fermented 
Sausages 

D. hansenii 280 Competition for nutrients and space, production of 
soluble or volatile compounds 

Penicillium verrucosum [171] 

Dry-cured ham D. hansenii Competition for nutrients and space, compounds with 
antimycotic activity are produced, degrading 
mycotoxins to the less toxic compounds 

P. nordicum [172] 

Cheese D. Hansenii production of volatile compounds Cladosporium inversicolor, Cladosporium 
sinuosum, Fusarium avenaceum, Mucor 
racemosus, P. roqueforti 

[133] 

Smear Soft 
Cheese 

D. hansenii (GMPA, 
304) 

Synthesis of proteolytic enzymes N/A [173] 

Fermented 
milks 

S. cerevisiae, 
K. marxianus 

Competition for nutrients and space, Production of 
mycocin 

Escherichia coli [174]  
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3. Biopreservation of yeasts in processed foods 

Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Although there is a 
great deal of research on the use of yeasts as biocontrol agents to protect agricultural products, some research has also contributed to 
the use of yeasts to inhibit foodborne bacteria and fungi. The application of yeast in processed foods was first reflected in the control 
and participation in the fermentation process, such as wine, beer, bread, or cheese. As shown in Table 3, some antagonists used for 
postharvest control of fruits and vegetables also have great antimicrobial potential in food processing, which indicates that the good 
characteristics of biocontrol yeasts can be used as a favorable reference for the use of yeast to control food quality in the future. In this 
section, current uses of yeasts in processed foods such as juices, wine, coffee, dry-cured meat products, dairy products will be 
introduced. 

3.1. Plant-based foods 

3.1.1. Wine 
Unregulated proliferation of microorganisms prior to, during, or following wine fermentation has the potential to modify the 

chemical makeup of the final product, thereby diminishing its sensory characteristics such as its appearance, aroma, and flavor. Sulfur 
dioxide (SO2) is considered an essential tool for winemakers and the commonly used chemical additive in the wine industry due to its 
low cost, antioxidant and anti-microbial properties [175]. However, excessive use of chemical preservatives degrades the quality of 
wines and faces increasing consumer resistance. The World Health Organization (WHO) promotes alternative methods to diminish or 
eliminate the use of SO2 in wine production. Therefore, biological preservation using yeast and its derived metabolites is currently 
being considered as an alternative to chemical preservation. 

S. cerevisiae is the primary yeast responsible for conducting alcoholic fermentation during the brewing process. The ability of 
S. cerevisiae to tolerate higher concentrations of ethanol compared to other microorganisms is a major factor that contributes to its 
dominance during alcoholic fermentation. Most studies have validated the use of S. cerevisiae as starter cultures to prevent the growth 
of spoilage yeast and bacteria in wine fermentations [176]. Additionally, S. cerevisiae has also been proposed as an alternative strategy 
to control mycotoxins. S. cerevisiae DISAABA1182 was identified with an ability to inhibit the growth of A. carbonarius and Aspergillus 
ochraceusboth in vivo and in vitro [177]. Its capability to suppress OTA production was investigated through the transcriptional 
regulation of OTA biosynthetic genes pks (polyketide synthase). The effect of Saccharomyces cerevisiae strains to produce OTA, DON 
and zearalenone (ZEA) is affected by different interacting environmental conditions, e.g., temperature, moisture activity, pH values 
[178].The Saccharomyces eubayanus killer toxin isolated in a wine-like medium can break down the cell walls of Brettanomyces 
bruxellensis, P. membranifaciens, M. guilliermondii, and Pichia manshurica, leading to necrotic and apoptotic death in a dose-dependent 
manner [179]. Furthermore, S. cerevisiae produces peptides derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that 
have antimicrobial activity against a variety of microorganisms, including bacteria and fungi. These peptides are thought to play a role 
in the yeast’s defense system, protecting it from potential pathogens that could compete for resources during fermentation [180]. 

Non-Saccharomyces yeasts are naturally present in grapes and vineyards and typically dominate the early stages of spontaneous 
fermentation before S. cerevisiae takes over and completes the fermentation process. Non-Saccharomyces yeasts are now recognized for 
their various contributions to wine production, including increasing the complexity of wine aroma, reducing the ethanol content of 
wine, and aiding in the prevention of wine spoilage [181]. Research has investigated the potential of non-Saccharomyces yeasts as 
bioprotective agents in wine, such as Torulaspora delbrueckii [182], M. pulcherrima [183], W. anomalus [181]. The introduction of 
non-Saccharomyces yeast species such as T. delbrueckii and Lachancea thermotolerans during the early stages of vinification had a 
comparable impact to the use of SO2, in terms of restraining the growth of harmful microorganisms [184]. CpKT1 and CpKT2 are killer 
toxins that have been isolated from the wine yeast C. pyralidae [167]. These toxins can inhibit the growth of various yeast species, 
including B. bruxellensis, which is a common wine spoilage yeast. 

3.1.2. Juices 
While there has been extensive research on the biological control of postharvest fruits and vegetables using antagonistic yeasts, the 

focus of research on the biological protection of fruit juice has mainly been on grape juice [185]. However, there has been some recent 
research on the use of antagonistic yeasts for the biological protection of other types of fruit juice. Additionally, some research has 
focused on the use of yeast-based biocontrol agents to improve the shelf life and quality of fruit juices during storage. A survey carried 
out by Richards et al. [186] has demonstrated the potential use of D. hansenii, P. guilliermondii, and Pseudozyma spp. as natural pre-
servatives to inhibit the growth of Salmonella in cantaloupe juice and wounds. In the study conducted by Chan and Tian [187], in-
teractions between the antagonistic yeasts P. membranefaciens and C. albidus, along with three fungal pathogens—M. fructicola, 
P. expansum, and R. stolonifer—were explored on both apple juice agar plates and in apple wounds. P. membranefaciens demonstrated 
superior attachment to fungal hyphae, a process effectively inhibited by sodium dodecyl sulfate (SDS) and β-mercaptoethanol. 
Moreover, culture extracts from P. membranefaciens exhibited elevated levels of β-1,3-glucanase and exo-chitinase activities but lower 
endo-chitinase activity compared to C. albidus. The findings revealed that the yeasts were able to successfully impede the growth of the 
fungal pathogens by utilizing a combination of tenacious attachment and the secretion of extracellular lytic enzymes. 

Many yeasts can degrade mycotoxins, including patulin, which frequently contaminates fruits and fruit-derived products. 
R. mucilaginosa and its orotate phosphoribosyltransferase enzyme have potential to reduce patulin in apple juice [20]. A strain of 
Rhodosporidium kratochvilovae, LS11 strain, also exhibits a detoxification effect on patulin, suggesting a novel biodegradation pathway 
[188]. Yue et al. [189] suggested that inactivated yeast strains can effectively reduce the amount of patulin in apple juice by more than 
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50 % within 24 h of treatment. This indicates that inactivated yeast strains have the potential to be used as a method for patulin 
reduction in apple juice processing. However, it is important to note that the efficacy of patulin reduction may depend on various 
factors, such as the initial concentration of patulin in the juice, the specific yeast strains used, and the treatment conditions. Addi-
tionally, the impact of inactivated yeast treatment on other quality parameters of apple juice, such as flavor, aroma, and nutritional 
content, also needs to be evaluated to ensure that the final product meets the desired quality standards. The optimal conditions for the 
use of inactivated yeast strains to reduce patulin in apple juice processing need to be determined so that the resulting product 
maintains high quality and safety standards. 

3.1.3. Coffee 
The use of antagonistic yeasts in coffee processing is a promising approach to reduce the use of synthetic fungicides and improve 

coffee quality. In addition to wine production, S. cerevisiae is highly used in coffee production and in the fermentation of coffee waste 
grounds [190]. S. cerevisiae is used to ferment the coffee cherries before they are roasted in coffee production. Besides S. cerevisiae, 
some of the most identified yeast genera in coffee fermentation and processing include Pichia, Candida, Saccharomyces, Rhodotorula, 
Hanseniaspora, Kluyveromyces and Torulaspora [169,191]. In a study investigating coffee fermentation using three S. cerevisiae strains as 
starter cultures (i.e., bakery, white, and sparkling wine yeasts), a significant reduction in the production of non-desired compounds, 
including β-N-alkanoyl-5-hydroxytryptamides (C-5HTs), cafestol, and kahweol, was observed [192]. This highlights the potential role 
of yeasts in controlling the production of unwanted compounds during coffee fermentation. H. uvarum and P. kudriavzevii have been 
characterized as predominant strains in the yeast community during the wet fermentation of coffee beans [193], and the potential 
antagonism of P. kudriavzevii with Bacillus cereus have also been recorded [194]. 

Filamentous fungi, including Aspergillus, Penicillium, Cladosporium, and Fusarium, are commonly found in coffee beans and are 
known to produce mycotoxins. These toxic secondary metabolites can negatively impact the quality and safety of coffee, posing po-
tential health risks to consumers. In this regard, selecting the appropriate starter for fermentation is crucial in preventing the growth of 
filamentous fungi, particularly those that produce OTA. P. anomala and Pichia kluyveri are both potential candidates for this purpose 
[195]. In vitro and in vivo assays demonstrated the effectiveness of S. cerevisiae CCMA strains in inhibiting ochratoxigenic fungi, with 
biofilm formation identified as a key mode of action [170]. Despite these findings, the role of yeasts in interactions with other mi-
croorganisms present in the fermentation process are still not well understood. 

3.2. Animal origin foods 

3.2.1. Dry-cured meat products 
In addition to serving as a flavoring agent, yeasts possess the unique ability to proliferate to substantial populations on the surface 

of dry-cured meats [196]. This attribute renders them suitable candidates for acting as antagonists to combat undesirable fungi. 

3.2.1.1. Dry-cured ham. Dry-cured ham is a traditional meat product that is produced by a process of salt-curing and air-drying. 
During the ripening period, which can last several months, an uncontrolled microbial population grows on the surface of the ham. 
This microbial population plays a crucial role in the development of the unique flavor and aroma of the final product. Several types of 
microorganisms have been identified as dominant in different types of dry-cured ham during most of the ripening period. These include 
molds, yeasts, and Gram-positive and catalase-positive cocci. Molds are typically the first microorganisms to colonize the surface of the 
ham, and they play an important role in the initial stages of ripening. As the ripening process continues, yeasts and bacteria become 
more dominant, and they contribute to the development of the characteristic flavor and aroma of the ham. 

Several studies revealed the contribution of yeasts to the sensory characteristics of dry-cured meat products thanks to their pro-
teolytic and lipolytic activities and their role in volatile compounds generation [197]. During ham processing, the yeast species that are 
most commonly isolated belong to the genera Debaryomyces and Candida, while Cryptococcus, Rhodotorula, and Rhodosporidium are less 
frequently found [198]. D. hansenii is the predominant species in dry cured ham isolates during processing, but this predominance 
becomes more remarkable in fully matured products [199]. The prevalence of D. hansenii in dry-cured meat products can be attributed 
to its moderate halophilic properties. This characteristic enables the optimal growth of D. hansenii in environments with a salt con-
centration of 3–5% [200]. However, differences in the volatile compounds generation between D. hansenii biotypes usually found in 
dry-cured meat products have been recently reported in a meat model system [201]. Several studies have reported the potential of 
selected antagonist yeasts to prevent the growth of unwanted molds and the accumulation of mycotoxins [201–203]. Furthermore, 
D. hansenii has been traditionally included in the European Union list of biological agents recommended for Qualified Presumption of 
Safety [19]. Studies have shown that D. hansenii has antimicrobial properties that can inhibit the growth of certain bacteria, including 
Listeria monocytogenes [204] and certain molds including Penicillium spp [205,206]. and ochratoxigenic molds [203] on dry-cured ham. 
Improper processing procedures can increase the development of mold, which can lead to negative effects such as the production of 
OTA. OTA has been classified by the International Agency for Research on Cancer (IARC) as a “Group B″ of human carcinogenic 
molecules [207]. Many studies have shown that OTA contamination can be effectively reduced or inhibited by using fine strains 
screened from dry-cured hams as biocontrol agents [203,208,209]. This biocontrol method is considered safe, healthy, and effective. 
D. hansenii is used as an effective biocontrol agent to enhance the safety of dry-cured hams by competing for nutrients and space with 
OTA producers, producing antifungal compounds, and influencing secondary metabolism, or inhibiting biosynthesis of mycotoxins 
[210,211]. Understanding how antagonistic yeasts work is important for improving their ability to fight toxigenic fungi. New pro-
cessing and storage techniques to prevent meat spoilage bacteria may also allow yeasts to control the bacteria responsible for spoilage. 
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However, consideration should also be given to the effect of biocontrol agents on ham quality, such as the flavor characteristics [212]. 

3.2.1.2. Dry-cured sausage. The dry fermented sausages are commonly perceived as safe products from a microbiological standpoint, 
primarily owing to a few factors. These include the lower pH levels and water activity (aw) of the sausages, as well as the addition of 
various ingredients like salt, nitrites, and spices. These constituents, in principle, can help prevent the proliferation of food-borne and 
spoilage microorganisms [213]. However, there are still potential risks associated with raw meat, improper storage, and 
cross-contamination, which can lead to foodborne illness if not properly managed. 

Research on the use of yeasts for biopreservation in dry-cured sausages has been ongoing in recent years, with several studies 
exploring the efficacy and safety of various yeast strains. One common yeast strain used for biopreservation in dry-cured sausage is 
D. hansenii [170]. This yeast is naturally present on meat and has been shown to inhibit the growth of harmful bacteria while also 
improving the flavor and texture of the sausage. Twenty-two isolates of D. hansenii were obtained from naturally fermented sausages 
and evaluated for their contribution to sausage aroma by measuring the production of volatile compounds [171]. The predominant 
volatile compounds produced by these isolates were esters, including ethyl and methyl esters, as well as sulfur compounds, alcohols, 
aldehydes, and ketones. An investigation carried out by García-Béjar et al. [214] centered on the examination of yeast strains isolated 
from fermented sausages and observed that the identified isolates can produce volatile compounds such as esters, aldehydes, and fusel 
alcohols, among others. Notably, the study established that these strains exhibited biocontrol properties against mycotoxin molds, 
including D. hansenii, Kazachstania servazzii, and W. anomalus. In addition to the production of volatile compounds with antibacterial 
activity, the modes of action involved in the potential antifungal activity by yeasts include competition for nutrients and space or killer 
proteins [215]. Álvarez et al. [211] have evaluated the effectiveness of the inoculation of E. faecium SE920, D. hansenii FHSCC 253H, 
and P. chrysogenum CECT 20922 in controlling toxigenic molds without affecting the sensory quality of dry-cured fermented sausage 
(salchichón)-based medium. The role of antifungal yeast in reducing mycotoxin biosynthesis at the transcriptional level has been 
investigated. Two strains of D. hansenii yeast (FHSCC 125G and FHSCC 253H), isolated from dry-cured meat product, exhibited 
antagonistic activity against Aspergillus parasiticus by inhibiting its growth. Furthermore, the study demonstrated that the relative 
expression levels of the genes involved in the biosynthesis of aflatoxins, aflR and aflS, are downregulated by the yeast strains, indi-
cating their potential as biocontrol agents to reduce aflatoxin contamination in dry-cured meat products [216]. D. hansenii FHSCC 
253H has also been found to decrease the abundance of proteins involved in OTA biosynthesis in Penicillium nordicum. Additionally, the 
combination of yeast and rosemary has been observed to affect the cell wall integrity pathway, which is linked to mycotoxin synthesis 
in molds [217]. 

3.2.2. Dairy products 

3.2.2.1. Cheese. Cheese is generally considered safe due to the presence of natural microflora such as yeasts, but mold contamination 
is a prevalent issue that can result in reduced cheese quality and potential mycotoxin formation [218]. Mold growth can occur 
throughout cheese production, leading to visible and invisible defects like mold colonization and off-flavors [219]. Some of the fungi 
growing on cheese may also produce mycotoxins, which lead to a food safety issue. The mold genus that contaminates cheese is mainly 
Penicillium, followed by Aspergillus. Therefore, there is growing interest in the use of antifungal compounds and biocontrol agents to 
prevent mold growth during cheese ripening, storage, and distribution. 

Antagonistic yeasts have been reported to be effective biocontrol agents for preventing the growth of spoilage and pathogenic 
bacteria in dairy systems [220,221]. One of the most commonly used yeasts for biocontrol in dairy systems is D. hansenii, which is able 
to inhibit the growth of dairy molds such as Aspergillus spp., Byssochlamys fulva, Byssochlamys nivea, Cladosporium spp., Eurotium 
chevalieri, P. candidum, and P. roqueforti [167]. The yeast is commonly associated with smear soft cheese deacidification during 
ripening [173]. In the case of Danish cheese brines, D. hansenii strains have been found to exhibit good ability to inhibit the germi-
nation and growth of contaminating molds. The antagonistic activity of D. hansenii has been attributed to the production of 71 volatile 
compounds [133]. Surface-ripened cheeses develop a biofilm on their surface, known as the cheese rind, which is composed of a 
diverse community of bacteria and fungi. Yeasts are the first microorganisms to colonize the cheese surface immediately after brining, 
initiating the surface ripening process. This microbial community contributes to the unique characteristics of different cheese varieties 
[222]. A survey on soft-cheese model curds indicates that D. hansenii exhibited a rapid colonization of the ecosystem and suppressed 
the growth of Penicillium camemberti and other fungi during a 31-day ripening period [223]. The observed dominance of D. hansenii 
may be attributed to its capacity to thrive in the cheese-making environment characterized by high salt concentrations and low pH 
levels. However, D. hansenii was more effective at inhibiting smaller concentrations of mold in dairy products than higher concen-
trations of mold [167]. Further, the temperature, relative humidity, and nutrient availability also influence the antifungal efficiency of 
D. hansenii [173]. The NaCl tolerance of D. hansenii strains isolated from Danish cheese brines at specific temperatures has been studied 
[224], which provides an idea for screening yeasts with relevant traits from cheese brines for use in the cheese industry. While there 
has been some research on the role of antagonistic yeasts in cheese biopreservation, our understanding of their mechanisms of action 
and their potential use in the cheese industry is still limited. 

3.2.2.2. Fermented milks. The use of killer yeasts for biocontrol purposes is still an area of active research and development, and there 
is still much to be learnt about their effectiveness and safety in various applications. However, their potential to control unwanted 
yeast growth and improve the quality and safety of fermented foods and beverages is a promising area of investigation. Fermented milk 
is produced by the fermentation of milk by suitable microorganisms, resulting in a decrease in pH. Depending on the dominant 
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microbiota, fermented milk can be classified into two main types: lactic fermentation, which is dominated by lactic acid bacteria, and 
fungal-lactic fermentation, which involves both yeasts and lactic acid bacteria. Examples of fungal-lactic fermented milk products 
include Kefir, Koumiss, and Viili, among others [21]. LAB are well known, while yeasts have received less research attention and fewer 
commercial preparations are available. Yeasts possess natural resistance to antibacterial antibiotics, which is an advantage over 
bacteria. In contrast, the transfer of antibiotic resistance between lactobacilli and pathogenic bacteria poses a threat. 

Common yeasts associated with fermented milks include Kluyveromyces spp., Saccharomyces spp., and Pichia spp [21,225]. 
Fernández-Pacheco et al. [105] applied S. cerevisiae 3 and H. osmophila 1056 to improve the quality of ewe’s milk and found that both 
strains provided promising kinetic parameters and improved flavor. They generated a variety of organic acids and could be inoculated 
with bacterial starters to create products with higher varieties of flavor compounds. Additionally, they acted as biocontrol agents 
against some mycotoxigenic molds. In a study by Chen et al. [174], S. cerevisiae and K. marxianus isolated from Koumiss were found to 
produce mycocin. Typically, the mycocin extracts from K. marxianus yeast showed stable and effective antibacterial properties against 
pathogenic Escherichia coli both in vivo and in vitro, suggesting its potential use as an E. coli growth inhibitor. Yeasts from fermented 
foods and beverages have been reported to secrete various substances, including volatile acids, killer toxins, organic acids, antibiotic 
factors, and other compounds. Furthermore, K. marxianus was found to improve the nutritional value and sensory characteristics of 
goat milk [226]. These findings suggest that K. marxianus has potential as a probiotic strain for use in fermented milk products. 

4. Commercial application 

The use of yeast as a biocontrol agent in postharvest disease management holds great potential due to its effectiveness, safety, and 
sustainability. However, despite the extensive research conducted on yeasts as biocontrol agents, commercialization of yeast-based 
biocontrol products in the processed food industry has been limited. The stark contrast between the numerous “biocontrol yeasts” 
extensively documented in scientific literature and the limited number of yeast-based protection products officially registered and 
available in the market is notable. Various factors, such as a deficiency in mechanistic understanding, challenges and expenses 
associated with product registration, a scarcity of partnerships or consortia with the necessary expertise, and perceived limited 
commercial potential, likely contribute to the apparent challenges in the development of yeast-based plant protection products [162]. 
Nonetheless, ongoing research efforts in this area aim to develop consistent and reliable yeast-based biocontrol products, which have 
the potential to contribute significantly to the reduction of postharvest food losses and enhance food safety. 

Few companies offer antagonistic yeasts including IRTA (Sipcam-Inagra, Spain), Bio-ferm (Austria), Koppert (The Netherlands), 
IOC (France) and ICV (Lalleman). Table 4 listed a few commercially available bioprotective products that have been developed with 
the aim of controlling diseases both before and after harvest in fruits and vegetables. Several yeast strains here reported, including 
C. sake, C. oleophila, A. pullulans, M. fructicola, S. cerevisiae, have been registered for use on several different fruits. The ability to 
manage postharvest diseases on different commodities is critical to the economic viability of post-harvest biocontrol products. For 

Table 4 
Some commercially available bioprotective products developed to control pre- and post-harvest diseases in fruits and vegetables [18,227–229].  

Biocontrol 
Products 

Country/Company Antagonistic yeasts Fruit Targeted pathogens 

Candifruit™ IRTA/Sipcam-Inagra, 
Spain 

C. sake Pome Penicillium, Botrytis, Rhizopus 

Aspire™ United States C. oleophila Citrus fruits, pome fruits, 
apple, peach 

P. expansum 
B. cinerea 
R. stolonifer 

Nexy™ France C. oleophila Pome fruits, citrus, banana B. cinerea, 
P. expansum 

Blossom 
Protect™ 

Bio-ferm, Austria A. pullulans Pome Penicillium, Botrytis, Monilinia 

YieldPlus™ Canada C. albidus Citrus, pear, apple, pome fruits Botrytis spp., 
Penicillium spp., 
Mucor spp. 

BoniProtect® 
Botector® 

Bio-ferm, Austria A. pullulans (2 strains) Pome Fruit 
Grape 

Penicillium, Botrytis, 
Monilinia 

Noli™ Koppert, The 
Netherlands 

M. fructicola Table grape, 
Pome fruit, 
Strawberry, stone 
Fruit, sweet 
Potato 

Botrytis, Penicillium, 
Rhizopus, Aspergillus 

Shemer™ The Netherlands M. fructicola Grape, carrot strawberry, sweet potatoes, pepper, 
citrus, 
apricot, peach 

A. niger, B. cinerea, 
P. digitatum, P. italicum, R. 
stolonifer 

Romeo™ France S. cerevisiae (cell 
walls) 

Lettuce, tomato, strawberry, cucumber, grapevines B. cinerea 
Erysiphales 

Gaia™ IOC, France M. fructicola Harvested grape, withering grape, 
grape musts 

Botrytis, non-Saccharomyces 
spoiling yeasts 

Nymphea™ ICV/Lallemand, 
France 

Torulaspora 
delbrueckii 

Harvested grape, grape musts Botrytis, non-Saccharomyces 
spoiling yeasts  
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example, C. oleophila is the first yeast to be developed as a commercial plant protection agent. Its antagonism against P. digitatum, B. 
cinerea and Alternaria alternata have been highlighted when applied to grape, citrus, apple, and kiwifruit [39,81,134]. Shemer, based 
on M. fructicola, has demonstrated successful application to various fruits and vegetables, both pre- and post-harvest against A. niger, B. 
cinerea, P. digitatum, P. italicum, and R. stolonifera. Additionally, the biocontrol product BoniProtect™ (A. pullulans) is advised for 
pre-harvest application to inhibit the development of wound pathogens such as P. expansum, B. cinerea, and Monilinia fructigena [18]. 

Alternative plant protection solutions, such as bioprotective yeasts, will certainly be promoted by the general trend of reducing 
pesticide use. To boost commercial use of antagonistic yeasts for pre- and post-harvest fruit, priority is given to biosafety validation, 
exploring mechanisms of action, optimizing commercial biological controls, developing multifunctional antifungal products, 
extending shelf-life, managing costs, and understanding the complex interactions in biological control systems. This integrated 
approach is critical for practical applications in the fruit and food industry. 

5. Application limitations and future recommendations 

Yeasts have a long history of use in food and beverage production and are also consumed as food supplements. Many yeasts used in 
the food industry, such as S. cerevisiae, C. sake, and M. pulcherrima, are closely related to those used in biocontrol. While the use of 
yeasts as biocontrol agents in food production is generally considered safe, it is important to recognize that certain yeast species, such 
as some strains from Pichia spp. and Candida spp., can still pose a risk to human health [230]. These opportunistic yeasts can cause 
infections in humans under certain conditions, and more research is needed to better understand their pathogenic and virulence 
factors. Additionally, it is important to monitor whether the increased use of biopreservative yeasts will lead to an increase in the 
prevalence of yeast infections in humans. While yeasts are not commonly reported to occur as plant pathogens, there have been some 
cases where they have been found to be pathogenic to certain plants. For example, Giobbe et al. [144] reported that a strain of 
P. fermentans, which was effective in controlling Monilinia brown rot when added to apple, was found to be pathogenic to peach, 
causing rapid decay of fruit tissues. The production of bioactive or allergenic metabolites is another potential concern associated with 
the use of antagonistic yeasts in the food industry. The use of biocontrol agents may help reduce the usage of chemical preservatives in 
food products. Moreover, a better understanding of the pathogenicity and virulence factors of opportunistic yeasts could facilitate the 
development of new yeast-based products. The use of biocontrol agents in the food industry as a component of an integrated approach 
of biocontrol and bioprotection is expected to gain increasing recognition and be more widely accepted in the coming years. However, 
safety concerns associated with opportunistic yeasts and potential production of bioactive or allergenic metabolites should be carefully 
evaluated. 
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F. Hilbert, R. Lindqvist, M. Nauta, L. Peixe, G. Ru, M. Simmons, P. Skandamis, E. Suffredini, P.S. Cocconcelli, P.S.F. Escámez, M.P. Maradona, A. Querol, J. 
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[220] N. Medina-Córdova, S. Rosales-Mendoza, L.G. Hernández-Montiel, C. Angulo, The potential use of Debaryomyces hansenii for the biological control of 

pathogenic fungi in food, Biol. Control 121 (2018) 216–222, https://doi.org/10.1016/j.biocontrol.2018.03.002. 
[221] B.G. Özlü, Y. Terzi, E. Uyar, F. Shatila, H.T. Yalçın, Characterization and determination of the potential probiotic yeasts isolated from dairy products, Biologia 

77 (2022) 1471–1480, https://doi.org/10.1007/s11756-022-01032-8. 
[222] M.-T. Fröhlich-Wyder, E. Arias-Roth, E. Jakob, Cheese yeasts, Yeast 36 (2019) 129–141, https://doi.org/10.1002/yea.3368. 
[223] M.H. Lessard, G. Belanger, D. St-Gelais, S. Labrie, The composition of Camembert cheese-ripening cultures modulates both mycelial growth and appearance, 

Appl. Environ. Microbiol. 78 (2012) 1813–1819, https://doi.org/10.1128/AEM.06645-11. 
[224] L. Zhang, C. Huang, A.H. Malskr, L. Jespersen, N. Arneborg, P.G. Johansen, The effects of NaCl and temperature on growth and survival of yeast strains isolated 

from Danish cheese brines, Curr. Microbiol. 77 (2020) 3377–3384, https://doi.org/10.1007/s00284-020-02185-y. 

Y. He et al.                                                                                                                                                                                                              

https://doi.org/10.3389/fmicb.2023.1252973
https://doi.org/10.4315/0362-028X-67.10.2132
https://doi.org/10.1016/j.postharvbio.2005.01.001
https://doi.org/10.1021/jf203098v
https://doi.org/10.4315/0362-028X.JFP-10-326
https://doi.org/10.4315/0362-028X.JFP-10-326
https://doi.org/10.1016/j.cub.2016.02.012
https://doi.org/10.1128/AEM.02398-16
https://doi.org/10.1128/AEM.02398-16
https://doi.org/10.3390/fermentation7010009
https://doi.org/10.1016/j.ijfoodmicro.2020.108796
https://doi.org/10.55230/mabjournal.v52i3.2562
https://doi.org/10.1504/IJPTI.2010.038187
https://doi.org/10.1504/IJPTI.2010.038187
https://doi.org/10.1016/j.foodres.2013.02.047
https://doi.org/10.1016/j.fm.2007.01.003
https://doi.org/10.1016/j.foodcont.2014.04.030
https://doi.org/10.3390/toxins4020068
https://doi.org/10.1002/yea.1374
https://doi.org/10.1002/yea.1374
https://doi.org/10.1016/j.foodchem.2008.07.080
https://doi.org/10.1016/j.foodres.2013.01.031
https://doi.org/10.1016/j.foodres.2013.01.031
https://doi.org/10.1016/j.ijfoodmicro.2018.01.006
https://doi.org/10.1016/j.lwt.2019.108886
https://doi.org/10.1111/jfs.12122
https://doi.org/10.1111/jfs.12122
https://doi.org/10.3390/microorganisms8101623
http://refhub.elsevier.com/S2405-8440(24)00960-5/sref207
http://refhub.elsevier.com/S2405-8440(24)00960-5/sref207
https://doi.org/10.3390/toxins11120710
https://doi.org/10.1016/j.ijfoodmicro.2019.108243
https://doi.org/10.1016/j.ijfoodmicro.2011.08.012
https://doi.org/10.3390/foods9101505
https://doi.org/10.1016/j.meatsci.2008.04.011
https://doi.org/10.1016/j.lwt.2021.112059
https://doi.org/10.3390/ani10122340
https://doi.org/10.1016/j.ijfoodmicro.2018.12.027
https://doi.org/10.1016/j.fm.2019.01.024
https://doi.org/10.1016/j.foodcont.2021.108695
https://doi.org/10.1016/j.copbio.2009.02.016
https://doi.org/10.1016/j.cofs.2019.07.003
https://doi.org/10.1016/j.biocontrol.2018.03.002
https://doi.org/10.1007/s11756-022-01032-8
https://doi.org/10.1002/yea.3368
https://doi.org/10.1128/AEM.06645-11
https://doi.org/10.1007/s00284-020-02185-y


Heliyon 10 (2024) e24929

21

[225] L. Gethins, M.C. Rea, C. Stanton, R.P. Ross, K. Kilcawley, M. O’Sullivan, S. Crotty, J.P. Morrissey, Acquisition of the yeast Kluyveromyces marxianus from 
unpasteurised milk by a kefir grain enhances kefir quality, FEMS Microbiol. Lett. 363 (2016) fnw165, https://doi.org/10.1093/femsle/fnw165. 

[226] Z. Huang, L. Huang, G. Xing, X. Xu, C. Tu, M. Dong, Effect of Co-fermentation with lactic acid bacteria and K. marxianus on physicochemical and sensory 
properties of goat milk, Foods 9 (2020) 299, https://doi.org/10.3390/foods9030299. 

[227] A.S. Dukare, S. Paul, V.E. Nambi, R.K. Gupta, R. Singh, K. Sharma, R.K. Vishwakarma, Exploitation of microbial antagonists for the control of postharvest 
diseases of fruits: a review, Crit. Rev. Food Sci. Nutr. 59 (2019) 1498–1513. https://www.tandfonline.com/loi/bfsn20. 

[228] X. Zhang, B. Li, Z. Zhang, Y. Chen, S. Tian, Antagonistic yeasts: a promising alternative to chemical fungicides for controlling postharvest decay of fruit, Journal 
of fungi 6 (2020) 1–15, https://doi.org/10.3390/jof6030158. 

[229] V.M. Sellitto, S. Zara, F. Fracchetti, V. Capozzi, T. Nardi, Microbial biocontrol as an alternative to synthetic fungicides: boundaries between pre-and postharvest 
applications on vegetables and fruits, Fermentation 7 (2021) 60–74, https://doi.org/10.3390/fermentation7020060. 

[230] D.A. Opulente, Q.K. Langdon, K.V. Buh, M.A.B. Haase, K. Sylvester, R.V. Moriarty, M. Jarzyna, S.L. Considine, R.M. Schneider, C.T. Hittinger, Pathogenic 
budding yeasts isolated outside of clinical settings, FEMS Yeast Res. 19 (2019), https://doi.org/10.1093/femsyr/foz032 foz032. 

Y. He et al.                                                                                                                                                                                                              

https://doi.org/10.1093/femsle/fnw165
https://doi.org/10.3390/foods9030299
https://www.tandfonline.com/loi/bfsn20
https://doi.org/10.3390/jof6030158
https://doi.org/10.3390/fermentation7020060
https://doi.org/10.1093/femsyr/foz032

	Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of proce ...
	1 Introduction
	2 Biocontrol of yeasts in agricultural products
	2.1 Antagonistic yeasts
	2.1.1 1. Candida spp.
	2.1.2 Pichia spp.
	2.1.3 Metschnikowia spp.
	2.1.4 Debaryomyces spp.
	2.1.5 Hanseniaspora spp.
	2.1.6 Cryptococcus spp.
	2.1.7 Other antagonistic yeasts

	2.2 Mechanisms of control of unwanted microorganisms by yeasts
	2.2.1 Competition for nutrients and space
	2.2.2 Secretion and synthesis of antibacterial compounds
	2.2.3 Mycoparasitism and the secretion of lytic enzymes
	2.2.4 The role of biofilm formation and quorum sensing
	2.2.5 Induced systemic resistance of fruit host
	2.2.6 Other mechanisms

	2.3 Enhancing biocontrol efficacy and viability

	3 Biopreservation of yeasts in processed foods
	3.1 Plant-based foods
	3.1.1 Wine
	3.1.2 Juices
	3.1.3 Coffee

	3.2 Animal origin foods
	3.2.1 Dry-cured meat products
	3.2.1.1 Dry-cured ham
	3.2.1.2 Dry-cured sausage

	3.2.2 Dairy products
	3.2.2.1 Cheese
	3.2.2.2 Fermented milks



	4 Commercial application
	5 Application limitations and future recommendations
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


