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The occurrence of microorganisms from the Vibrio genus in saline lakes from northern
Chile had been evidenced using Numerical Taxonomy decades before and, more
recently, by phylogenetic analyses of environmental samples and isolates. Most of
the knowledge about this genus came from marine isolates and showed temperature
and salinity to be integral agents in shaping the niche of the Vibrio populations. The
stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was
investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt.
Furthermore, it grew between 17◦ and 49◦C (optimum 30◦C) in the absence of NaCl,
and the range was expanded into cold temperature (4–49◦C) in the presence of the
salt. Other additional adaptive strategies were observed in response to the osmotic
stress: pigment production, identified as the known antibacterial prodigiosin, swimming
and swarming motility and synthesis of a polar flagellum. It is possible to infer that
environmental congruence might explain the cellular phenotypes observed in Vibrio sp.
considering that coupling between temperature and salinity tolerance, the production of
antibacterial agents at higher temperatures, flagellation and motility increase the chance
of Vibrio sp. to survive in salty environments with high daily temperature swings and UV
radiation.

Keywords: Vibrio, osmotic-stress, halotolerant, psychrotolerant, prodigiosin

INTRODUCTION

Extremophiles are considered microorganisms that require, for optimal growth, conditions that are
not conducive to human life, like low or high pH, extreme temperatures, chemical oxidizing agents,
hypersalinity or certain types of ultraviolet light (Sandle and Skinner, 2013). Among extremophiles,
there are some microorganisms that are known as salt-tolerating (halotolerant) because they are

Abbreviations: 13C NMR, carbon-13 nuclear magnetic resonance; 1H NMR, proton nuclear magnetic resonance; ESI-ITMS,
electrospray ionization-ion trap mass spectrometer; LC-MS/MS, liquid chromatography tandem mass spectrometry; TEM,
transmission electron microscopy; TLC, thin layer chromatography.
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able to grow in presence of relatively high salt concentrations
and in absence of salt; and others are known as salt-loving
(halophilic) because halophiles require a saline environment for
growth (Ventosa et al., 1998; Oren, 2013).

In previous works, some halophilic microorganisms from
the Vibrionaceae family have been studied, like Photobacterium,
Listonella, Moritella, Salinivibrio, and Vibrio genus (Kamekura
and Kushner, 1984; Garcia et al., 1987; Shieh, 2003; Borić
et al., 2011; Lucena et al., 2012). They are facultative anaerobic,
Gram-negative, and rod-shaped bacteria; these organisms are
ever-present in estuarine, coastal, oceanic water, and marine
sediments (Shieh, 2003; Borić et al., 2011; Lucena et al., 2012).
Few studies have been reported about microorganisms isolated
from Chilean salt lakes (Campos, 1993; Monteoliva-Sánchez
et al., 2002; Demergasso et al., 2004).

Salinivibrio costicola and Vibrio ruber are the most studied
halophilic eubacteria. They can grow in a salinity range from
0.5 to 12% and from 0.05 to 17% of salinity, respectively, and
in a range of temperature from 5 to 45 and from 10 to 44◦C,
respectively (Supplementary Table 1). The adaptation strategies
developed by those microorganisms to survive environmental
extremes, and perturbations of salinity and temperature have
been extensively studied and can be summarized as follows:
salinity, (i) balance their cytoplasm with the osmotic pressure
of the external medium by accumulation of osmoprotectants
(like sugars, polyols, amino acids, and their derivatives) either
by uptake from the environment or by their de novo synthesis
(Ventosa et al., 1998; Danevcic et al., 2005; Zhu et al., 2008;
Danevcic, 2014); (ii) modification of the lipid composition by
changing of both polar head groups and acyl chains, the amount
of unsaturated fatty acids and the occurrence of hydroxyl fatty
acids (Hanna, 1984; Adams and Russell, 1992; Ventosa et al.,
1998; Danevcic, 2014); (iii) changes in the membrane reaction
potential of V. ruber (Danevcic, 2014); (iv) activity of ion
pumps in S. costicola membranes represented by two alternative
mechanisms, a Na+/H+ antiport and the presence of a primary
respiration-driven Na+ pump (Ventosa et al., 1998; Müller and
Oren, 2003); (v) changes in the composition and activity of
ribosomal proteins, on the protein turnover, in the composition
and activity of glycolytic and electron transport active proteins
involved in central metabolic pathways, like pyruvate kinase and
dehydrogenase (de Médicis and Rossignol, 1979; Ventosa et al.,
1998; Danevčič and Stopar, 2011); (vi) increase of the secondary
metabolite production – prodigiosin- by V. ruber with known
capacity as a transmembrane chloride anion carrier among
other properties (Danevcic, 2014; Seganish and Davis, 2005);
and temperature, (vii) changes in the prodigiosin production
by V. ruber with an optimum at 28◦C (Danevcic, 2014); (viii)
change in the polar lipid head groups composition, in saturation
of the phospholipid fatty acyl composition and in the mean
acyl chain length of S. costicola (Adams and Russell, 1992).
The ecophysiological response to other relevant environmental
factors which determines the growth and survival of those
microorganisms like nutrients availability, viscosity, and UV
radiation have been also reported (Danevcic, 2014).

According to some authors, Vibrio presents a red pigment
known as prodigiosin (representative of the prodiginines family),

which is a secondary metabolite that was first characterized from
Serratia marcescens and it was later found to be produced by other
bacteria, mostly members of the proteobacteria (Suryawanshi
et al., 2015). Several bacteria that produce prodigiosin were
characterized as inhabiting open habitats with high microbial
diversity, and therefore there was intense competition between
the community members (Suryawanshi et al., 2015). In
addition, some environmental factors can influence prodigiosin
production, like temperature, pH, media composition, and
salinity, among others (Venil, 2009). For instance, one of the
major requirements for effective pigment production and for the
growth of isolated marine Vibrio sp. is NaCl (Kirishna et al.,
2014). Moreover, some other research groups reported that NaCl
is required for growth and pigmentation in Serratia marcescens
(Silverman and Munoz, 1973; Allen et al., 1983). Besides the
impact of ion concentrations, the effect of the temperature on
the activation of enzymes involved in prodigiosin biosynthetic
pathway (Williams et al., 1971; Casullo de Araújo et al., 2010;
Starič et al., 2010) has also been reported. However, most of the
studies were related to room temperature or optimal temperature.

Protective or metabolic roles, among others, have been
attributed to prodigiosin; some of these roles are related to
energy spilling reaction, air dispersal of bacteria, light storage
(energy), UV survival, anion exchange and antimicrobial activity
(Burger and Bennett, 1985; Ryazantseva et al., 1995; Seganish
and Davis, 2005; Haddix et al., 2008; Venil, 2009; Starič et al.,
2010; Borić et al., 2011; Danevcic, 2014). Besides, algicidal activity
was also reported and proposed to be used in the control
of bloom-forming red-tide phytoplanktons (Kim et al., 2008).
Furthermore, prodigiosin 1, parent of compounds isolated from
Serratia marcescens as described by Fürstner (2003), transports
chloride ions into the cell across phospholipid vesicles by
functioning as H+/Cl− symporters. Then, this pigment operates
as chloride anion carrier, but it is also able to exchange chloride
for nitrate anions without any change in the internal pH during
transmembrane transport by functioning as antiporter (Seganish
and Davis, 2005; Díaz et al., 2007).

In addition, some biotechnological roles of prodigiosin were
already reported to have immunosuppressive, antiproliferative,
antimalarial, bactericidal, UV protection, antioxidant, and
antitumor properties (Burger and Bennett, 1985; Venil, 2009;
Borić et al., 2012; Arivizhivendhan et al., 2015; Darshan and
Manonmani, 2015; Lapenda et al., 2015).

An isolated strain of Vibrio sp. (Supplementary Figure 1) from
Salar de Atacama (Supplementary Table 2) showed an ample
range of saline as well as temperature tolerance. Both salinity and
temperature affected morphology (flagellation and aggregation),
growth, motility and pigment production (prodigiosin). The
cellular phenotypes observed were described and the ecological
significance was discussed.

MATERIALS AND METHODS

Strains and Culture Conditions
All chemical used in these experiments were purchased from
Merck and Difco.

Frontiers in Microbiology | www.frontiersin.org 2 December 2016 | Volume 7 | Article 1943

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01943 November 29, 2016 Time: 13:50 # 3

Gallardo et al. Coupled Stressors in Non-marine Vibrio

A strain of Vibrio genus (Vibrio sp. Teb5a1) isolated from
Laguna de Tebenquiche in Salar de Atacama was used to work
during these experiments. Initially, the microorganism Vibrio
sp. was grown at 30◦C in an orbital shaker at 100 rpm in a
seawater medium (salinity 3% approximately), with yeast extract
and peptone. The isolations were achieved in plates with the same
medium and bacteriologic agar. Subsequently, modifications of
this medium were performed to control the growing conditions
(“defined medium”). This new medium was prepared according
to (Shieh, 2003); it comprised peptone (6 g/L), yeast extract
(2 g/L), MgSO4x7H2O (3 g/L), CaCl2 (0.01 g/L), KCl (0.6 g/L)
and variable NaCl concentrations. Incubation conditions were
30◦C in an orbital shaker (100 rpm). Additionally, Vibrio sp. was
isolated in plates with the same defined medium and bacteriologic
agar.

Immediate Adaptation of Vibrio sp. to
Salt
To perform the immediate adaptation assays, the microorganism
was grown in the defined medium without NaCl until its
exponential phase was reached at 30◦C and 100 rpm orbital
shaking. Successively, this culture was used to inoculate media
with different NaCl concentrations (from 0 to 150 g/L NaCl)
and incubated at the same temperature (30◦C). Three biological
replicates were used to perform the adaptation of Vibrio sp.

Identification of Optimum Growth
Conditions for Vibrio sp.
The defined medium was used to identify the optimum
conditions for Vibrio sp. growing, as described previously. The
growth experiments were performed to identify the optimum
temperature and the optimum NaCl concentration, which were
achieved in a range from 4 to 49◦C and from 0 to 150 g/L
of NaCl, respectively. The growth of each culture was checked
using a Neubauer camera of 0.01 mm depth (Labolan) in an
optical microscope (Olympus). Additionally, the growth of Vibrio
sp. was checked by optical density at 600 nm wavelength in a
UV-visible spectrophotometer (Perkin Elmer). Three biological
replicates were used to identify the optimum growth conditions
(temperature and salinity) for Vibrio sp.

Extraction of Red Pigment in Vibrio sp.
Considering that Vibrio sp. produced a red pigment, three
methods (Cang et al., 2000; Song et al., 2006; Alihosseini et al.,
2008) for pigment extraction with minor modifications were used
to identify the pigment by UV/Vis absorption and to compare
it with published results. Method 1 (Song et al., 2006): 25 mL
of supernatant from cultures of Vibrio sp. with 25 mL of 95%
Ethanol pH 3 (Merck) were mixed in a separatory funnel during
30 s. After 15 min, 25 mL of chloroform (Merck) were added
to the previous solution and mixed again for 30 s. The lower
phase (polar phase) was stored at room temperature in a dark
flask until it was used again. Method 2 (Cang et al., 2000): 25 mL
of supernatant from Vibrio sp. cultures with 25 mL of Acetone
(Merck) were mixed in a separatory funnel during 30 s. After
10 min, 25 mL of chloroform pH 3 (Merck) were added and

mixed. Again, the polar phase was stored at room temperature
in darkness until it was used. Method 3 (Alihosseini et al., 2008):
25 mL of supernatant from Vibrio sp. cultures with 25 mL of
chloroform (Merck) were mixed in a separatory funnel during
30 s. After 1 min, the polar phase was collected and stored at room
temperature in a dark flask. In addition, absorption of UV/Visible
light (UV/Vis Lambda EZ 301 spectrometer, PerkinElmer) of all
tree collected samples (from methods 1, 2, and 3) was performed,
considering as blank chloroform.

Purification of Extracted Red Pigment
from Vibrio sp.
The cellular pellet from 6 L of Vibrio sp. was obtained by
centrifugation (Centrifuge Eppendorf 5804R) during 10 min at
9000 rpm. This pellet was dried at 80◦C for 18 h in a sterile
petri dish. Two chromatographic columns were prepared: “first
column”, 5 g of dried pellet of Vibrio sp. plus 10 g of silica gel
were loaded into 100 g of pure silica gel column chromatography
(Silica gel 60, 0.063–0.200 mm, Merck). Samples collected
from this first column were analyzed by UV/vis absorbance
spectroscopy. “Second column”, 389 mg of purified (and dried)
pellet from the first column plus 5 g of silica gel were loaded
into 60 g of pure silica gel column chromatography (Silica gel
60, 0.063–0.200 mm, Merck). Samples collected from this second
column were used for mass spectrometry analysis. To remove
air bubbles, 1 L of n-hexane were loaded into both columns.
Polarity of solvents were changed as follow: 10:0, 9:1, 7:3, 6:4,
1:1, 4:6, 3:7, 2:8, 1:9 n-hexane:chloroform. Along with polarity
changes, fractions were collected and an aliquot was loaded in a
5 cm × 5 cm silica gel TLC plate (Silica gel 60 F254, Merck) to
check the isolation of new spots. The elution of fractions in the
TLC plates was done with n-hexane:Ethyl acetate in a proportion
95:5. Once different compounds were appearing, the polarity was
increased. Visualization of spots was done under UV/Vis light,
and five methods were used as Supplementary Table 3 shows.

Identification of Red Pigment by Mass
Spectrometry (MS)
In order to determine whether red pigment corresponds to
the prodiginine family members, samples were analyzed by
mass spectrometry. Fractions from the second column (as it
was mentioned before) were analyzed by Mass spectrometry
through an HPLC system Agilent 1100 (Agilent Technologies
Inc., Folsom, CA, USA) online coupled to ESI-ITMS (Esquire
4000) at the mass spectrometry facility of Universidad de Chile.
Separation of the sample was performed through a C18 column
(Luna 150 mm × 4.6 mm, 5 µm, 100 Å; Phenomenex, Inc.)
during 60 min gradient from 0 to 98% buffer B (details are shown
in Supplementary Table 4). Ionization was at 325◦C, 30 psi and
with nitrogen as the gas carrier. Data analysis was performed with
Data Analysis 3.2 (Bruker Daltonik GmbH, Germany).

Effect of NaCl Concentration in the
Motility of Vibrio sp.
Two types of motility assays were done (Roeßler et al., 2000)
to observe the swarming and swimming motility. For swarming
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phenomenon, the microorganism was grown in the solidly
defined medium with 0.5% of bacteriologic agar and the cultures
were inoculated into the agar. For swimming phenomenon,
Vibrio sp. was grown in the solidly defined medium with 0.3% of
bacteriologic agar and the cultures were inoculated with a drop
over the agars. Both assays were done in the absence (0 g/L NaCl)
and in the presence of NaCl (25 and 100 g/L NaCl), as well as at
low temperature (17◦C). Three biological replicates were used to
study the effect of salinity in the motility of Vibrio sp.

Transmission Electron Microscopy (TEM)
The morphology and the presence of flagellum, in presence and
absence of NaCl, were analyzed as previously reported (Gonzalez
and Jensen, 1998). The cells were grown until its lag phase with 0,
25, 50, and 100 g/L of NaCl; then cells were washed with ultra-
pure water. Later, the cells were resuspended to 0.5 of optical
density at A600, and aliquots of the cellular suspensions of 10 µL
were taken and air-dried on coated grids. Finally, cells were
examined under a transmission electron microscope (Philips
Tecnai 12) operating in the scanning transmission mode at 80 kV
(Pontificia Universidad Católica de Chile).

Effect of Prodigiosin in the DNA
Cleavage
DNA cleavage experiments were performed with 0.4 µg
plasmid DNA obtained from an isolate from the salt flat
environment using the QIAprep Spin Miniprep (QIAGEN)
and the QIAquick PCR purification kits for extraction and
purification, respectively. DNA was quantified using a NanoDrop
UV-Vis Spectrophotometer.

The plasmid DNA was incubated, either in the absence or
presence of 4% v/v of the purified extract and 120 µM Cu II, in
10 mM 3-(N-Morpholino)-propanesulfonic Acid-Acetate buffer
(MOPS buffer) (pH 7.4), 75 M NaCl, 10% v/v Acetonitrile at 37◦C
for 0, 30, 60, 90, and 120 min. After incubation, DNA samples
were run on horizontal agarose gels (0.8%) containing ethidium
bromide (0.2 µg/mL) in 0.5 Tris-acetate-EDTA (1x TAE) buffer
for 1 h at 85 V.

RESULTS

Effect of Salt Concentration on Growth
of Vibrio sp.
Initially, Vibrio sp. was grown in a saline medium (seawater).
To control the growth conditions, the microorganism was grown
successfully in a defined medium containing 25 g/L of NaCl,
and the same characteristics (pigment generation and short
duplication time) were observed. Afterward, Vibrio sp. was
adapted to grow in the absence of NaCl as shown in Figure 1
and Supplementary Figure 2. In absence of salt and in a medium
with up to 25 g/L NaCl, the culture grew immediately; besides, at
50 g/L of NaCl, a longer lag phase evidenced a slower adaptation.
Experiments with higher salt concentration (150 g/L NaCl) did
not yield positive growth results (data not shown). When the
microorganism was already adapted, the optimum conditions of

growth were identified. For instance, Vibrio sp. was able to grow
in absence of NaCl, with a generation time less than 2 h and
could tolerate up to 100 g/L NaCl, with a generation time five
folds longer than in the absence of salt (Supplementary Figure 3;
Supplementary Table 5B).

Effect of Temperature on Growth of
Vibrio sp.
After the identification of the optimum salt concentration for
growing at 30◦C, the microorganism was grown in a range of
temperature (from 4 to 49◦C) in the absence of NaCl and with
25 g/L NaCl. In the absence of salt, it was able to grow between
17 and 49◦C with different lag phases (Figure 2A; Supplementary
Figure 4A). The range of temperature for growth was extended
when Vibrio sp. grew with 25 g/L NaCl from 4 (with a generation
time of 2, as shown in Supplementary Table 5A) to 49◦C. In
addition, the lag phases at temperatures below and above the
optimum were reduced (Figure 2B; Supplementary Figure 4B).
The maximal accumulation of the red pigment was evidenced
during the growth of Vibrio sp. between 26 and 40◦C when NaCl
was amended. It was reduced below 17◦C and there was no
pigmentation at 4◦C (Supplementary Figure 5).

Extraction, Purification, and
Identification of Red Pigment in Vibrio
sp.
Solvent extraction of the red pigment through the previously
reported methods (Cang et al., 2000; Song et al., 2006; Alihosseini
et al., 2008) showed that the maximal absorbance for methods
1 and 3 was 539 nm, whereas, for method 2, the maximal
absorbance was 534 nm wavelength (Supplementary Figure 6).
Both values for absorbance correlate with prodigiosin or
prodigiosin-like compounds (Gerber, 1969).

Purification of the red pigment using the “first column”
showed three different compounds related to Prodiginines.
According to TLC plates, collected fractions from 336 to 394
correspond to the first compound mixtures, collected fractions
from 395 to 423 correspond to the second compound mixtures
and collected fractions from 424 to 487 correspond to the
third compound mixtures (Supplementary Figure 7). All these
fractions were collected in gradients 7:3 (for first and second
compound mixtures) and 6:4 (for third compound mixtures)
n-hexane:Ethyl acetate, respectively. UV/Vis spectroscopy
confirmed the presence of three different compounds, and
the maximal absorbance was observed at 535, 538, and
533 nm (Supplementary Figure 8). Absorbance below 400 nm
corresponds to different compounds or contamination, which
were contained in the previous and later prodiginine-containing
fractions (as shown in Supplementary Figure 8).

Identification of prodiginines by LC-MS/MS confirmed the
presence of more than fifteenth different compounds. Among
these compounds, undecylprodiginine, methyldodecylprodigi-
nine, cycloprodigiosin, and prodigiosin were identified, which
are the most often reported (Supplementary Table 6). The
identification was done comparing the observed fragmentation
spectra (in our samples) with those reported by several authors,
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FIGURE 1 | Adaptation growth curves of Vibrio sp. in presence of NaCl. Vibrio sp. cells were adapted previously to grow in presence of 0 g/L NaCl and KCl
(�), 25 g/L NaCl ( ) and 100 g/L NaCl (#). New cultures were prepared from these cells and used to perform their respective curves.

FIGURE 2 | Growth curves of Vibrio sp. at different temperatures in presence and absence of NaCl. (A) Vibrio sp. cells grown in absence of salt (0 g/L
NaCl) (B) Vibrio sp. cells grown in presence of salt (25 g/L NaCl). The temperature was changed from 4◦ to 49◦C under both growth conditions.

as it is cited in Supplementary Table 6. However, there were some
fragmentation spectra that could not be assigned because there
are not reports about that. Therefore, to verify if these MS/MS
spectra represent new compounds, additional experiments, like
13C NMR and 1H NMR, would be necessary.

Effect of Salinity in Prodigiosin
Production of Vibrio sp.
It was observed the production of a salt-dependent pigment in
each experiment. This pigment is responsible for the red color
and it is known as prodiginines. The pigment production showed

a direct effect of the salt concentration of the growth medium
(Figure 3). This pigment production was increased when the
NaCl concentration reached up to 100 g/L of NaCl. Assays with
higher salt concentration (medium with up to 150 g/L of NaCl)
were done but the microorganism did not grow (data not shown).

Effect of Salinity on Motility of Vibrio sp.
Vibrio sp. showed swimming and swarming motility, which
were salt concentration dependent, as shown in Figure 4. Both
swimming and swarming motility were observed in cultures
amended with NaCl from 0 to 100 g/L NaCl; however, the highest
motility radio was observed at 25 g/L of NaCl. Motility at higher
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FIGURE 3 | Effect of salinity on the pigmentation of Vibrio sp. Cells were
previously adapted to grow in presence of different salt concentration and
temperatures, showing non-accumulation of pigment in absence of NaCl.

FIGURE 4 | Swimming and swarming motilities of Vibrio sp. The
microorganism was adapted to grow with 0 g/L NaCl (A,C) and 25 g/L NaCl
(B,D). Cells were inoculated in their respective salts concentration in the swim
(A,B) and swarm (C,D) plates and photographed after 72 h of incubation at
30◦C. The arrows and white circles highlight the single colonies in absence of
NaCl.

NaCl concentration (150 g/L of NaCl) was not seen and a filament
structure was detected (data not shown). Finally, TEM image
revealed that Vibrio sp. cells grown in the presence of NaCl
presented a single polar flagellum, and cells grown in absence
of NaCl evidenced the presence of dense granules, presumably
polyphosphate granules (Seufferheld et al., 2008) (Figure 5;
Supplementary Figure 9). In addition, preliminary information
suggested that motility and prodigiosin production might be
specifically chloride-dependent (Supplementary Table 7).

Effect of Prodigiosin in the DNA
Cleavage
As can be seen from the agarose gel depicted in Supplementary
Figure 10, neither the pigment extract per se (lane 6) nor Cu II

FIGURE 5 | NaCl-dependent flagellum in Vibrio sp. Cells were grown in
0 g/L (A) and 25 g/L (B) NaCl and analyzed by transmission electron
microscopy. Arrows indicate the presence of dense granules and flagella,
respectively.

alone (lane 7) damage purified double-stranded plasmid DNA of
the isolate (lane 3). In contrast, a combination of both is very
effective. The progress of strand cleavage caused by the complex
with increasing incubation time is depicted in lanes 8 ± 12. It is
clearly visible that the most relaxed form, which is not evidenced
in the controls, constantly gains intensity at the expense of the
supercoiled form (band 5).

DISCUSSION

The characterization of the physiology and morphology changes
of Vibrio sp. isolated from Salar de Atacama are reported,
especially physiological and morphological changes induced by
osmotic stress. Very little is known about the presence of
microorganisms from the genus Vibrio in Chilean salt lakes
(Prado et al., 1991). For instance, Prado et al. (1991) isolated
161 moderately halophilic Gram-negative bacteria (including
V. costicola). Our microorganism Vibrio sp. has 97% 16S rRNA
similarity with V. ruber DSM 14379 (Danevcic, 2014) and 98%
with V. ruber VR1 (Shieh, 2003). Supplementary Figure 1 shows
the phylogeny of Vibrio sp. (Teb5a1 strain) and suggest that
it is a novel species of the genus Vibrio with 97–98% of 16S
rRNA gene sequence similarity with the other members. All
three (Vibrio sp. Teb5a1, V. ruber DSM 14379 and V. ruber
VR1) are able to grow in a broad range of NaCl concentrations.
However, Vibrio sp. (Teb5a1 strain) can also grow in the
absence of NaCl; as a consequence, it must be characterized as
halotolerant. Vibrio sp. (Teb5a1 strain) was also adapted and able
to grow in a wider range of temperature (Supplementary Table 1;
Supplementary Figure 4; Figure 2), additionally indicating that it
is a psychrotolerant strain.

Furthermore, a relationship between temperature and salinity
stress parameters (Figure 2; Supplementary Figure 4) was
observed, resembling the relationship that has been described
in several marine bacterial species within the genus Vibrio and

Frontiers in Microbiology | www.frontiersin.org 6 December 2016 | Volume 7 | Article 1943

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01943 November 29, 2016 Time: 13:50 # 7

Gallardo et al. Coupled Stressors in Non-marine Vibrio

Salinivibrio (Adams and Russell, 1992; Ventosa et al., 1998).
This resemblance could explain a linking between physiological,
ecological and evolutionary aspects in determining their niche
shapes (Materna et al., 2012). Moreover, the coupling between
temperature and salinity tolerance might be explained by the
effect of chaotropic ions (like chloride) that may counter the
macromolecular rigidification induced by low temperature (Chin
et al., 2010). Then, it can be assumed that the effect produced by
chaotropic agents (like chloride) increases the chance of Vibrio
sp. to survive in salty environments with high daily temperature
swings (Supplementary Table 5). In addition, the relationship
between optimum salt concentration and growth temperature
in S. costicola has been proposed to be due to their effects
on membrane lipid phase stability at temperatures below the
optimum (Adams and Russell, 1992).

Moreover, a red color pigment was observed in Vibrio sp.
as the result of prodiginine (prodigiosin) accumulation when
the medium was amended with 25 g/L of NaCl (Figure 3).
Purification and characterization of the red pigment by LC-
MS/MS confirmed that it corresponds to prodigiosin and
prodigiosin-like compounds (more than 15 different species
were identified, as shown in Supplementary Table 6). Unlike
to our strain Vibrio sp., fewer compounds of prodigiosin or
its derivatives have been identified in a single microorganism
in previous reports. For instance, Kim et al. (2008) reported
in three main constituents in Hahella chejuensis that were
identified by LC-MS/MS: prodigiosin, norprodigiosin, and
undecylprodiginine. Besides, they also reported four prodigiosin
analogs but in small quantities: 2-methyl-3-propyl-prodiginine,
2-methyl-3-butyl-prodiginine, 2-methyl-3-hexyl-prodiginine,
and 2-methyl-3-heptyl-prodiginine (Kim et al., 2008). Tsao
et al. (1985) identified some derivatives of prodigiosin
by UV, MS, and HNMR in Streptomyces coelicolor A3(2),
like undecylprodigiosin, butylcycloheptylprodiginine, and
metacycloprodigiosin.

Additionally, prodiginine accumulation in Vibrio sp. showed
temperature dependency, being the optimum temperature 25◦C.
However, the ideal temperature for the microbial production
of this particular pigment cannot be generalized. For instance,
Starič et al. (2010) reported that V. ruber DSM 14379 did not
produce pigmentation at low (<15◦C) and high temperatures
(>43◦C). Casullo de Araújo et al. (2010) reported that high
temperatures (over 30◦C) affected the prodigiosin production
in S. marcescens UCP 1549, and the ideal temperature for
pigment production was 28◦C. They reported that the activity
of one or more enzymes involved in prodigiosin synthesis
is affected at high temperatures (Casullo de Araújo et al.,
2010). Williams et al. (1971) defined 27◦C as the optimum
temperature for prodigiosin production in S. marcescens, and
that the pigment is synthesized during the stationary phase
of growth. Further, they determined protein production and
reported that, when bacteria were incubated at 38◦C, prodigiosin
was not produced, and fewer proteins were formed during
the incubation period (Williams et al., 1971). Thus, similar to
these previous reports, the prodigiosin biosynthesis in Vibrio sp.
is affected by high or low temperatures. At 17◦C and over
40◦C the pigmentation production is already affected. However,

in this study, it was not determined which enzyme or protein
involved in the biosynthetic pathway is inactivated or perhaps
degraded at different growth conditions. Five proteins comprise
the prodigiosin biosynthetic pathway: PigA, G, H, I, and
J (Garneau-Tsodikova et al., 2006). Quantification of these
proteins at different growth temperatures would give a notion
of the changes produced by temperature in the prodigiosin
synthesis.

Furthermore, preliminary results suggest that the prodigiosin
production might be specifically chloride-dependent in Vibrio sp.
(Supplementary Table 7). Strict chloride dependence of growth
or significant stimulation was first reported for H. halophilus
(Claus et al., 1983; Roeßler and Muller, 1998) and then it has
also been described in other microorganisms including V. fischeri
(Roeßler et al., 2003), at high salt concentrations. Interestingly,
germination of endospores, activation of compatible solute
transporters, flagella production and motility are among the
specific physiological processes described as chloride-dependent
(Dohrmann and Muller, 1999; Roeßler et al., 2000; Averhoff
and Müller, 2010). Further, Roeßler and Muller (2002) found
that chloride ions stimulate fliC gene expression, which encodes
the major subunit of the flagellum, and regulates the protein
FliC synthesis in H. halophilus. In addition, the accumulation of
both chloride and compatible solutes observed in the moderately
halophilic chloride-dependent H. halophilus to cope with elevated
salinities has been proposed as a hybrid strategy that would
represent an intermediate step in the evolution of salt adaptation
(Saum et al., 2013). Those reports reinforce the suggestion that
Vibrio sp. grown only in NaCl-based medium (not in NaBr or
Na2SO4) produces the pigment as has been preliminary observed
(Supplementary Table 7).

Besides, the morphology of Vibrio sp. was also affected by
NaCl concentration (Figure 5). Flagellation dependent on NaCl
has been previously reported by Rubiano-Labrador et al. (2014,
2015), and Flagellin protein (among others) was identified by
mass spectrometry in Tislia consotensis grown in 4% of NaCl, but
it was not observed at 0.5% NaCl. This protein is the evidence of
bacterial flagella and it forms helical chains around the hollow
core of the flagellar filament (Rubiano-Labrador et al., 2014,
2015).

In addition, the motility of Vibrio sp. was also affected by
the presence of NaCl (Figure 4) and, perhaps, specifically by
chloride ions (data not shown). Halang et al. (2013) reported
that in V. cholerae chloride ions act as chaotropic agents and
enhance cell motility. For instance, the nano-machine flagellum is
composed of several subunits, MotA and MotB in H+-dependent,
or PomA and PomB in Na+-dependent flagella (Halang et al.,
2013). Chloride ions disrupt hydrogen bonds between water
molecules that interact with PomB protein, specifically with D23
and S26 residues. This disruption facilitates the access of sodium
ions to PomA and PomB proteins and, then, the flagellum can
rotate and the bacteria present motility (Halang et al., 2013).
Furthermore, it has been reported that the Vibrio motility greatly
influences the infectivity of V. cholera (Butler and Camilli, 2004)
and, on the contrary, reduced motility is induced by starvation in
V. vulnificus (Chen and Chen, 2014). In both cases, the change
means a competitive advantage.
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The preliminary confirmation of the ability of the pigment
produced by Vibrio sp. to damage double-stranded DNA in
the presence of Cu II cations has allowed us to infer the
ecological significance of this adaptation. The oxidative cleavage
of dsDNA to ssDNA by prodigiosin in presence of copper
has been reported before (Melvin et al., 2000, 2002). The
exact mechanism of this oxidative cleavage is still not clear,
but it is known that the cytotoxic activity is mediated by
oxidation of the electron-rich polypyrrole molecule (Melvin et al.,
2002). Moreover, Darshan and Manonmani (2015) reviewed
that Cu-promoted strand cleavage by prodigiosin (CuProd)
induced apoptosis of cancer cells, since they presented higher
concentration of Cu(II) than normal cells. Taking into account
that the copper concentration available in the ecological niche
(Supplementary Table 2) of Vibrio sp. might fulfill the level
required, it can be hypothesized that the double-strand cleavage
of DNA by prodigiosin would be an additional mechanism
to survive and compete in a diverse microbial community. In
addition, the mode of action of prodigiosin as antimicrobial
in Vibrio sp. might be also related to its hydrophobicity
as has been already reported (Suryawanshi et al., 2015). In
that scenario, the knowledge that was obtained about the
conditions that promote the prodiginine accumulation by the
isolate will be very useful, and more studies would be required
to describe in detail the ecological reason of this intriguing
characteristic.

The appearance of a red pigmentation was observed only
in Site 2 (Supplementary Table 2) of Laguna Tebenquiche in
the same sampling campaign when Vibrio sp. was isolated. The
comparison of the physicochemical parameters of the pigmented
and non-pigmented sites at Laguna Tebenquiche, at the same
and different campaigns (Supplementary Table 5) evidenced
that the chloride concentration, the temperature and the pH
of the pigmented brine were in the prodigiosin production
range observed and/or reported before (Wei et al., 2005).
The occurrence of Vibrio in athalasohaline lakes represents
another example of phylogenetically close and metabolically
similar microorganisms that can be found in rather different
environments (Tamames et al., 2016).

The results allow us to conclude that environmental
congruence might explain the cellular phenotypes observed in
the halo- and psychro-tolerant Vibrio sp. (Teb5a1 strain): (i)
the environmental conditions where the strain was found agreed
well with the strain temperature and salinity tolerance; (ii) the
notable temperature range for the growth and the coupling

between temperature and salinity tolerance increases the chance
of Vibrio sp. to survive in an extreme environment with high daily
temperature swings encountered at Salar de Atacama (average
minimum 2.3◦C to average maximum 35◦C); (iii) the chloride
and temperature dependent production of prodigiosin would
be also a mechanism used by Vibrio sp. to compete and to
survive inside a microbial community in an extreme environment
characterized by a high UV radiation as well; (iv) flagellation and
motility would further enhance the competitive of Vibrio sp. over
other members of the microbial community. Finally, considering
the diverse biotechnological potential of prodigiosin reported
in several microorganisms, like photoprotectant in sunscreens,
immunosuppressive activity, antibacterial, antimalarial and
anticancerous properties, food colorant, and as colorant for
polyolefines (Darshan and Manonmani, 2015), our study of the
microbial ecology of this pigment in Vibrio sp. can be a first step
to explore its diverse biotechnological potential in the future.
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