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The structure-function relation is one of the oldest hypotheses in biology and medicine;

i.e., form serves function and function influences form. Here, we derive and validate

form-function relations for volume, length, flow, and mean transit time in vascular trees

and capillary numbers of various organs and species. We define a vessel segment as

a “stem” and the vascular tree supplied by the stem as a “crown.” We demonstrate

form-function relations between the number of capillaries in a vascular network and the

crown volume, crown length, and blood flow that perfuses the network. The scaling

laws predict an exponential relationship between crown volume and the number of

capillaries with the power, λ, of 4/3 < λ < 3/2. It is also shown that blood flow rate

and vessel lengths are proportional to the number of capillaries in the entire stem-crown

systems. The integration of the scaling laws then results in a relation between transit

time and crown length and volume. The scaling laws are both intra-specific (i.e., within

vasculatures of various organs, including heart, lung, mesentery, skeletal muscle and

eye) and inter-specific (i.e., across various species, including rats, cats, rabbits, pigs,

hamsters, and humans). This study is fundamental to understanding the physiological

structure and function of vascular trees to transport blood, with significant implications

for organ health and disease.
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INTRODUCTION

The major role of vascular networks in the circulatory system
is to transport blood, oxygen, nutrients, hormones, and
cellular waste in various organs to maintain biological
homeostasis. Physiological trees play a key role to
transport flow to the capillary beds to support tissue
demands. The tissue metabolic needs and the minimization
of some specific costs for growth to maintain the
delivery of nutrients and elimination of waste products
generally guides the vascular development (LaBarbera,
1990).

Allometric scaling illustrates how biologic parameters
vary with shape and size, regardless of the variations
between organisms. Scaling laws are independent of the
specific nature of an organism and originate from common
underlying mechanisms. A study of the circulation requires
an understanding between hemodynamic (blood flow),
morphological (e.g., diameter, length, volume, etc.), and
topological (e.g., connectivity patterns) information of the
vasculature and any potential structure-function relations
thereof. Functionally, the vascular structure serves metabolism
where there is an intimate structure-function relation
(LaBarbera, 1990). The vascular patterns have been used as
a basis to elucidate the origin of biological allometric scaling laws
(e.g., metabolic rate scaling law, West et al., 1997) and various
intraspecific scaling laws (e.g., volume-diameter, flow-length,
length-volume, and scaling law of flow resistance (Kassab, 2006;

FIGURE 1 | A schematic illustration of the definition of stem-crown units and the equivalent resistor model. The corresponding parameters. D, L, Q, and V are the

diameter, length, flow rate, and volume, respectively. Subscriptst’ “s” and “c” corresponding to stem and crown, respectively, in a stem-crown unit and subscripts

“max” represent the most proximal stem-crown unit in a vascular tree.

Huo and Kassab, 2012). For example, it is widely accepted that
animal’s basal metabolic rate and body mass scale to the power
3/4, known as Kleiber’s law. West, Brown, and Enquist used a
hemodynamic analysis of vascular networks to derive the 3/4
scaling law. Although a great majority of available empirical data
comply with the 3/4 exponent, there is also statistical evidence
that the 2/3 power rather 3/4 provides a better fit (Dodds et al.,
2001; White and Seymour, 2003). Based on the minimum
energy hypothesis, several form-form and form-function
scaling relations such as volume-diameter, length-diameter,
flow-length, and flow- diameter have been previously proposed
and validated (Huo and Kassab, 2012). Yet, there is a need to
develop scaling relations for the number of capillaries to various
morphological and functional parameters based on laws of
physics.

The mean transit time (MTT), which is the time required
to transport blood within the vascular network, plays a
vital role in the physiological function of the circulatory
system (Crumrine and LaManna, 1991; Derdeyn et al.,
1999). The vascular network has structural heterogeneity,
the complexity of spatial arrangement of vessels and adaptation
of vascular anatomy in response to hemodynamic and metabolic
stimuli (Pries and Secomb, 2009). Hence, development
of structure-function relations which relate the MTT to
vascular morphology are fundamental to understanding
the interplay between vascular form and function, and
thus provide a better rationale for clinical diagnostics and
therapies.
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TABLE 1 | Variables and respective descriptions.

Symbol Description

Vc Crown volume Cumulative volume of vessels within a

stem-crown system

Lc Crown length Cumulative length of vessels within a

stem-crown system

Nc Crown capillary number Number of capillaries within a stem-crown

system

Tc Crown transit time Time required for blood to travel from a

stem to capillaries

Qst Stem flow rate Flow rate corresponding to a stem

Qcp Capillary flow rate Flow rate corresponding to capillaries

Tc Segment transit time Time required for blood to travel within a

vessel

Tsg Segment length Length of a vessel in stem-crown system

Lcp Capillary length The average length of capillaries

Br Branching ratio Ratio of vessel numbers in two

consecutive branching levels

An adequate tissue perfusion (volumetric blood flow per unit
mass of tissue) through a transport structure to match metabolic
requirements of an organ is essential for normal function of an
organism across all species. Too low of tissue perfusion may
cause hypoxia, ischemia, cell death, and ultimate loss of organ
function. Histological assessment of biopsy tissues, including
capillary density measurements, are common but invasive and
the connection with the flow and hence function is empirical and
qualitative. Since there is no equivalent relation between flow and
capillarity (i.e., number or density of capillaries), deriving such a
relation would be of significant importance.

Here, we hypothesize the existence of scaling relations
between volume, length, and flow through a branch (i.e., stem
flow) of an organ’s vascular system and the respective number
of capillaries through which the blood distributes. Based on
the scaling law of metabolic rate and fractal nature of blood
vasculature, we propose and test scaling of blood volume and
cumulative length of vascular networks with the respective
number of terminal capillaries. We employ a one-dimensional
hemodynamic analysis of an entire network incorporating the
variation in blood viscosity with vessel’s size (Fåhræus–Lindqvist
effect) to compute blood flow. The scaling relations between
capillaries, flow and cumulative length of vascular trees, in
conjunction with the definition of mean transit time, provide
yet another link between structure (number of capillaries) and
function (mean transit time). Ultimately, we provide a form-
function relation for an analytical determination of transit time
based on the cumulative length and volume of vascular systems
in various species and organs throughout the vasculature. The
scaling laws were formulated and validated in different vascular
trees (e.g., coronary, pulmonary, mesenteric vessels, skeletal
muscle vasculature, and conjunctiva vessels) of various species
(e.g., rats, cats, rabbits, pigs, hamsters, humans) and organs
(e.g., heart, lung, mesentery, skeletal muscle, and eye) for
which there exist morphometric data. The implications of the

FIGURE 2 | Relationship between normalized stem flow (Qs/Qs,max ) and

normalized number of capillaries (Nc/Nc,max) for the full asymmetric porcine

arterial tree shown in a log-log density plot: (A) RCA, right coronary artery; (B)

LAD, left anterior descending artery; (C) LCx, left circumflex artery. The total

number of data points shown in (A–C) are 838,462, 950,014, and 575,868;

respectively. The dash lines correspond to the theoretical exponent of unity.

The values of exponents, the confidence interval and R2 for each species and

organs are summarized in Table 2.
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FIGURE 3 | Relationship between normalized stem flow (Qs/Qs,max) and normalized number of capillaries (Nc/Nc,max) for the symmetric trees of various species and

organs shown in a log-log scatter plot. RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; PA, pulmonary artery; PV,

pulmonary vein; SMA, sartorius muscle arteries; MA, mesentery arteries; OV, omentum veins; BCA, bulbar conjunctiva arteries; BCV, bulbar conjunctiva veins; RMA,

retractor muscle artery. The values of exponents are consistent with the theoretical value of unity. The values of scaling exponents, the confidence interval and R2 for

various species and organs are summarized in Table 2.

remarkably simple scaling laws are discussed in health and
disease.

MATERIALS AND METHODS

We define a vessel segment as a “stem” and the vascular tree
supplied by the stem as a “crown,” (see Figure 1). A stem-crown
system in which the volume of the crown (Vc) is defined as the
sum of the intravascular volume of vessel segments in the entire
stem-crown system (arterial or venous trees proximal or distal to
the capillaries, respectively). Similarly, the crown length (Lc) is
defined as the cumulative vascular lengths in the entire arterial
or venous crown. Blood flow (Q) and the number of capillaries
(N) correspond to the stem and the respective network. The
subscriptions c, st, and cp stand for crown, stem and capillary
respectively. To derive and test the existence of various scaling
laws, morphometric data based on the full asymmetric and
simplified symmetric vascular system were used. The entire tree
consists of many stem-crown units down to the capillary vessels
(Sho et al., 2004; Huo and Kassab, 2012). At each bifurcation,
there is a unique stem-crown unit which continues down to the
smallest unit: an arteriole with two capillaries for an arterial tree
or a venule and two capillaries for a venous tree. Functionally,
each stem supplies or collects blood from the crown for an arterial
or venous tree, respectively. The present analysis applies strictly
to a tree structure (arterial or venous) down to the first capillary
bifurcation. The entire arterial network was reconstructed down

to the first capillaries (<8µm). Missing data from the cast
were reconstructed based on histological data (<40µm) using
a computational algorithm. Details of reconstruction algorithm
can be found in Mittal et al. (2005). To obtain blood flow,
each vessel is modeled as a resistor (Figure 1). Based on this
assumption, blood vessel resistance is a function of vessel’s
geometry and viscosity that takes into account the Fåhræus
effect. Boundary conditions were prescribed by assigning an inlet
pressure of 120 mmHg and a uniform pressure of 25 mmHg at
the outlet of the first capillary segment. Subsequently, a system of
simultaneous linear algebraic equations for the nodal pressures
is obtained. Once the vessel resistances are evaluated from the
geometry, and suitable boundary conditions are prescribed, flow
rate is simulated to estimate the transit time within the vascular
trees (please see the Supplementary Information for details).

Existing Vascular Morphometric Data
Singhal S. et al. (1973); Singhal S. S. et al. (1973) and Horsfield
and Gordon (1981) studied the morphometry of the pulmonary
arteries and veins of humans, whereas Yen et al. (1983, 1984)
used it to study the cat pulmonary arterial and venous trees.
The microvasculatures of cat sartorius muscle (Koller et al.,
1987), hamster retractor muscle (Ellsworth et al., 1987), hamster
skin muscle (Bertuglia et al., 1991), rat mesenteric microvessels
(Ley et al., 1986), rabbit omentum (Fenton and Zweifach,
1981), and human bulbar conjunctiva microvessels (Fenton and
Zweifach, 1981) have also been reconstructed. Kassab et al.
(Mittal et al., 2005) reconstructed the porcine right coronary

Frontiers in Physiology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 581

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Razavi et al. Scaling of Transit Time and Capillaries

T
A
B
L
E
2
|
T
h
e
va
lid
a
tio

n
o
f
sc

a
lin
g
re
la
tio

n
s
in

th
e
e
n
tir
e
st
e
m
-c
ro
w
n
sy
st
e
m

o
f
va
rio

u
s
–
sq

u
a
re

fit
s.

S
p
e
c
ie
s
a
n
d
o
rg
a
n

A
s
y
m
m
e
tr
ic

d
a
ta

Q
∝
N
c
λ

L
c

∝
N
c
λ

V
c

∝
N
c
λ

T
c
*L
c

∝
V
c
λ

R
e
fe
re
n
c
e
s

E
x
p
o
n
e
n
t

R
2

E
x
p
o
n
e
n
t

R
2

E
x
p
o
n
e
n
t

R
2

E
x
p
o
n
e
n
t

R
2

P
ig

R
C
A

1
.0
0
5
(1
.0
0
4
,
1
.0
0
5
)

0
.9
9
1
9

1
.0
2
9
(1
.0
2
9
,
1
.0
2
9
)

0
.9
9
9
2

1
.4
8
1
(1
.4
8
1
,
1
.4
8
1
)

0
.9
9
9
5

0
.9
8
1
4
(0
.9
8
1
4
,
0
.9
8
1
4
)

0
.9
9
6
6

M
itt
a
le
t
a
l.,

2
0
0
5

P
ig

L
A
D

1
.0
0
2
(1
.0
0
2
,
1
.0
0
2
)

0
.9
9
3
7

1
.0
3
1
(1
.0
3
1
,
1
.0
3
1
)

0
.9
9
9
3

1
.4
5
3
(1
.4
5
3
,
1
.4
5
3
)

0
.9
9
9
5

0
.9
8
8
3
(0
.9
8
8
3
,
0
.9
8
8
3
)

0
.9
9
7
3

M
itt
a
le
t
a
l.,

2
0
0
5

P
ig

L
C
X

1
.0
0
5
(1
.0
0
5
,
1
.0
0
5
)

0
.9
9
3
7

1
.0
3
1
(1
.0
3
1
,
1
.0
3
1
)

0
.9
9
9
2

1
.4
7
9
(1
.4
7
9
,
1
.4
7
9
)

0
.9
9
9
5

0
.9
8
9
1
(0
.9
8
9
1
,
0
.9
8
9
1
)

0
.9
9
7
2

M
itt
a
le
t
a
l.,

2
0
0
5

S
Y
M
M
E
T
R
IC

D
A
T
A

H
a
m
st
e
r
M
u
sc

le
1
(1
,
1
)

1
1
.2
3
5
(1
.0
6
3
,
1
.4
0
7
)

0
.9
9
4
3

1
.6
2
2
(1
.4
3
5
,
1
.8
0
8
)

0
.9
9
6
1

0
.8
0
5
2
(0
.6
9
3
,
0
.9
1
7
4
)

0
.9
0
9
3

B
e
rt
u
g
lia

e
t
a
l.,

1
9
9
1

R
a
t
L
u
n
g
s

1
(1
,
1
)

1
1
.0
3
3
(1
.0
1
6
,
1
.0
5
)

0
.9
9
8

1
.4
4
1
(1
.4
1
8
,
1
.4
6
4
)

0
.9
9
9
5

1
.0
2
3
(1
.0
1
2
,
1
.0
3
5
)

0
.9
9
9
7

Ji
a
n
g
e
t
a
l.,

1
9
9
4

R
a
t
M
e
se

n
te
ry

1
(1
,
1
)

1
1
.1
3
7
(1
.0
6
4
,
1
.2
1
1
)

0
.9
9
8
8

1
.3
0
6
(1
.2
2
1
,
1
.3
9
1
)

0
.9
9
8
7

1
.1
0
6
(1
.0
5
7
,
1
.1
5
6
)

0
.9
9
9
4

L
e
y
e
t
a
l.,

1
9
8
6

R
a
b
b
it
O
m
e
n
tu
m

1
(1
,
1
)

1
1
.1
7
9
(1
.1
2
3
,
1
.2
3
6
)

0
.9
9
9
3

1
.4
4
8
(1
.1
5
2
,
1
.7
4
5
)

0
.9
8
7
7

1
.1
2
5
(1
.1
1
,
1
.1
3
9
)

0
.9
9
9
9

F
e
n
to
n
a
n
d
Z
w
e
ifa
c
h
,
1
9
8
1

P
ig

R
C
A

1
(1
,
1
)

1
1
.0
2
1
(1
.0
0
9
,
1
.0
3
2
)

0
.9
9
9
7

1
.4
4
7
(1
.4
2
8
,
1
.4
6
7
)

0
.9
9
9
6

1
.0
1
4
(1
.0
0
6
,
1
.0
2
2
)

0
.9
9
9
9

M
itt
a
le
t
a
l.,

2
0
0
5

P
ig

L
A
D

1
(1
,
1
)

1
1
.0
2
2
(1
.0
0
9
,
1
.0
3
4
)

0
.9
9
9
7

1
.4
4
(1
.4
0
8
,
1
.4
7
3
)

0
.9
9
9
9

1
.0
1
5
(1
.0
0
7
,
1
.0
2
4
)

0
.9
9
9
0

M
itt
a
le
t
a
l.,

2
0
0
5

P
ig

L
C
X

1
(1
,
1
)

1
1
.0
2
8
(1
.0
1
3
,
1
.0
4
3
)

0
.9
9
9
6

1
.5
0
6
(1
.4
7
3
,
1
.5
3
9
)

0
.9
9
9
1

1
.0
1
9
(1
.0
0
9
,
1
.0
2
9
)

0
.9
9
9
8

M
itt
a
le
t
a
l.,

2
0
0
5

C
a
t
L
u
n
g
s
(a
rt
e
ria

l)
1
(1
,
1
)

1
1
.0
3
(1
.0
2
,
1
.0
4
)

0
.9
9
9
8

1
.4
0
1
(1
.3
3
9
,
1
.4
6
3
)

0
.9
9
6
6

1
.0
2
2
(1
.0
1
6
,
1
.0
2
8
)

0
.9
9
9
9

Y
e
n
e
t
a
l.,

1
9
8
3

C
a
t
L
u
n
g
s
(v
e
n
o
u
s)

1
(1
,
1
)

1
1
.0
2
9
(1
.0
1
,
1
.0
4
8
)

0
.9
9
4

1
.4
4
(1
.4
1
4
,
1
.4
6
5
)

0
.9
9
9
4

1
.0
2
1
(1
.0
0
8
,
1
.0
3
4
)

0
.9
9
9
7

Y
e
n
e
t
a
l.,

1
9
8
4

C
a
t
S
a
rt
o
riu

s
M
u
sc

le
1
(1
,
1
)

1
1
.0
9
2
(1
.0
7
4
,
1
.1
0
9
)

0
.9
9
9
9

1
.1
7
4
(1
.1
6
1
,
1
.1
8
7
)

1
.0
0
0
0

1
.0
7
8
(1
.0
6
3
,
1
.0
9
3
)

0
.9
9
9
9

K
o
lle
r
e
t
a
l.,

1
9
8
7

C
a
t
S
a
rt
o
riu

s
M
u
sc

le
1
(1
,
1
)

1
1
.0
9
2
(1
.0
7
4
,
1
.1
0
9
)

0
.9
9
9
9

1
.1
9
6
(1
.1
7
6
,
1
.2
1
6
)

0
.9
9
9
9

1
.0
7
7
(1
.0
6
1
,
1
.0
9
2
)

0
.9
9
9
9

K
o
lle
r
e
t
a
l.,

1
9
8
7

H
u
m
a
n
S
ke

le
ta
lM

u
sc

le
1
(1
,
1
)

1
1
.4
3
(0
.9
1
8
1
,
1
.9
4
3
)

0
.9
6
3
4

1
.7
3
1
(1
.0
8
7
,
2
.3
7
5
)

0
.9
6
0
7

1
.2
7
(1
.0
7
5
,
1
.4
6
6
)

0
.9
9
3
0

E
lls
w
o
rt
h
e
t
a
l.,

1
9
8
7

H
u
m
a
n
C
o
n
ju
n
c
tiv
a
(a
rt
e
ria

l)
1
(1
,
1
)

1
1
.1
0
5
(1
.0
6
3
,
1
.1
4
6
)

0
.9
9
9
3

1
.2
2
7
(1
.1
8
1
,
1
.2
7
3
)

0
.9
9
9
3

1
.0
8
6
(1
.0
5
5
,
1
.1
1
7
)

0
.9
9
9
6

F
e
n
to
n
a
n
d
Z
w
e
ifa
c
h
,
1
9
8
1

H
u
m
a
n
C
o
n
ju
n
c
tiv
a
(v
e
n
o
u
s)

1
(1
,
1
)

1
1
.1
1
3
(1
.0
5
6
,
1
.1
7
)

0
.9
9
8
6

1
.4
0
6
(1
.3
3
7
,
1
.4
7
6
)

0
.9
9
8
7

1
.0
8
1
(1
.0
4
3
,
1
.1
1
9
)

0
.9
9
9
4

F
e
n
to
n
a
n
d
Z
w
e
ifa
c
h
,
1
9
8
1

H
u
m
a
n
L
u
n
g
s
I(
a
rt
e
ria

l)
1
(1
,
1
)

1
1
.0
0
6
(1
.0
0
1
,
1
.0
1
1
)

0
.9
9
9
9

1
.1
2
3
(1
.1
1
4
,
1
.1
3
2
)

0
.9
9
9
8

1
.0
1
3
(1
.0
0
9
,
1
.0
1
7
)

0
.9
9
9
9

S
in
g
h
a
lS

.
S
.
e
t
a
l.,

1
9
7
3

H
u
m
a
n
L
u
n
g
s
II
(a
rt
e
ria

l)
1
.0
1
(1
.0
0
3
,
1
.0
1
6
)

0
.9
9
9
9

1
.0
1
(1
.0
0
3
,
1
.0
1
6
)

0
.9
9
9
9

1
.1
5
2
(1
.1
2
4
,
1
.1
8
)

0
.9
9
8
2

1
.0
0
9
(1
.0
0
4
,
1
.0
1
4
)

0
.9
9
9
9

H
u
a
n
g
e
t
a
l.,

1
9
9
6

H
u
m
a
n
L
u
n
g
s
III
(a
rt
e
ria

l)
1
(1
,
1
)

1
.0
0
0
0

1
.0
0
2
(1
.0
0
1
,
1
.0
0
3
)

1
.0
0
0
0

1
.1
9
7
(1
.1
8
7
,
1
.2
0
7
)

0
.9
9
9
8

1
.0
0
5
(1
.0
0
4
,
1
.0
0
5
)

1
.0
0
0
0

S
in
g
h
a
lS

.
e
t
a
l.,

1
9
7
3

H
u
m
a
n
L
u
n
g
s
IV

(v
e
n
o
u
s)

1
(1
,
1
)

1
1
.0
3
3
(1
.0
1
9
,
1
.0
4
6
)

0
.9
9
9
5

1
.2
9
4
(1
.2
4
,
1
.3
4
9
)

0
.9
9
4
7

1
.0
2
6
(1
.0
1
7
,
1
.0
3
6
)

0
.9
9
9
7

H
u
a
n
g
e
t
a
l.,

1
9
9
6

H
u
m
a
n
L
u
n
g
s
V
(v
e
n
o
u
s)

1
(1
,
1
)

1
1
.0
1
1
(1
.0
0
4
,
1
.0
1
9
)

0
.9
9
9
8

1
.2
1
5
(1
.2
0
4
,
1
.2
2
5
)

0
.9
9
9
8

1
.0
1
(1
.0
0
3
,
1
.0
1
6
)

0
.9
9
9
9

H
o
rs
fie
ld

a
n
d
G
o
rd
o
n
,

1
9
8
1

M
e
a
n

1
.0
0
1
0

1
.0
7
6
5

1
.3
7
2
3

1
.0
3
4
7

S
D

0
.0
0
2
4

0
.1
0
2
2

0
.1
6
5
9

0
.0
8
1
9

T
h
e
m
o
rp
h
o
m
e
tr
ic
d
a
ta
w
e
re
o
b
ta
in
e
d
fr
o
m
th
e
fu
ll
a
s
ym

m
e
tr
ic
a
rt
e
ri
a
l
tr
e
e
a
n
d
s
im
p
lifi
e
d
s
ym

m
e
tr
ic
tr
e
e
s
.
T
h
e
d
a
ta
w
e
re
n
o
rm
a
liz
e
d
u
s
in
g
th
e
m
a
xi
m
u
m
va
lu
e
s
in
th
e
re
s
p
e
c
ti
ve

tr
e
e
.
T
h
e
le
a
s
t-
s
q
u
a
re
fit
w
a
s
u
s
e
d
to

o
b
ta
in
s
c
a
lin
g

e
xp
o
n
e
n
t
o
f
la
m
b
d
a
(Y

=
X

λ
).
R
2
is
c
o
rr
e
la
ti
o
n
c
o
e
ffi
c
ie
n
t;
R
C
A
,
ri
g
h
t
c
o
ro
n
a
ry
a
rt
e
ry
;
L
A
D
,
le
ft
a
n
te
ri
o
r
d
e
s
c
e
n
d
in
g
a
rt
e
ry
;
L
C
x,
le
ft
c
ir
c
u
m
fle
x
a
rt
e
ry
;
P
A
,
p
u
lm
o
n
a
ry
a
rt
e
ry
;
P
V
,
p
u
lm
o
n
a
ry
ve
in
;
S
M
A
,
s
a
rt
o
ri
u
s
m
u
s
c
le
a
rt
e
ri
e
s
;
M
A
,

m
e
s
e
n
te
ry
a
rt
e
ri
e
s
;
O
V
,
o
m
e
n
tu
m
ve
in
s
;
B
C
A
,
b
u
lb
a
r
c
o
n
ju
n
c
ti
va

a
rt
e
ri
e
s
;
B
C
V
,
b
u
lb
a
r
c
o
n
ju
n
c
ti
va

ve
in
s
;
R
M
A
,
re
tr
a
c
to
r
m
u
s
c
le
a
rt
e
ry
.
R
2
=

1
−

∑

(lo
g
(y
d
a
ta
)−

lo
g
(y
fit
))2

∑

(l
o
g

(y
d
a
ta

))
2

.

Frontiers in Physiology | www.frontiersin.org 5 May 2018 | Volume 9 | Article 581

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Razavi et al. Scaling of Transit Time and Capillaries

TABLE 3 | The r-squared values for the hypothesized exponent λ = 1, corresponding to flow-length, length-capillary, and transit time scaling relations in stem-crown

systems of symmetric data at each branching level of various species and organs, the morphometric data were obtained from the symmetric trees.

Branching

level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Human Lungs

I (arterial)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.956

Transit Time 0.988 0.999 0.998 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.997 0.995 0.986 0.873

Human Lungs

II (arterial)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.995 0.987

Transit Time 1.000 1.000 0.998 0.999 0.998 0.998 0.998 0.996 0.986 0.974 0.979 0.937 0.946 0.931

Human Lungs

III (arterial)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Transit Time 0.976 0.994 0.999 0.996 0.993 0.996 0.995 0.991 0.995 0.994 0.994 0.994 0.994 0.993 0.994 1.000

Human Lungs

IV (venous)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.990 0.998 0.992

Transit Time 0.996 0.997 0.996 0.989 0.994 0.995 0.990 0.996 0.995 0.993 0.992 0.946 0.963 0.959

Human Lungs

V (venous)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970

Transit Time 0.991 0.995 0.992 0.991 0.993 0.999 0.996 0.996 0.996 0.993 0.989 0.980 0.958 0.900

Pig RCA Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.991 0.969

Transit Time 0.996 0.984 0.983 0.978 0.972 0.979 0.939 0.966 0.952 0.896

Pig LAD Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.994 0.955

Transit Time 0.997 0.991 0.980 0.977 0.967 0.977 0.945 0.943 0.968 0.865

Pig LCX Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.994 0.955

Transit Time 0.997 0.984 0.966 0.978 0.957 0.943 0.938 0.969 0.865

Cat Lungs

(arterial)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 0.998 0.995 0.999 0.998

Transit Time 0.995 0.994 0.993 0.988 0.973 0.946 0.910 0.984 0.980

Cat Lungs

(venous)

Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.993 0.959

Transit Time 0.975 0.989 0.987 0.987 0.973 0.964 0.975 0.955 0.873

Rat Lungs Flow-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Length-Capillary 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.987 0.994

Transit Time 0.981 0.970 0.976 0.982 0.982 0.977 0.969 0.957 0.889 0.968

Human
Conjunctiva

(arterial)

Flow-Capillary 1.000 1.000 1.000 1.000

Length-Capillary 0.999 0.997 0.994 0.981

Transit Time 0.991 0.979 0.972 0.933

Human
Conjunctiva

(venous)

Flow-Capillary 1.000 1.000 1.000 1.000

Length-Capillary 0.999 0.996 0.985 0.970

Transit Time 0.982 0.955 0.898 0.911

Cat Sartorius
Muscle

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.999 0.997 0.998

Transit Time 0.988 0.982 0.992

Cat Sartorius
Muscle

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.999 0.997 0.998

Transit Time 0.990 0.984 0.992

Human
Skeletal
Muscle

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.997 0.974 0.815

Transit Time 0.977 0.954 0.770

(Continued)
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TABLE 3 | Continued

Branching

level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rat
Mesentery

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.999 0.993 0.976

Transit Time 0.989 0.958 0.925

Rabbit
Omentum

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.983 0.996 0.993

Transit Time 0.000 0.000 0.000

Hamster
Muscle

Flow-Capillary 1.000 1.000 1.000

Length-Capillary 0.998 0.988 0.935

Transit Time 0.970 0.940 0.869

The order number “0” corresponds to the main stem in the entire stem-crown systems and the last level includes terminal stem-crown system one pre-capillary branching. RCA, right

coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; PA, pulmonary artery; PV, pulmonary vein; SMA, sartorius muscle arteries; MA, mesentery arteries; OV,

omentum veins; BCA, bulbar conjunctiva arteries; BCV, bulbar conjunctiva veins; RMA, retractor muscle artery.

artery (RCA), left anterior descending (LAD) artery, and left
circumflex (LCx) arterial trees. Huang et al. (1996) measured the
human pulmonary arterial and venous trees, while Jiang et al.
measured the rat pulmonary arterial tree (Jiang et al., 1994).

Data Analysis
For the symmetric and asymmetric data, full tree data were
presented as log-log scatter plots and log-log density plots,
respectively, showing the density of data because of the enormity
of data points (Huo et al., 2007). We utilized a nonlinear
regression based on the least-square method and a log-log
transformation to perform curve fitting of morphometric data
in MATLAB, at 95% confidence level to obtain the model
coefficients and confidence bounds for the fitted coefficients. R-
squared and the standard error of the regression were calculated
to evaluate the goodness of fit. Additionally, a nonparametric
bootstrap method was used for estimating the standard error and
the confidence interval of estimated parameters and correlation
coefficients using repeated samples from the original data.
This method was based on the sampling with replacement
(Wu, 1986). A number of 1,000 bootstrap sample was used
to obtain the confidence intervals of estimated parameters.
Hemodynamic analyses were performed to obtain network flow
based on two different models: (1) Asymmetric full model and (2)
Simplified symmetric model as described in the Supplementary
Information.

Theoretical Scaling Laws
In this section, we propose and test different scaling relations
for the crown volume (Vc), crown length (Lc), blood flow (Q),
and the number of capillaries (N) in the respective network. The
subscriptions c, st, and cp stand for the crown, stem and capillary
respectively (please see Table 1).

Flow Perfusion Scales With Capillary
Numbers
Since the structure-function relation is pervasive in biology,
we hypothesize the existence of a direct relation between flow
through a branch (i.e., stem flow) of an organ vascular system

and the respective number of capillaries through which the blood
flow distributes.

The formulation invokes the law of conservation of mass
which requires the flow at the inlet of the tree or crown (Qst stem
flow) to be equal to the sum of the flows at the first capillary
segments, Qcp; namely:

Qst =

N
∑

i=1

Qcp,i (1)

where N is the number of capillaries perfused by a given stem.
Using the average capillary flow rate (Qcp =

∑N
i Qcp,i/N),

Equation (1) reduces to:

Qst = kNc (2)

where k is the average capillary flow and approximately constant
across the various stem-crown systems. Hence, the inlet flow
is proportional to the total number of capillary vessels. If we
normalize the flow and capillarity with respect to an entire tree,
we obtain the following:

Qst

Qst,max
=

(

Nc

Nc,max

)

(3)

where Qst,max and Nc,max are the inlet flow and the total number
of capillaries in a vascular system, respectively.

Crown Volume Scales With Capillary Number
Crown volume is cumulative blood volume within the network
(Vc =

∑

ni(πLiD
2
i ), a derivation based on the average branching

ratio (ni = Bri, i= 0,.., m; where n and i are number of vessels and
branching level respectively) and scaling of vessel diameters and
lengths in each branching level results in a relationship between
crown volume and number of capillaries as follows (please see
Supplementary Information):

Vc = KVN (Nc)
λ (4)
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FIGURE 4 | Relationship between normalized crown volume (Vc/Vc,max) and

normalized number of capillaries (Nc/Nc,max) for the full asymmetric porcine

arterial tree shown in a log-log density plot: (A) RCA, right coronary artery; (B)

LAD, left anterior descending artery; (C) LCx, left circumflex artery. The total

number of data points shown in (A–C) are 838,462, 950,014, and 575,868;

respectively. The scaling exponents obtained from the least square fit of each

data set are close to 3/2. The values of exponents, the confidence interval and

R2 for each species and organs are summarized in Table 2.

whereKVN is a constant. If we normalize the above equation with
respect to maximum crown volume and number of capillaries in
the entire vascular network, a general form of scaling relationship
is obtained as:

Vc

Vc,max

=

(

Nc

Nc,max

)λ

(5)

Crown Length Scales With Capillary Number
Since crown length is simply cumulative length of blood vessels
of all branching levels within the network (Lc =

∑

niLi), a
derivation based on the average branching ratio (ni = Bri, i =
0,.., m; where n and i are number of vessels and branching level
respectively) and scaling of average length of blood vessels in
each level of branching Li = (Brγ )m−i Lcap; where Lcap is the
average length of capillaries and γ is an empirical exponent (Huo
and Kassab, 2012), results in a direct relationship between crown
length and number of capillaries (please see Supplementary
Information), namely:

Lc = KLNNc (6)

where KLN = Lcap
∑m

i=o Br
(i−m)(1−γ ) is approximately a

constant. A general form of normalized crown length and
number of capillaries with respect to an entire tree is given as:

Lc

Lc,max
=

(

Nc

Nc,max

)λ

(7)

where Lc,max and Nc,max are the maximum crown length and the
number of capillaries in the entire tree. We shall confirm the
hypothesis that λ is equal to 1 and hence the form of Equation
(7) can be described by Equation (6).

Mean Transit Time Scales With Crown Volume and

Length
Because of the structural heterogeneity of vascular networks and
hence heterogeneous perfusions, the particles traverse various
paths in the network. Hence, the mean transit time (MTT) is the
average time required for blood to travel through the vascular
network over a period of time. Based on the assumption that
blood particles travel with the mean velocity of bulk flow and
that the total number of blood particles passing through a vessel
segment is proportional to the time-averaged flow rate in the
segment, the MTT in the vascular network (Tc) can be written
as:

Tc =

N
∑

i=1

FFi∗Tsg,i (8)

where FF is the flow fraction (ratio of segment flow to stem flow)
and ∗Tsg is the average transit time in a specific segment where i
= 1,2,.., n; and n is the total number of segments in the entire
network. It is well known that transit time can be determined
by the ratio of blood volume and blood flow (Meier and Zierler,
1954). An elementary derivation by replacing the definition of the
flow fraction (FFi = Qi/Qmax), transit time in a segment (Ti =
Vi/Qi) and Equation (8) results in:

Tc∗Nc = KTNVc (9)
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FIGURE 5 | Relationship between normalized crown volume (Vc/Vc,max) and normalized number of capillaries (Nc/Nc,max) for the symmetric trees of various species

and organs shown in a log-log scatter plot. RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; PA, pulmonary artery; PV,

pulmonary vein; SMA, sartorius muscle arteries; MA, mesentery arteries; OV, omentum veins; BCA, bulbular conjunctiva arteries; BCV, bulbular conjunctiva veins;

RMA, retractor muscle artery. The scaling exponent (Equation 6) and R2 for each species and organs summarized in Table 2 are consistent with 3/2 or 4/3 exponent.

The values of exponents, the confidence interval and R2 for each species and organs are summarized in Table 2.

where KTN is a proportionality constant in unit of time/volume.
A combination of Equations (6) and (9) relates mean transit time
to crown volume and length, namely:

Tc∗Lc = KTLVc (10)

where the parameter KTL is a proportionality constant in unit of
time/area. A general normalized form of the above equation can
be written as:

(

Tc

Tc,max

)

∗

(

Lc

Lc,max

)

=

(

Vc

Vc,max

)λ

(11)

where Tc,max, Lc,max, andVc,max are the crown time, crown length
and crown volume in the entire tree, respectively.

RESULTS

Flow Rate Scales With Number of
Capillaries
The normalized flow and number of capillaries for all stem-
crown units of the full asymmetric coronary arterial trees obeys
a power law (Figure 2). The values of scaling exponent λ

obtained from nonlinear regression were 1.005 (R2 = 1), 1.002
(R2 = 1), and 1.005 (R2 = 1) for the porcine RCA, LAD, and
LCx, respectively. The total number of data points shown in
Figures 2A–C are 838,462, 950,014, and 575,868, respectively.

Analysis of normalized stem flow-crown capillaries for
symmetric trees for various vascular trees of various species
including the coronary arterial trees shows a linear relation
between perfusion flow and the respective number of crown
capillaries (Figure 3). The exponents in the symmetric analysis
for all species and organs are equal to a theoretical value of
unity; which is due to neglecting heterogeneity in the symmetric
analysis and assumption that all vessel in each branching level
has the same length and diameter. Table 2 summarizes the
least squares power law relation for each of the vascular trees,
including the coefficient, exponent, and R2. The exponents are
nearly unity and the R2 is highly significant. Table 3 provides the
R2values have been for lambda= 1.

Crown Volume Scales With Number of
Capillaries
The crown volume obeys a power law (Equation 5) as evident by
morphometric data of full asymmetric arterial trees of porcine
RCA, LAD, and LCx (Figure 4). The scaling exponents were
1.481 (R2 = 0.9261), 1.453 (R2 = 0.9358), and 1.479 (R2 =

0.9325). The total number of data points shown in Figures 4A–C

are 838,462, 950,014, and 575,868; respectively.
The exponents in the symmetric analysis for the RCA, LAD,

and LCx is 1.447 (R2 = 0.9985), 1.44 (R2 = 0.9962), and
1.506 (R2 = 0.9966), respectively; which are similar to the
asymmetric tree analysis and close to the theoretical value
of 3/2 (Figure 5). The mean exponent across various species
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FIGURE 6 | Relationship between the normalized crown length (Lc/Lc,max)

and normalized number of capillaries (Nc/Nc,max) for the full asymmetric

porcine arterial tree shown in a log-log scatter plot: (A) RCA, right coronary

artery; LAD, left anterior descending artery; LCx, left circumflex artery. The total

number of data points shown in (A–C) are 838,462, 950,014, and 575,868;

respectively. The dash lines correspond to the theoretical value of 1 predicted

by Equation (7). The scaling exponents obtained from the least square fit of

each data set are close to the theoretical value of unity. The values of

exponents, the confidence interval and R2 for each species and organ are

summarized in Table 2.

and organs are 1.3723 ± 0.1659 (R2 > 0.92). The scaling
exponents, confidence intervals and R2 associated with scaling
exponent for various species and organs are summarized in
Table 2.

Crown Length Linearly Scales With
Number of Capillaries
The crown length linearly scales with the number of capillaries
for all stem-crown units of the full asymmetric coronary arterial
trees (Figure 6). The values of scaling exponent λ (Equation
7) obtained from Figures 6A–C were 1.029 (R2 = 0.9169),
1.031 (R2 = 0.9225), and 1.031 (R2 = 0.9225) for the porcine
RCA, LAD and LCx, respectively (as compared to a theoretical
value of unity, Equation 6). The total number of data points
shown in Figures 4A–C are 838,462, 950,014, and 575,868,
respectively.

The exponents in the symmetric analysis for the RCA, LAD,
and LCx is 1.021 (R2 = 0.9989), 1.022 (R2 = 0.9988), and
1.028 (R2 = 0.9985), respectively); which are similar to the
asymmetric tree analysis and close to the theoretical unity
(Figure 7). The average scaling exponent (Equation 7) for all
species and organs is 1.0765 ± 0.1022 (R2 > 0.9). Table 2

summarizes the least squares power law relation for each of
the vascular trees, including exponent, confidence interval, and
R2. The exponents are nearly unity and the R2 is highly
significant.

Transit Time Scales With the Ratio of
Crown Volume and Length
The crown volume and the product of crown length and mean
transit time of asymmetric coronary arterial trees follows a
scaling relationship (Figure 8). The scaling exponentλ (Equation
11) were 0.9814 (R2 = 1), 0.9883 (R2 = 1), and 0.9891 (R2 = 1)
for the porcine RCA, LAD and LCx, respectively as compared
to a theoretical value of unity hypothesized by Equation (10).
Similarly, the exponents in the symmetric analysis were 1.014 (R2

= 0.9995), 1.015 (R2 = 0.9995), 1.019 (R2 = 0.9994) for RCA,
LAD, LCx, respectively; which are close to the exponents related
to the asymmetric data (Figure 9). The mean exponents for all
species and organs is 1.0347 ± 0.0819 (R2 > 0.98 for symmetric
data). The exponents for various species and organs along with
the associated confidence interval and R2 were summarized in
Table 2.

The confidence intervals and the scaling exponents obtained
from bootstrapping for the asymmetric trees confirm the
results presented in this section (please see the Supplementary
Information Figures S1, S2 for further details). In addition,
the R2 for the stem-crown systems corresponding to a specific
branching level of symmetric data where λ = 1 are presented in
Table 3.

DISCUSSION

The scaling laws and specifically form-form and form-function
relations are important theoretical tools to understand the
interplay between network structure and function in physiology
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FIGURE 7 | Relationship between the normalized crown length (Lc/Lc,max) and normalized number of capillaries (Nc/Nc,max) for the full asymmetric porcine arterial

tree shown in a log-log scatter plot. RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; PA, pulmonary artery; PV, pulmonary

vein; SMA, sartorius muscle arteries; MA, mesentery arteries; OV, omentum veins; BCA, bulbular conjunctiva arteries; BCV, bulbular conjunctiva veins; RMA, retractor

muscle artery. The values of exponents (Equation 7) are in agreement with the theoretical value of unity predicted by Equation (6). The values of scaling exponents, the

confidence interval and R2 for various species and organs are summarized in Table 2.

and pathophysiology. Among the first form-function relations,
a power-law relationship between flow and diameter was first
pointed out by Murray nearly 90 years ago (Murray, 1926)
and came to be known as Murray’s law. Murray’s law has been
debated and even disproven for certain organs (Hutchins et al.,
1976; Uylings, 1977; Sherman, 1981; Kassab, 2006, 2007). It has
been found that the exponent 7/3 provides a better fit than the
theoretical power of 3 from Murray’s law. Although Murray’s
law (i.e., the exponent of 3) has been debated, the power-law
form has not been contested and is universally accepted as a
consequence of the optimized design of the vascular system.
To this end, key advances have been made to test and validate
intra-specific and inter-specific scaling laws for the entire arterial
network. The scaling laws predict a linear relationship between
flow and length while volume and flow are proportional to
diameter with the power of 3 and 7/3 respectively (Kassab,
2006; Huo and Kassab, 2012). It has been also shown that the
form-function relations are preserved in compensatory vascular
remodeling. There is no intraspecific scaling relation, however,
that relates the number of capillaries to various morphological
and functional parameters (Gong et al., 2016). Here, we proposed
and tested scaling relations for the vascular volume, length,
and flow with the number of capillaries. Although there is
deviation from the theoretical lines, mainly in the small vessels,
the numbers of those that deviate are relatively small compared
to the very majority that concentrate near the theoretical line.
It should be also noted that scatter plots for asymmetric data
show the density of data points and most points are concentrated

near theoretical values, and hence, the R2 values are close to
one.

Here, we developed intra-specific scaling laws between
capillary number and crown volume. The derivation is based on
the fractal characteristic of the branching tree pattern. The scaling
exponent of porcine coronary arteries is in close proximity to 3/2
while the scaling exponent for human lungs is closer to 4/3. The
mean exponent across various species and organs is 1.37± 0.166.

The conformity between scaling of crown length and number
of capillaries among various species and organs reveals another
salient proportionality law between form and function of
the vascular system. The blood vessels are known to adapt
to physiological demands and altered homeostatic conditions.
The capability of vascular trees to deliver oxygen tissue and
nutrients to serve metabolism strongly depends on the number
of capillaries. The capillary density changes in response to
conditions like hypoxia. In the context of new blood vessel
formation and vascular sprouting, length of the perfused blood
vessel is a key determinant of growth and development. It has
been shown that length of blood vessels adapts to changes
in homeostatic conditions (Lehman et al., 1991; Sho et al.,
2004; Humphrey et al., 2009). The scaling law links vascular
length to respective capillaries through a structure-function
relation.

A linear relationship between flow rate and capillary number
is expected based on the conservation of mass. Here, we tested
the internal consistency of the data for both symmetric and
asymmetric trees. Although such a linear scaling law is valid
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FIGURE 8 | Relationship between normalized crown volume (Vc/Vc,max) and

multiplication of crown mean transit time and crown length (Ts/Ts,max*

Ls/Ls,max) for the full asymmetric porcine arterial tree shown in a log-log

density plot: (A) RCA, right coronary artery; (B) LAD, left anterior descending

artery; (C) LCx, left circumflex artery. The total number of data points shown in

(A–C) are 838,462, 950,014, and 575,868; respectively. The dash lines

correspond to the theoretical exponent of unity. The scaling exponents

obtained from the least square fit of each data set are close to the theoretical

value of unity. The values of exponents, the confidence interval and R2 for

each species and organs are summarized in Table 2.

if the average capillary flow across the various stem-crown
system is preserved, we validated such a relationship based on
the available data sets from heterogeneous vascular networks
of various species and organs. Flow-length and flow-diameter
relations have been previously proposed and tested based on
the minimum energy hypothesis. This analysis suggests that the
number of capillaries in the length-capillary relation (form-form
relation) and flow-capillary relation (form-function relation)
relates flow to length (Huo and Kassab, 2012). Although flow-
length and flow-diameter relationships have been validated,
those studies used symmetric networks to estimate flow rate.
Here, we showed that steady-state simulations of blood flow
through both realistic asymmetric and simplified symmetric
networks confirming that flow is proportional to the number
of capillaries. This analysis takes into account the effect of
heterogeneity in vessel geometry and hemodynamic parameters.
The physical basis of this observation is the conservation of
mass that dictates the stem flow is proportional to the number
of terminal capillaries as long as the average capillary flow in
the various stem-crown system approximately remains similar.
Further, the relative uniformity of the diameter of arterial
capillaries has been previously shown by Kassab and Fung
(1994) for the coronary vasculature. The coefficient of variation
(CV = SD/Mean) is 0.15 and 0.18 for the right and left
ventricle walls, respectively. Hence, it is well recognized that the
capillary dimensions are generally conserved across species (e.g.,
capillary diameters are similar in rat and human (Karbowski,
2011). However, upstream blood vessels and variation of
pressure at the capillary bed can lead to dispersion in the
terminal flow. Hence, scaling relationships for flow-capillary, and
subsequently flow-length and flow-diameter relations, provide
a better fit for larger vessels where many stem-crowns are
included.

Perfusion is expressed as flow per mass and hence relates
proportionally to the number of capillaries per mass. Since
mass is equal to the volume and density of tissue, the
perfusion increases with the increase in the number of
capillaries per volume of tissue or number density as can
be determined histologically. Hence, the linear scaling allows
a direct connection between structure (number density) and
function (perfusion). This relation may be used to understand
the transition between physiology and pathophysiology. When
the number density of capillaries is decreased due to infarction,
hypertension, or obesity, etc., this may lead to malnutrition,
atrophy or death of the tissue. Conversely, the number density
of capillaries may be increased in tumors in accordance
with the increase in blood flow to enhance the growth of
the tissue. The number density can be determined from
histological sections of biopsy specimens of animals and
patients.

The flow perfusion-number density scaling relation can also
be used for drug dose determination. The dose can be titrated
between species as the number density reflects perfusion (flow
per mass) of tissue. Adequate perfusion (volumetric flow per
mass of tissue) is essential for any organ because it affects its
health and function. The linearity between stem flow and the
number of capillaries the functional capillary density can be
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FIGURE 9 | Relationship between normalized crown volume (Vc/Vc,max) and multiplication of crown mean transit time and crown length (Ts/Ts,max* Ls/Ls,max) for the

symmetric trees of various species and organs shown in a log-log scatter plot. RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex

artery; PA, pulmonary artery; PV, pulmonary vein; SMA, sartorius muscle arteries; MA, mesentery arteries; OV, omentum veins; BCA, bulbar conjunctiva arteries; BCV,

bulbar conjunctiva veins; RMA, retractor muscle artery. The values of exponents are consistent with the theoretical value of unity. The values of scaling exponents, the

confidence interval and R2 for various species and organs are summarized in Table 2.

obtained from the length of vascular network non-invasively
from standard medical imaging.

The transit time is a seminal physiological parameter in
biological transport phenomena and has critical implications for
vascular disease. Prolonged mean transit time is known to be
associated with high risk of infarction and cerebral ischemia. No-
capillary flow and altered blood volume conditions occur under
pathophysiological conditions. The scaling relation between
mean transit time, blood volume, and the number capillaries
can be used as a theoretical basis to understand the distribution
of oxygen and nutrients under physiological conditions and
microvascular failure under pathological conditions. It is well
known that the transit time is the ratio of vascular volume
and blood flow. Since a relationship between flow rate and
crown length holds for various vascular trees, we compared
the theoretical calculation of transit times based on the crown
length to the calculation based on the blood flow. It was
shown that the estimation of transit time based on the crown
length and volume hold for proximal trees (down to 1mm
diameter vessels which can be observed in angiograms). Hence,
standard clinical imaging of blood vessel anatomy may yield
functional data on the transit times through the organ of
interest.

This study has several limitations that should be noted
to guide interpretation of the proposed relationships. First,
the available morphometric data were obtained from healthy
subjects, and hence, the scaling laws are applicable to
only healthy vasculature. For example, in pathophysiological

cases such as infarction, functional capillary density and
associated tissue perfusion changes even though the number
of capillaries may remain unchanged. Hence, in scenarios
where the model assumptions are severely violated, the
proposed scaling laws may not be preserved and may lead
to an overestimate. This may have utility, however, since
the proposed scaling laws may serve as a signature of
normal function and deviations from these laws may form
the basis to quantify the severity of disease such as non-
compensatory remodeling (e.g., the deviation from the scaling
laws may be a useful theoretical framework to establish a
scoring system for the severity of disease state). Second, a
uniform outlet pressure was used to simulate blood flow.
It has been found, however, that a heterogeneous outflow
pressure can lead to flow reversal at capillary beds which
likely occurs transiently. Although this phenomenon can change
transit time estimation, previous simulations have shown that
heterogeneous outlet pressure can change transit time at most
∼10% (Mittal et al., 2005). We have also modeled heterogeneity
of blood flow and transit time distribution incorporating
Fåhræus effect in simulations. Third, both realistic asymmetric
as well as idealized symmetric data were used based the
available morphometric data. Since symmetric analysis neglects
heterogeneity, hemodynamic variations for vessels belonging
to the same branching are not considered. Specifically, that
is the case for trees with a small number of branching
level, where the standard deviation of each parameter in each
branching level may be large. Comparison of symmetric and
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asymmetric analyses for trees that have a large branching level
(e.g., pig RCA, LCX, LAD), however, shows that the scaling
exponents are very similar for both symmetric and asymmetric
data.
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