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Abstract: The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-
dependent kinases. However, many proteins that control DNA replication, RNA transcription and
the synthesis and degradation of proteins can manage the activity or levels of master cell cycle
regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the
global or specific tuning of cell cycle regulators at the level of transcription and translation. Several
RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A,
DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence
on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the
regulation of the cell cycle in order to draw attention to downstream events that may occur after
suppression or inhibition of RNA helicases.
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1. Introduction

Cell division can be formally presented as a series of coordinated events that form
the cell cycle. The transition of the cell cycle through all phases is determined by the
interaction of cyclin-dependent kinases (CDK) and CDK-bound proteins with cyclins [1].
The interactions of certain CDKs and cyclins and a detailed description of the functions of
each pair in cell cycle transitions have been summarized in recent reviews [2–4]. Complex
regulation of these key proteins occurs at all stages of their life cycle—transcription, trans-
lation, post-translational modification and proteolytic degradation mediated by ubiquitin.
Thus, understanding the entire regulatory network of the cell cycle and other proteins that
are involved in the regulation of key events in this process, including protein kinases and
phosphatases [5], transcription [6] and translation factors [7], is important for accurate
control of cells with a normal or dysregulated cell cycle.

Disturbances in the cell cycle can result in the development or enhancement of many
pathophysiological conditions—cancer, ischemia/reperfusion injury, atherosclerosis, inflam-
mation and neurodegeneration [8]. Various cell cycle regulators were considered as attractive
targets for therapy [9,10]. The first generation of cell cycle inhibitors were the so-called
pan-CDK inhibitors, including flavopiridol, (R)-roscovitine and olomoucine [11]. Then,
compounds selective for CDK4/6—palbociclib, ribociclib and abemaciclib—revolutionized
the clinical management of hormone receptor positive metastatic breast cancer [12]. Among
the key limitations for wider use of CDK inhibitors are poor targeted delivery into tumor
cells and low targeting selectivity to various cell types, which leads to off-target toxicity.
Thus, inhibitors with more precise targeting to other cell cycle proteins have been tested in
preclinical and clinical studies (MK-8776 and LY2606368 for check point kinase CHK1 and
AZD1775 for WEE1) [11]. However, they still demonstrate a fairly low therapeutic index.
Thus, targeting the upstream regulators of cyclins/CDK and other key proteins in the cell
cycle would appear to be a promising therapeutic approach.

There are numerous reports indicating that RNA helicases are involved in the regula-
tion of transcription, translation, splicing and RNA transport. Thus, the participation of
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RNA helicases in the main processes of RNA metabolism makes them important indirect
regulators of the cell cycle [13]. RNA helicases can control the levels of the main regulators
of the cell cycle—cyclin-dependent kinases, cyclins and their inhibitors—mainly at the
stage of translation initiation [14]. RNA helicases have already been evaluated as targets
for antiviral and anticancer therapy [15–19]. However, targeting multifunctional proteins
such as RNA helicases can lead to undesirable effects by disrupting downstream processes,
such as affecting the activity/levels of cell cycle controllers. In this review, we discuss
the role of RNA helicases in the regulation of the cell cycle in order to draw attention to
subsequent events that may occur after suppression or inhibition of RNA helicases.

2. Basic Regulation of Cell Cycle

The cell cycle is a sequential one-way process that guides the cell through initial
growth (G1 phase), DNA replication (S phase), another growth period (G2 phase) and
finally segregation of the chromosomes into two new nuclei (M phase), followed by cell
division resulting in the birth of daughter cells. These major cell cycle events are triggered
by CDKs controlled by cyclin binding and/or phosphorylation. Each stage of the cell cycle
is controlled by a set of specific CDKs and cyclins (Figure 1A). CDK1 forms complexes with
mitotic cyclins (cyclin A and cyclin B) and launches cells into mitosis [20]. Degradation
of cyclin B turns off CDK1 and allows the cell to exit mitosis [21]. CDK2 is an important
regulator of both G1 and S phases and interacts mainly with cyclin A and cyclin E [22].
CDK3 is involved in the G0—G1 and G1—S cell cycle transitions [23–26]. CDK4 and
CDK6 interact with D-type cyclins (D1, D2 and D3) and are active in G1 phase before the
contribution of cyclin E–CDK2 [24]. Their transcription is stimulated and repressed by
several transcription factors, including B-MYB, E2F, FOXM1 and NF-Y [27]. Cell cycle
progression is also under control of negative regulators, such as CDK inhibitors—INK4 and
Cip/Kip protein families [28,29]. The INK4 protein family (p16, p15, p18 and p19 proteins)
targets CDK4(6)/cyclin D complexes, while the Cip/Kip protein family (p21, p27 and
p57 proteins) targets the CDK2/cyclin E complex [30]. The amount of each cyclin during
the cell cycle is regulated by modulation of transcription and/or protein degradation.
For example, mRNAs of mitotic cyclins behave similarly to proteins—they are upregulated
during the G2 phase and decreased after mitosis [27] due to the incapsulation in the stress
granules [28]. The tumor suppressor protein Rb also regulates entry into the cell cycle and
G1/S progression by binding to the transcription factor family E2F, followed by repression
of genes specific to the cell cycle [31]. The PPTG protein interacts with cell cycle proteins in
G1/S phase and is associated with chromosomal instability [32]. The tumor suppressor
protein p53 also plays an important role in the arrest of the cell cycle at checkpoints G1 and
G2. p53 can activate the transcription of p21, an inhibitor of cyclin-dependent kinase, which
blocks the activation of various G1 cyclin/cyclin-dependent kinase complexes [33]. There
are also alternative ways of indirect regulation: active cyclin–CDK pairs can be inactivated
by small inhibitory proteins CKI [25]. Ubiquitin-mediated proteolysis of CKI and other
proteins that interact with CDK and cyclins is also crucial for cell cycle transitions [26].
Some protein kinases are classified as CDKs only because they have high homology with
other CDKs, especially within the kinase domain. Hence, not all cyclin partners have been
found yet, while some cyclins and CDKs have regulatory functions unrelated to cell cycle.

However, the cell cycle is not just a mechanical automated cycle—before moving to
the next phase, the cell must go through checkpoints to ensure that each stage is fully
completed without any defects. In general, checkpoints include a sensor that monitors
defects at the stage of the cell cycle, signal transducers and an effector that inhibits the
transition of the cell cycle if something goes wrong [3,4,22]. During each major checkpoint,
DNA damage is also monitored followed by obligatory DNA repair before cell cycle
progression [33].
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Figure 1. (A) Regulation of the cell cycle in mammals. Contribution of cyclin-dependent kinases (CDKs), cyclins and CDK
inhibitors at each phase. (B) Schematic depiction of domains and motifs of SF2 RNA helicases based on the Mss116p structure.

3. RNA Helicases in the Regulation of Cell Cycle

RNA helicases unwind duplexes and stem-loops in RNA, thereby introducing struc-
tural changes into the RNA and RNA–protein complexes and switching their activity
using NTP as an energy source [34,35]. RNA helicases are involved in all aspects of RNA
metabolism: ribosome biogenesis (DDX10, DDX17) [36], pre-mRNA splicing (DDX41,
DDX48), mRNA translation (DDX3, DHX29), nuclear export (DDX39, DDX45), mRNA de-
cay (DDX6), miRNA-induced gene silencing (DDX5, DHX9) and mRNA transportation
and storage (DDX4, DDX3) [37]. Despite these basic functions, RNA helicases contribute to
the post-translational modification of proteins and the regulation of signaling pathways in
the cell [38,39]. Also, RNA viruses can hijack RNA helicases in the host cell to maintain
their life cycle [40]. Therefore, dysregulation of the expression or activity of these proteins
and mutations in the coding region of genes leads to the development or progression of
many diseases. Some small molecules that target RNA helicases—inhibitors of eIF4A,
like rocaglamide and silvestrol [41], and DDX3 inhibitor RK-33 [42]—have already reached
preclinical trials for cancer treatment. Several candidate antivirals have been developed
that target RNA helicases (e.g., thiazolyl phenyl compounds that disturb the life cycle of
herpes simplex viruses [43]). Here, we will briefly highlight the main functions of some
RNA helicases and then focus on their role in the regulation of the cell cycle (Table 1), since
dysregulation of the cell cycle can be either beneficial or negative for the pharmacological
effect of the suppression or inhibition of RNA helicases.

RNA helicases belong to the main superfamilies SF1 and SF2, which are also sub-
divided into families based on their motif composition. The catalytic cores of SF1 and
SF2 helicases share almost identical folds and significant structural similarity. The presence
or absence of a specific motif determines the functions of RNA helicases. The central
structural element of SF2 superfamily is formed by two RecA-like domains carrying con-
servative motifs important for these RNA helicases. Motifs I, II, V and VI are required for
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binding and hydrolysis of a nucleoside triphosphate; motifs Ia, Ib and IV are involved in
RNA binding; and the motif III participates in coupling of ATPase and unwinding activities
(Figure 1B). In the DEAD-box proteins, motif II includes the sequence D-E-A-D, which is
the origin of their name. In humans, the largest families of RNA helicases are the DEAD
box (DDX; 40 members) and DEAH box (DHX; 15 members) proteins [36,44–46].

The main role of DDX3 helicase from the DExD protein family is the regulation of trans-
lation. DDX3 represses cap-dependent translation by trapping eIF4E into a translationally
inactive complex [47,48] or binds to eIF4E along with several translation initiation factors,
including eIF4A, eIF4G, eIF2A, eIF3 and poly(A)-binding protein (PABP), and facilitates
translation of mRNA containing a structured 5′ untranslated region [49], or it can interact
with eIF3 [50]. In addition to participating in translation, DDX3 is a multifunctional protein
that is involved in almost all aspects of RNA metabolism—transcription, splicing, transla-
tion and RNA decay. During early embryonic development in mice, DDX3 also regulates
cell survival by adjusting p53-induced apoptosis [51]. In the cell cycle, DDX3 participates
in the transition between the G1 and S phases of the cell cycle, regulating the initiation
of translation of cyclin E1 [52]. DDX3 directly interacts with pre-mRNA of transcription
factor KLF4 and regulates its splicing. This event ultimately affects the gene expression
of the key cell cycle regulators: cyclin A1 and cyclin-dependent kinase 2, which leads to
the arrest of the cell cycle in the G1 phase [53]. On the other hand, DDX3 can modulate
the transcriptional activity of p21 waf1/cip1 promoter and regulate this cyclin-dependent
kinase inhibitor. Thus, DDX3 inhibitors can affect not only the translation of certain (or
all [54]) mRNA, but also the cell cycle by changing the expression of key regulators. Re-
cently developed cancer-related DDX3 inhibitors show a synergistic effect with multiple
actions—they simultaneously decrease translation and slow down the cell cycle, which
aids in the cancer treatment.

Helicase DDX46 is involved in pre-mRNA splicing [55] and innate antiviral response
by recruiting the m6A “eraser” ALKBH5 [56]. In addition, inhibition of DDX46 causes
cell arrest in G1 phase and apoptosis via phosphorylation of Akt1 protein kinase and IkBa
inhibitor [56,57]. Thus, the effect of DDX46 inhibitors may result from the combined effect
of PI3K/Akt downregulation and changes in the cell cycle.

DDX6 interacts with several protein complexes and regulates the mRNA life cycle
and translation rate. DDX6 can interact with decapping (DCP1A, EDC3, EDC4, Lsm1 and
Pat1) and translational machinery, such as eIF4E; translational repression factors (4E-T,
ataxin 2/2L and LSM14); and other RNA-binding proteins (RBPs), such as YBX1, IGF2BP2,
FXR1, polyA-binding and ribosomal proteins. The association of DDX6 with EDC3 reduces
stability of KLF4 mRNA [58], an essential transcriptional factor that regulates the expression
of cyclin A1 and CDK2. In the cytoplasm, DDX6 is enriched in P bodies and stress
granules and is important for their homeostasis [59,60]. DDX6 also binds to nascent
ribonucleoprotein (RNP) transcripts and accompanies the export of maternal mRNA to
the cytoplasm as mRNP storage particles [61]. Several studies of human DDX6 and
the yeast homolog Dhh1p have shown that these proteins are positive regulators of cell
cycle progression. Dhh1p is important for recovery from DNA-damage-dependent G1/S
cell cycle arrest [62]. Moreover, overexpression of Dhh1p inhibits cell growth in yeast,
probably due to a general repression of translation [63]. RNAi-mediated knockdown of
DDX6 leads to cell cycle arrest in the S phase [12]. In addition, DDX6 depletion results
in reduced cell viability, increased portion of cells in S phase, increased apoptosis and
decreased ability to form tumors in xenograft models [64]. The probable mechanism is
based on the regulation of the transcription factor Tcf with subsequent changes in known
targets of Wnt/β-catenin pathway, such as cox-2, cyclin D1 and survivin [65]. In addition,
overexpression of DDX6 activates the c-Myc oncogene, which is consistent with the results
on cell proliferation [66]. Taken together, these findings suggest that DDX6 plays an
important evolutionarily conserved role in cell cycle progression and proliferation, probably
through the regulation of translation of specific key mRNAs. However, another group
showed that overexpression of DDX6 leads to inhibition of cell growth and a decrease
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in anchorage-independent growth, a hallmark of malignant transformation [67]. Since
DDX6 may become a valuable target for cancer therapy [68,69], the significant role of this
helicase in the regulation of the cell cycle should be taken into account in order to avoid
secondary side effects.

Helicase DDX21 is involved in the processing of ribosomal RNA through interaction
with 45S and 32S precursors and regulates 18S and 28S rRNA levels in the cell [70,71].
DDX21 also activates transcription via polymerase I and participates in small nucleo-
lar RNPs (snoRNP)-dependent modification of rRNA and promotes RNA elongation by
polymerase II, facilitating the release of P-TEFb from the 7SK snRNP complex and phospho-
rylation of the C-terminal domain (CTD) of Pol II [72]. DDX21 increases the proliferation
of breast cancer cells by activating the AP-1 transcription factor and rRNA processing [73].
Upregulation of DDX21 helicase correlates with the increased number of cells in the S
phase and cell proliferation in gastric cancer cells. The proposed mechanism includes the
activation of c-Jun transcription, a subunit of the AP-1 transcription factor, crucial for the
synthesis of cyclin D1 mRNA and a receptor for activation of kinase C1 [74]. DDX21 is
activated by ADP-ribosylation with PARP-1 [75], and therefore PARP inhibitors can be used
to indirectly suppress DDX21 and reduce cell proliferation even in cancer cells without
defects in DNA repair machinery.

DDX51 binds to pre-60S subunit complexes and facilitates the displacement of U8
snoRNA from pre-rRNA, which is necessary for the removal of the 3′ external transcribed
spacer from 28S rRNA and productive downstream processing [76]. DDX51 is a nega-
tive regulator of the apoptotic effector p53, and, thus, actively promotes cell prolifera-
tion [77]. DDX51 also promotes the proliferation of breast cancer cells by activating the
Wnt/β-catenin signaling pathway and affects expression of cyclin D1 [78]. A decrease in
DDX51 results in cell cycle arrest in the S phase [79], probably due to the regulation of cell
cycle progression via multiple pathways or an alternative function of DDX51 RNA helicase
participation in rRNA processing.

DDX5 (also known as p68) is one of the prototypic members of the DEAD box family
of RNA helicases. DDX5 and related DDX17 (p72) are involved in a variety of cellular
processes, including transcription, pre-mRNA and rRNA processing, alternative splicing
and miRNA processing, and they are also deregulated in a range of cancers [80–83]. It has
been shown that DDX5 participates in the replication of the HIV-1 virus [84]. All these
functions make DDX5 a prospective target for the treatment of cancer and viral infec-
tions [84]. DDX5 plays a proliferative or oncogenic role in cancer through the coactivation
of Androgen Receptor (AR) [85], Runx2 [86] and the p50 subunit of NF-κB [87], and up-
regulation of cyclin D1 and c-Myc consistent with β-catenin activation [88,89] as well as
genes necessary for DNA replication. In colon cancer, DDX5 may affect β-catenin in two
ways: by protecting β-catenin in the cytoplasm from degradation via dissociation from
the cytoplasmic APC/axin/GSK-3β complex or by augmenting β-catenin transcriptional
activity in the nucleus [90]. DDX5 is a negative regulator of Wnt signaling and hepatocyte
reprogramming in HCC [91]. However, in colorectal cancer cells, DDX5 interacts with
noncoding RNA NEAT1, which improves its stability, and sequentially activates Wnt
signaling [92]. Moreover, DDX5 was found to activate the transcription of the Snail1 gene
by displacing histone deacetylase from the Snail1 promoter [89], which is consistent with
its participation in the epithelial–mesenchymal transition (EMT). In spermatogonia loss of
DDX5, cell cycle arrest occurs at both G1/S and G2/M stages. Several cell-cycle-related
genes are aberrantly expressed, including strong upregulation of Cdkn1a (p21). DDX5 also
binds to a number of cyclin mRNA transcripts and influences its nuclear export and sta-
bility [93]. DDX5 interacts with the early S-phase-upregulated noncoding RNA SUNO1,
which promotes the association with RNA pol II on chromatin, thereby promoting tran-
scription of cell cycle genes such as WTIP [94]. On the other hand, for DDX5 and DDX17,
antiproliferative or tumor suppressive functions are also implied. A role in differentia-
tion has been confirmed by the finding that DDX5 and DDX17 coactivate the myogenic
regulatory factor MyoD and are required for differentiation of skeletal muscle cells [95].



Int. J. Mol. Sci. 2021, 22, 2984 6 of 15

DDX5 coactivates the p53 tumor suppressor and is required for a p53-dependent DNA
damage response [96,97]. However, a recent study demonstrated that although DDX5 is
required for p53-dependent CDKN1 induction and cell cycle arrest, DDX5 is not involved
in the induction of apoptosis [97], suggesting that DDX5 may play a role in cell survival in
some cases. Moreover, the finding that DDX5 induces the expression of the cell cycle arrest
gene CDKN1, and, conversely, cyclin D1 in a different context [98], suggests that DDX5 may
have opposite effects on the cell cycle progression under different conditions. DDX5 is
required for the progression of G1–S phase in the breast cancer cell line by involvement
in the transcriptional regulation of Cdc45/Mcm2-7/GINS complex. DDX5 contributes
toward initiation of replication and thus S-phase entry, where it promotes DNA replication
preinitiation complex assembly on chromatin [99]. Thus, DDX5 is a viable candidate drug
target for selective anticancer therapy directed at those tumors that have an amplified
DDX5 locus. In addition, this data supports the idea that DDX5 is highly context sensitive
presumably due to post-translational modifications or specific rules. Thus, DDX5 may
not be an effective universal therapeutic target. Furthermore, simultaneous delivery of
inhibitors to healthy cell can induce toxic or off-target effects.

DHX33 interacts with the architectural protein UBF and indirectly regulates RNA
polymerase I-mediated transcription and rRNA synthesis [100]; promotes the assembly of
80S ribosome at the late stage of mRNA translation initiation [101]; selectively regulates
transcription of MMP9, MMP14 and PLAU genes involved in the regulation of cancer cell
invasion and migration [102]; and participates in the innate immune response to double-
stranded and bacterial RNA in the cell cytosol [103]. In addition, DHX33 recruits active
RNA polymerase II to facilitate the transcription of many genes associated with the cell
cycle: cyclin A2, cyclin B2, cyclin E2, MCM4, MCM7, cdc6, cdc20 and E2F1. Expression of
DHX33 is necessary for continuous cell proliferation as it promotes cell cycle progression
at the G1/S, G2/M and metaphase–anaphase transitions [104]. DHX33 is induced by PI3K
and mTOR inhibitors and contributes to the development of glioblastoma by accelerating
the cell cycle [105]. In addition, DHX33 interacts with transcriptional factor AP-2β and
binds to the promoters of the genes involved in the cell cycle processes: MCM2, MCM4,
CDC26, CCNB2, CCNE1, CCNE2 and CCND3 [106]. DHX33 participates in Ras-driven
lung cancer development by regulation of certain genes associated with cell proliferation,
such as cdc6, cyclin D1 and Ki-67. Thus, DHX33 contributes to the regulation of various
aspects of cell proliferation and migration during cancer development. Hence, the exact
molecular mechanism remains to be revealed [107].

DDX41 acts as an intracellular DNA sensor in myeloid dendritic cells via the STING-
TBK1-IRF3 pathway [108]. Besides its role in innate immunity, DDX41 is also associated
with hereditary diseases. Mutations in the DDX41 gene lead to loss of tumor suppressor
function due to altered pre-mRNA splicing and RNA processing [109]. Also, helicase
DDX41 is a new repressor of one of the most studied inhibitors of CDK1A, p21WAF1/CIP1,
which makes DDX41 an important participant in the regulation of the cell cycle. DDX41 re-
duces translation of p21 mRNA by binding to the 3′-UTR [110].

Helicase eIF4A is a canonical protein of the translation initiation process that unwinds
long and complex secondary structures in the 5′-UTR, which are common for many eukary-
otic mRNAs [111]. In addition to its helicase activity, eIF4A may function as a regulatory
switch to control the conformation of the 43S preinitiation complex during mRNA recruit-
ment in cap-dependent translation [112]. In human breast adenocarcinoma cells, inhibition
of eIF4A blocks cell cycle progression at the G1/S phase transition, likely through loss of
Cyclin D1, Cyclin D2 and Cdk6, and induces apoptosis, in part, by inhibiting translation of
BCL2. However, the main influence of eIF4A on cell cycle progression is contributed at the
level of the translation initiation process [113]. Also, eIF4A is crucial for the translation of
viral IRES mRNAs [114]. Due to the important role of eIF4A in the development of cancer
and viral diseases, many inhibitors have been developed to date [115]. Nevertheless, direct
targeting of this essential protein can lead to strong adverse effects.
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DHX9 mediates binding of the epidermal growth factor receptor (EGFR) with the
cyclin D1 promoter, which stimulates its transcription activation [116]. DHX9 also forms a
complex with RNA Pol II and EWS–FLI1 to augment EWS–FLI1-dependent CCND1 tran-
scription [117]. Additionally, DHX9 can interact with noncoding RNA pncCCND1_B and
repress cyclin D1 transcription, exhibiting both oncogenic and tumor suppressive func-
tions [118]. DHX9 can also interact with p16INK4a promoter and activate its transcription,
which leads to the inhibition of cyclin D1–CDK4/6 complex formation, thus promoting cell
cycle regulation [119]. DHX9 is also capable of suppressing activity of the tumor suppressor
BRCA1, which functions in the DNA damage response and cell cycle arrest [120]. DHX9 is
upregulated in many cancers, and its downregulation causes p53-mediated apoptosis,
which also promotes cell cycle regulation [121]. It was demonstrated that DHX9 interacts
with CIP1-interacting zinc finger protein 1 (CIZ1) and contributes to CIZ1 nucleolar local-
ization in S phase. Nucleolar CIZ1-DHX9 localization is required for efficient cell cycle
progression and contributes to noncanonical roles in the nucleolus [122]. DHX9′s multitude
of functions in the development of cancer highlight a pivotal role in malignancy and the
potential as both a biomarker and selective target for cancer therapy.

RNA helicase DDX56 is overexpressed in different cancer types (e.g., in colorectal
cancer) and leads to a poor prognosis. DDX56 can promote cell proliferation by inducing
oncogenic splicing alteration in a cell cycle checkpoint gene, WEE1, a G2–M cell cycle
checkpoint. Hence, the molecular mechanism of WEE1 abnormal splicing of regulation by
DDX56 remains unknown [123]. Inhibition of DDX56 in osteosarcoma cells also decreases
cell proliferation and promotes p53-mediated apoptosis [124].

RNA helicase UAP56/DDX39B participates in the resolution of the nonscheduled
R loops, representing a major source of DNA damage and replication stress in human
cells. UAP56 depletion causes replication fork stalling and leads to a significant increase in
the percentage of damaged cells in all phases of the cell cycle but has a major impact in
G1 cells [125].

We also want to mention a set of helicases that can indirectly influence the cell cycle.
Among them is helicase SUV 3, which is capable of unwinding the secondary structures
of RNA and DNA. This helicase is localized in the mitochondria and is part of the mito-
chondrial degradosome. A decrease in the amount of SUV 3 leads to the accumulation of
nondegraded mitochondrial RNA and, as a consequence, to changes in the cell cycle [126].
In embryonic stem cells, DDX18 helicase counteracts PRC2 to ensure chromatin availability
of rDNA genes and, therefore, promotes high levels of rRNA transcription, ribosome
biogenesis and translation, which are required for self-renewal of ESCs and, therefore,
are required for cell cycle progression [127]. In addition, mutations in this putative DExH
box RNA helicase lead to a delay in G2/M due to the influence on the splicing of pre-mRNA
of the cell cycle regulators [128]. The level of RNA helicase HELZ affects phosphorylation
of the ribosomal protein S6 and the number of polysomes in the cell, which in turn causes
changes in the cell cycle [129].
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Table 1. Summary of the RNA helicases involvement in the cell cycle regulation.

Helicase Target Crucial for the Cell Cycle Cell Cycle Phase or Transition

DDX3 cyclin E1, cyclin A1, cyclin D1, CDK2 G1–S [39,52,53,130]
DDX46 phosphorylation of Akt1 and IkBa inhibitor Arrest at G1 phase [57]

DDX6
transcription factor Tcf, target genes of

Wnt/β-catenin—c-Myc, cyclin D1, cox-2, livin,
survivin and VEGF

Arrest at S phase [130,131]

DDX21 c-Jun, required for the synthesis of cyclin D1 Arrest at S phase [73,74]
DDX51 TGFBR2 Arrest at S phase [132]

DDX5 cyclin D1, c-Myc, β-catenin activation,
Cdc45/Mcm2-7/GINS Arrest at G1 and M phases [85,86,92,99]

DDX41 p21WAF1/CIP1 G2–M [16,110]

DHX33 cyclin A2, cyclin B2, cyclin E2, MCM4, MCM7, cdc6, cdc20,
and E2F1, cdc6, cyclin D1 and Ki-67 G1–S; G2–M [104–107]

eIF4A cyclin D1, cyclin D2, CDK6, CDK8 and Bcl2 All stages [111,113,122]
DHX9 Cyclin D1, zinc finger protein 1 G1–S [117–122]
DDX56 WEE1 G2–M [123,124]

UAP56/DDX39B R-loop Arrest at G1 phase [125]

4. Conclusions

RNA helicases are highly conserved enzymes crucial for RNA metabolism. Most of
the RNA helicases discussed here have become [133] or may become promising biomarkers
or targets for the diagnosis, prognosis and treatment of viral diseases and cancers [134,135].
Small molecule inhibitors have already been developed and validated for the canonical
translation initiation factor eIF4A: hypericin [136], hippuristanol [137], pateamine A [138],
rocaglamides [139] and DDX3 (RK-33 [140]) and DDX5 (RX-5902 [141]) helicases. Among
them, we want to highlight DDX3 as a confirmed target for cancer and antiviral ther-
apy [142], while others, like DDX46, DHX9 and DDX5, are still poorly studied in this con-
text. DDX5 and DDX6 are involved in replication of HIV and hepatitis C viruses [84,143],
while DDX21 contributes to the life cycle of some RNA viruses such as cytomegalovirus,
influenza A virus and retroviruses through various mechanisms [144–146]. Thus, all these
helicases can become potential targets for antiviral therapy.

However, RNA helicases are involved not only in the regulation of RNA metabolism.
They also participate in various aspects of cell cycle regulation (Figure 2 and Table 1).
In some cases, the effect on the cell cycle is just a result of downstream effects, while
there are many examples when RNA helicases exhibit moonlight functions and directly
regulate the expression of master cell cycle regulators. RNA helicases can influence cell
cycle progression not only at the checkpoint stages, but also at each phase using three main
mechanisms of action. Most of RNA helicases mentioned in this review (DDX6, DDX21,
DDX51, DDX5, DX17, DHX33, DHX9, DDX56) are involved in the regulation of pre-mRNA
transcription or splicing of some cell cycle regulators, such as cyclins and cyclin-dependent
kinases (Table 1). Another mechanism of the cell cycle regulation by RNA helicases is based
on the changes in translation of cellular regulators. DDX3, eIF4A and DDX41 regulate the
stage of translation initiation of cyclins and cyclin-dependent kinases and tune their levels
at different steps (Table 1). DDX46 and DDX18 use a third approach—they are involved in
the regulation of post-translational and epigenetic modification of the effectors involved in
signaling pathways that regulate the cell cycle progression (Table 1).

Thus, inhibition or downregulation of RNA helicases, discussed above as antiviral
and anticancer targets, will also lead to a significant effect on the cell cycle. Inhibition of
DDX3 causes a decrease in the amount of cyclin E1, A1 and CDK2 and stops the progress
of cell cycle [39,52,53,147]. A decrease in DDX46 affects cell recovery from DNA-damage-
dependent G1/S cell cycle arrest [57]. DDX21 is important for the expression of cyclin
D1 and activation of C1 protein kinase. Therefore, inhibition of DDX21 causes cell cycle
arrest [73,74,145]. There are contradictory data on DDX5—on the one hand, DDX5 is
necessary for the synthesis of cyclin D1 and c-myc. On the other hand, DDX5 is important
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for p53 activation [85,86]. Thus, the effect on cell cycle can be cell-type dependent. DHX33 is
a regulator of transcription of many cyclins and CDKs—therefore, its inhibition causes
stagnation of the cell cycle [101–107]. DDX41 is a repressor of CDK inhibitor, which is also
important for cell cycle progression [108–110]. DHX9 regulates cyclin D1–CDK4/6 complex
formation [118]. DDX56 is a regulator of the G2–M cell cycle checkpoint gene, WEE1 [123].
All of these events should be taken into account, as sometimes these phenotypes can be
detrimental for research or drug development. Inhibition or downregulation of RNA
helicases may cause cell cycle arrest, which leads to changes in the given transcriptome
and proteome data. In addition, RNA helicases (for example, DDX5 and DDX17 [148])
are involved in the transcriptional regulation of long-noncoding RNA (lncRNA), which is
crucial for physiological and pathophysiological conditions [149,150]. Downregulation of
lncRNAs by small molecules or oligonucleotides [151,152] can also affect the RNA helicase
functions [139] and, finally, cell cycle progression [153].

Figure 2. Schematic representation of the involvement of RNA helicases in the cell cycle regulation
with marked cyclin-dependent kinases (CDKs) and their regulatory partner proteins, the cyclins
based on the analyzed published data represented in Table 1.

Multiple functions, sometimes with the opposite direction depending on the type of
cells or conditions, make some RNA helicases potential biomarkers and selective targets
for therapy. Moreover, their contribution to various processes may depend on the level of
the protein in the cell and/or on the inhibited protein domain responsible either for ATP-
or RNA-binding. Here, we reviewed the effects of RNA helicases on cell cycle and cell
proliferation. These follow-up events may be crucial for development of therapeutics due
to potential off-target effects. Problems with pharmacological intervention can also be re-
solved by targeted delivery of inhibitors to cancer or infected cells [153]. On the other hand,
thorough evaluation of the RNA helicases together with the inhibitor/suppressor in vitro
and in vivo should be sufficient for successful preclinical development without unexpected
toxicity or side effects in long-term treatment in later stages of clinical trials. Nevertheless,
we expect that pharmacological intervention to the processes driven by RNA helicases can
be beneficial in many cases and various inhibitors will become approved drugs.
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growth rate of the HeLa cells and can localize in the nucleoli. Acta Biochim. Pol. 2017, 64, 177–181. [CrossRef] [PubMed]

126. Zhang, H.; Wu, Z.; Lu, J.Y.; Huang, B.; Zhou, H.; Xie, W.; Wang, J.; Shen, X. DEAD-box helicase 18 counteracts PRC2 to safeguard
ribosomal DNA in pluripotency regulation. Cell Rep. 2020, 30, 81–97. [CrossRef]

127. Ehsani, A.; Alluin, J.V.; Rossi, J.J. Cell cycle abnormalities associated with differential perturbations of the human U5 snRNP
associated U5-200kD RNA helicase. PLoS ONE 2013, 8, e62125. [CrossRef] [PubMed]

128. Hasgall, P.A.; Hoogewijs, D.; Faza, M.B.; Panse, V.G.; Wenger, R.H.; Camenisch, G. The putative RNA helicase HELZ promotes cell
proliferation, translation initiation and ribosomal protein S6 phosphorylation. PLoS ONE 2011, 6, e22107. [CrossRef] [PubMed]

129. Chao, C.-H.; Chen, C.-M.; Cheng, P.-L.; Shih, J.-W.; Tsou, A.-P.; Lee, Y.-H.W. DDX3, a DEAD box RNA helicase with tumor growth-
suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor.
Cancer Res. 2006, 66, 6579–6588. [CrossRef] [PubMed]

130. Duan, Z.; Ping, P.; Wang, G.; Zhang, X.; Sun, F. Imsnc761 and DDX6 synergistically suppress cell proliferation and promote
apoptosis via p53 in testicular embryonal carcinoma cells. Biosci. Rep. 2018, 38, BSR20180271. [CrossRef] [PubMed]

131. Wang, Y.; Arribas-Layton, Y.; Chen, J.; Lykke-Andersen, G.L. DDX6 Orchestrates Mammalian Progenitor Function through the
mRNA Degradation and Translation Pathways. Mol. Cell. 2015, 60, 118–130. [CrossRef]

132. Barkovich, K.J.; Moore, M.K.; Hu, Q.; Shokat, K.M. Chemical genetic inhibition of DEAD-box proteins using covalent complemen-
tarity. Nucleic Acids Res. 2018, 46, 8689–8699. [CrossRef] [PubMed]

133. Cai, W.; Chen, Z.X.; Rane, G.; Singh, S.S.; Choo, Z.; Wang, C.; Yuan, Y.; Tan, T.Z.; Arfuso, F.; Yap, C.T.; et al. Wanted DEAD/H or
alive: Helicases winding up in cancers. JNCI J. Natl. Cancer Inst. 2017, 109. [CrossRef] [PubMed]

134. Kwong, A.D.; Rao, B.G.; Jeang, K.-T. Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov. 2005, 4, 845–853.
[CrossRef]

135. Cencic, R.; Galicia-Vázquez, G.; Pelletier, J. Inhibitors of translation targeting eukaryotic translation initiation factor 4A. Methods
Enzymol. 2012, 511, 437–461. [CrossRef]

136. Tsumuraya, T.; Ishikawa, C.; Machijima, Y.; Nakachi, S.; Senba, M.; Tanaka, J.; Mori, N. Effects of hippuristanol, an inhibitor of
eIF4A, on adult T-cell leukemia. Biochem. Pharmacol. 2011, 81, 713–722. [CrossRef] [PubMed]

137. Low, W.-K.; Dang, Y.; Schneider-Poetsch, T.; Shi, Z.; Choi, N.S.; Merrick, W.C.; Romo, D.; Liu, J.O. Inhibition of eukaryotic
translation initiation by the marine natural product pateamine A. Mol. Cell. 2005, 20, 709–722. [CrossRef] [PubMed]

138. Kim, S.; Hwang, B.Y.; Su, B.-N.; Chai, H.; Mi, Q.; Kinghorn, A.D.; Wild, R.; Swanson, S.M. Silvestrol, a potential anticancer
rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway
without activation of executioner caspase-3 or -7. Anticancer Res. 2007, 27, 2175–2183.

139. Bol, G.M.; Khan, R.; van Voss, M.R.H.; Tantravedi, S.; Korz, D.; Kato, Y.; Raman, V. PLGA nanoparticle formulation of RK-33: An
RNA helicase inhibitor against DDX3. Cancer Chemother. Pharmacol. 2015, 76, 821–827. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.1000743107
http://doi.org/10.18632/oncotarget.5033
http://www.ncbi.nlm.nih.gov/pubmed/26450900
http://doi.org/10.1158/0008-5472.CAN-18-2403
http://doi.org/10.1074/jbc.M004481200
http://www.ncbi.nlm.nih.gov/pubmed/11038348
http://doi.org/10.1038/sj.onc.1206195
http://www.ncbi.nlm.nih.gov/pubmed/12592385
http://doi.org/10.1038/onc.2016.52
http://www.ncbi.nlm.nih.gov/pubmed/26973242
http://doi.org/10.1038/s41598-020-75160-z
http://www.ncbi.nlm.nih.gov/pubmed/33093612
http://doi.org/10.1111/cas.14163
http://doi.org/10.3389/fbioe.2020.00588
http://www.ncbi.nlm.nih.gov/pubmed/32671031
http://doi.org/10.1101/gad.336024.119
http://www.ncbi.nlm.nih.gov/pubmed/32439635
http://doi.org/10.18388/abp.2016_1419
http://www.ncbi.nlm.nih.gov/pubmed/28291845
http://doi.org/10.1016/j.celrep.2019.12.021
http://doi.org/10.1371/journal.pone.0062125
http://www.ncbi.nlm.nih.gov/pubmed/23637979
http://doi.org/10.1371/journal.pone.0022107
http://www.ncbi.nlm.nih.gov/pubmed/21765940
http://doi.org/10.1158/0008-5472.CAN-05-2415
http://www.ncbi.nlm.nih.gov/pubmed/16818630
http://doi.org/10.1042/BSR20180271
http://www.ncbi.nlm.nih.gov/pubmed/29769412
http://doi.org/10.1016/j.molcel.2015.08.014
http://doi.org/10.1093/nar/gky706
http://www.ncbi.nlm.nih.gov/pubmed/30102385
http://doi.org/10.1093/jnci/djw278
http://www.ncbi.nlm.nih.gov/pubmed/28122908
http://doi.org/10.1038/nrd1853
http://doi.org/10.1016/B978-0-12-396546-2.00020-6
http://doi.org/10.1016/j.bcp.2010.12.025
http://www.ncbi.nlm.nih.gov/pubmed/21219881
http://doi.org/10.1016/j.molcel.2005.10.008
http://www.ncbi.nlm.nih.gov/pubmed/16337595
http://doi.org/10.1007/s00280-015-2851-3
http://www.ncbi.nlm.nih.gov/pubmed/26330329


Int. J. Mol. Sci. 2021, 22, 2984 15 of 15

140. Lee, Y.; Mazhari, R.; Kim, D.J. The anticancer effects of supinoxin (RX-5902) in pancreatic carcinoma. J. Clin. Oncol. 2016, 34, 238.
[CrossRef]

141. Kukhanova, M.K.; Karpenko, I.L.; Ivanov, A.V. DEAD-box RNA Helicase DDX3: Functional Properties and Development of
DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules 2020, 25, 1015. [CrossRef]

142. Biegel, J.M.; Henderson, E.; Cox, E.M.; Bonenfant, G.; Netzband, R.; Kahn, S.; Eager, R.; Pager, C.T. Cellular DEAD-box RNA
helicase DDX6 modulates interaction of miR-122 with the 5′ untranslated region of hepatitis C virus RNA. Virology 2017, 507,
231–241. [CrossRef] [PubMed]

143. Hao, H.; Han, T.; Xuan, B.; Sun, Y.; Tang, S.; Yue, N.; Qian, Z. Dissecting the role of DDX21 in regulating human cytomegalovirus
replication. J. Virol. 2019, 93, e01222-19. [CrossRef]

144. Dong, Y.; Ye, W.; Yang, J.; Han, P.; Wang, Y.; Ye, C.; Weng, D.; Zhang, F.; Xu, Z.; Lei, Y. DDX21 translocates from nucleus to
cytoplasm and stimulates the innate immune response due to dengue virus infection. Biochem. Biophys. Res. Comm. 2016, 473,
648–653. [CrossRef]

145. Watanabe, Y.; Ohtaki, N.; Hayashi, Y.; Ikuta, K.; Tomonaga, K. Autogenous translational regulation of the borna disease virus
negative control Factor X from polycistronic mRNA using host RNA helicases. PLoS Pathog. 2009, 5, e1000654. [CrossRef]

146. Ariumi, Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front. Genet. 2014, 5.
[CrossRef]

147. Giraud, G.; Terrone, S.; Bourgeois, C.F. Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and
transcriptional regulation. BMB Rep. 2018, 51, 613–622. [CrossRef]

148. Sergeeva, O.; Sviridov, E.; Zatsepin, T. Noncoding RNA in liver regeneration-from molecular mechanisms to clinical applications.
Semin Liver Dis. 2020, 40, 70–83. [CrossRef] [PubMed]

149. Stojic, L.; Lun, A.T.L.; Mascalchi, P.; Ernst, C.; Redmond, A.M.; Mangei, J.; Barr, A.R.; Bousgouni, V.; Bakal, C.; Marioni, J.C.;
et al. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat Commun. 2020, 11, 1851.
[CrossRef] [PubMed]

150. Abulwerdi, F.A.; Xu, W.; Ageeli, A.A.; Yonkunas, M.J.; Arun, G.; Nam, H.; Schneekloth, J.S.; Dayie, T.K.; Spector, D.; Baird, N.;
et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem. Biol. 2019,
14, 223–235. [CrossRef] [PubMed]

151. Fatemi, R.P.; Salah-Uddin, S.; Modarresi, F.; Khoury, N.; Wahlestedt, C.; Faghihi, M.A. Screening for small-molecule modulators
of long noncoding RNA-protein interactions using AlphaScreen. J. Biomol. Screen. 2015, 20, 1132–1141. [CrossRef] [PubMed]

152. Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics.
Nat. Commun. 2018, 9, 1410. [CrossRef] [PubMed]

153. Kutova, O.M.; Guryev, E.L.; Sokolova, E.A.; Alzeibak, R.; Balalaeva, I.V. Targeted Delivery to Tumors: Multidirectional Strategies
to Improve Treatment Efficiency. Cancers 2019, 11, 68. [CrossRef]

http://doi.org/10.1200/jco.2016.34.4_suppl.238
http://doi.org/10.3390/molecules25041015
http://doi.org/10.1016/j.virol.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28456022
http://doi.org/10.1128/JVI.01222-19
http://doi.org/10.1016/j.bbrc.2016.03.120
http://doi.org/10.1371/journal.ppat.1000654
http://doi.org/10.3389/fgene.2014.00423
http://doi.org/10.5483/BMBRep.2018.51.12.234
http://doi.org/10.1055/s-0039-1693513
http://www.ncbi.nlm.nih.gov/pubmed/31323689
http://doi.org/10.1038/s41467-020-14978-7
http://www.ncbi.nlm.nih.gov/pubmed/32296040
http://doi.org/10.1021/acschembio.8b00807
http://www.ncbi.nlm.nih.gov/pubmed/30620551
http://doi.org/10.1177/1087057115594187
http://www.ncbi.nlm.nih.gov/pubmed/26173710
http://doi.org/10.1038/s41467-018-03705-y
http://www.ncbi.nlm.nih.gov/pubmed/29650952
http://doi.org/10.3390/cancers11010068

	Introduction 
	Basic Regulation of Cell Cycle 
	RNA Helicases in the Regulation of Cell Cycle 
	Conclusions 
	References

